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Abstract— In this paper, we present sufficient conditions for
guaranteeing global asymptotic speed regulation for three-phase
and dual three-phase permanent magnet synchronous motors.
Contrary to standard cascade control design approaches, where
the inner and outer controllers cannot be tuned separately, we
derive conditions on the controllers gains that are independent
of each other. This tuning method is possible thanks to
decomposing the machine dynamics as a negative feedback in-
terconnection of two subsystems. The provided conditions then
ensure the passivity of each subsystem, which in turn guarantees
the asymptotic stability of the closed-loop equilibrium.

I. INTRODUCTION

Permanent magnet synchronous motors (PMSMs) offer
significant advantages, such as high efficiency, high power
density, small size, and high dynamic performance. These
properties have made the PMSMs to be widely used in
applications such as electric vehicles, wind generators, ship
propulsion systems, and electric aircraft [1]. Among the
PMSMs, multi-phase PMSMs have additional benefits, such
as smaller torque ripple, stronger fault tolerance, and high
output power [2]. From them, dual three-phase PMSMs (DT-
PMSMs) have two sets of three-phase stator windings with
isolated neutral points and a phase-shift of 30 electrical
degrees. While an inverter controls each set of windings, the
control design for DT-PMSMs becomes complex due to the
coupling between the windings. In this setting, vector space
decomposition (VSD) becomes essential since it provides a
method for studying DT-PMSMs in two orthogonal planes:
the α-β and z1-z2 [3]. In an ideal DT-PMSM, the electrical
torque is thus effectively regulated by means of controllers in
the plane of the fundamental components α and β, while the
rest of the dynamics is projected into the z1-z2 plane [4], [5].
Applying Park’s transformation to the fundamental α-β plane
results in the d-q [3] orthogonal reference system, analogous
to that of a three-phase PMSM, allowing the application of
the controllers of such machines also in DT-PMSMs.

In the literature of electrical drives, various control
techniques have been proposed for speed/position track-
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ing/regulation of PMSMs (see, for instance [6], [7], [8]).
At present, proportional-integral (PI) control is the dominant
technique among industrial applications, due to its simplicity
and it is often used in a cascade scheme. There, an inner
controller is employed to ensure the tracking of the cur-
rent, while the outer controller ensures the speed/position
regulation and provides a reference for the inner control.
In this way, inner and outer controllers achieve the desired
speed or position regulation [9]. Due to the wide use of this
scheme, it is of interest to investigate stability conditions
for this cascade control scheme, as well as suitable methods
for tuning the controller gains. To guarantee the stability
of electrical machines controlled with a cascade scheme,
often the time-scale separation principle is employed. This
principle imposes a faster response to inner loop control with
respect to the outer loop [10].

In contrast, passivity-based control provides a framework
for designing controllers for linear or nonlinear systems
that exploits structural properties of the systems rather than
behaviors conditioned by their parameters [11]. In [12], it is
shown that a class of PMSMs possesses an inherent passive
structure, which is exploited for designing a speed con-
trol based on the interconnection and damping assignment
passivity-based control (IDA-PBC) method. Other related
works are [9], where it is shown that PMSMs can be globally
regulated around a desired equilibrium point (EP) using a
PI controller in combination with a state estimator while
providing tuning conditions for the PI controller, and [13],
where a cascade PI controller is implemented for non-salient
PMSMs and global stability of the cascade approach is
demonstrated by setting the proportional gains sufficiently
large, saturating the integrators, and imposing a persistency
of excitation condition on the signals.

An important feature of passivity-based control design
methods is that complex systems can be decomposed into
simpler interconnected subsystems that preserve the passivity
property. Then, time-scale separation arguments are not
needed, and stability conditions can be established from the
passivity properties of the systems [12]. In this context, the
main contribution in this note is a passivity-based design
method for the cascade control of the speed in DT-PMSMs.
More precisely, we provide the following:

1) A novel decomposition of the DT-PMSM dynamics as
the interconnection of two passive systems. The sub-
systems can be related to the electrical dynamics and
the mechanical dynamics of the machine, respectively.

2) Sufficient conditions over the controller gains that
ensure the passivity property of each subsystem and,
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simultaneously, the passivity of the interconnection.
3) These conditions result in independent criteria for the

tuning of the inner and outer controllers that ensure
the global asymptotic regulation of the speed, making
it unnecessary to appeal to a time-separation argument.

The structure of the paper is as follows. In Section II, the
model of the DT-PMSM is introduced. In Section III, the
cascade control scheme for speed regulation is explained,
and the problem formulation is given. In Section IV, the
error dynamics induced by the speed control is analyzed in a
passivity-based framework, and conditions for ensuring the
passivity of the system that ensure the global asymptotic
regulation of the speed are given. Finally, in Section V, the
speed control is illustrated via numerical simulations.

II. DT-PMSM MODEL

As is done in standard PMSMs, the dynamics of the DT-
PMSM is investigated in a reference frame synchronized with
the motion of the machine’s rotor. In this way, a system
with stationary steady states is obtained, leaving aside the
need to analyze periodic trajectories. For the DT-PMSM, this
is obtained with the method of vector space decomposition
introduced by [14], which results in the following set of
equations describing the electrical and mechanical behavior
of the machine:

Ld
d

dt
id = ud −Rsid + ωeLqiq,

Lq
d

dt
iq = uq −Rsiq − ωe(Ldid + ϕf ),

Jm
d

dt
ωm = Te − Tl −Rmωm,

Te = 3p((Ld − Lq)idiq + ϕf iq),

(1a)

Lz1

d

dt
iz1 = uz1 −Rsiz1 ,

Lz2

d

dt
iz2 = uz2 −Rsiz2 .

(1b)

Here, id, iq , iz1 , and iz2 are the machine’s currents, ud,
uq , uz1 , and uz2 are the input voltages to the motor, ωe and
ωm are the electrical and mechanical angular speed of the
machine (ωe = pωm). The parameters of the model are the
inductances Ld > 0, Lq > 0, Lz1 > 0, and Lz2 > 0, the
electrical resistance of the stator Rs > 0, the flux established
by the permanent magnets ϕf , the rotor inertia Jm > 0, the
viscous friction factor Rm > 0, and the number of pole-pairs
of the machine p ≥ 1. Te represents the electrical torque, and
Tl is the unknown but constant load torque. The definitions
of Ld, Lq , and Lz as well as the 6-phase transformation
matrix to model (1) can be found in Appendix A of [5].

III. DT-PMSM SPEED REGULATION AND PROBLEM
STATEMENT

To regulate the speed of a DT-PMSM, represented by
ωe in (1a), it is common practice to implement a cascade
control scheme, where the inner loop is meant to achieve
torque tracking by controlling the d and q currents, whereas
the outer loop regulates the machine’s speed by generating
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Fig. 1. Block diagram of the control scheme for speed regulation in DT-
PMSMs.

a torque/current reference for the inner loop [10]. A PI
controller is combined with a feedforward term for the inner
loop to achieve the current control. The feedforward term
is meant to cancel the cross-couplings between the d and
q currents [15], [16], whereas the PI controller achieves
the reference tracking. For the inner loop control with a
feedforward term, one has then the following:

udq = −KP,1

((
idq − irdq

)
+ TI,1z1

)
+

[
−Lqωeiq Ldωeid + ωeϕf

]⊤
,

ż1 = idq − irdq,

(2)

with udq = [ud uq]
⊤, idq = [id iq]

⊤, integral state
represented by z1 = [z11 z12]

⊤, and reference given by irdq =

[ird irq]
⊤. The controller gains are represented by KP,1 =

diag{kp,11 , kp,12} and TI,1 = diag{1/Ti,11 , 1/Ti,12}, i.e.,
the proportional and integral gains.

For a non-salient machine, where Ld = Lq = L, the direct
current id does not contribute to the torque generation (see
(1a)), and thus its reference is set to zero for reducing the
energy consumption of the motor. In such a situation, only
the reference for the quadrature current iq is generated by
the outer control, which is also conventionally implemented
as a PI controller. This results in the following outer loop
control:

irq = −kp,2
((
ωe − ωr

e

)
+

1

Ti,2

z2
)
,

ż2 = ωe − ωr
e .

(3)

In (3) kp,2 ∈ R and Ti,2 ∈ R are the proportional and
integral gains, respectively, and ωr

e is the constant reference
for the angular electrical speed of the machine.
In the case of the currents iz1 and iz2 in (1b), their references
are also set to zero since they do not contribute to the torque
generation, but only to the ohmic losses of the machine.
To regulate them, it is common practice to implement the
following PI controller:

uz12 = −KP,3

(
iz12 + TI,3z3

)
,

ż3 = iz12 .
(4)

Here, uz12 = [uz1 uz2 ]
⊤, iz12 = [iz1 iz2 ]

⊤,
z3 = [z31 z32]

⊤, and the controller gains are KP,3 =
diag{kp,31 , kp,32} and TI,3 = diag{1/Ti,31 , 1/Ti,32}.
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The full implementation of the controllers (2), (3), and
(4) for the DT-PMSM is illustrated in the block diagram in
Figure 1, where Tdqz (see [5]), represents the transformation
matrix used to obtain the signals in the dqz-frame, which
model corresponds to (1). After the substitution of the
controllers (2), (3), and (4) in (1), one obtains the following
subsystems:

χ̇1 = A1χ1, χ1 =
[
id iz1 iz2 z11 z31 z32

]⊤
,

A1 =



−
Rs+kp,11

L
0 0 −

kp,11
LTi,11

0 0

0 −
Rs+kp,31

L
0 0 −

kp,31
LTi,31

0

0 0 −
Rs+kp,32

L
0 0 −

kp,32
LTi,32

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


,

(5a)

χ̇2 = A2χ2 +B2i
r
q, χ2 =

[
iq z12

]⊤
,

A2 =

[
−Rs+kp,12

L − kp,12

Ti,12
L

1 0

]
, B2 =

[kp,12

L
−1

]
,

(5b)

χ̇3 = A3χ3 +B3iq −D3, χ3 =
[
ωe z2

]⊤
,

A3 =

[
−Rm

Jm
0

1 0

]
, B3 =

[ 3ϕf

Jm

0

]
, D3 =

[
Tl

pJm

ωr
e

]
.

(5c)

Note that (5a) is autonomous, whereas (5b) and (5c) are
interconnected by irq and iq . Furthermore, it is easy to see
that the origin of (5a) is asymptotically stable as long as the
respective controller gains are positive. This follows from the
structure of the matrix A1 in (5a) and by recognizing that the
subsystem consists of three decoupled second-order systems.
Thus, the analysis problem can be focused on analyzing the
stability of the interconnected subsystems (5b) and (5c), and
showing that ωe → ωr

e as t → ∞. Formally, we address the
following problem.

Problem 1: Consider a DT-PMSM described by (1) with
controllers (2), (3), and (4). Assume that the motor does not
have saliency, i.e., Ld = Lq = L. Derive sufficient conditions
over the controller gains kp,11 , kp,12 , Ti,11 , Ti,12 , kp,2 , Ti,2 ,
kp,31 , kp,32 , Ti,31 and Ti,32 , such that ωe → ωr

e as t → ∞
despite the presence of a constant load torque Tl.

Not only sufficient conditions over the controller gains
are required, but it is also desirable that such conditions be
accessible. We have partially answered Problem 1 with the
argumentation given above for (5a). Finding such conditions
for the subsystems (5b) and (5c), however, is not as trivial.
Fortunately, we can exploit the fact that the subsystems (5b)
and (5c) are interconnected, and that their input/output maps
possess some passive qualities. For establishing this, in the
next section, the error dynamics induced by the subsystems
(5b) and (5c) are investigated.

IV. PASSIVITY-BASED TUNING CONDITIONS

A. Error dynamics of the controlled DT-PMSM

After the preliminary analysis carried out in the previous
section, the problem has been reduced to investigate if the
subsystems (5b) and (5c) have an asymptotically stable
equilibrium point such that ωr

e results in the equilibrium
value for ωe. Denote by χ⋆

2 and χ⋆
3 the equilibrium points of

the subsystems (5b) and (5c). By considering the equations

in (3), (5b), and (5c), and solving for the equilibrium we
obtain

χ⋆
2 =

[ Tl+Rmpωr
e

3pϕf
−RsTi,12

(Tl+Rmpωr
e)

3pϕfkp,12

]
,

χ⋆
3 =

[
ωr
e

−Ti,2 (Tl+Rmpωr
e)

3pϕfkp,2

]
.

(6)

Thus the equilibrium value for ωe is indeed ωr
e . To

proceed, consider the error variables χ̃2 = χ2 − χ⋆
2 and

χ̃3 = χ3 −χ⋆
3. The dynamics of the error variables result in

˙̃χ2 = A2χ̃2 +B2µ2,
y2 = C2χ̃2 =

[
1 0

]
χ̃2,

(7a)

˙̃χ3 = A3χ̃3 +B3µ3,

y3 = C3χ̃3 =
[
kp,2

kp,2

Ti,2

]
χ̃3,

(7b)

with µ2 = −y3 and µ3 = y2. Note that the equilibrium
point of (7) is the origin. Furthermore, the subsystems (7a)
and (7b) are in negative feedback interconnection. Describing
the subsystems (5b) and (5c) as (7) has two advantages. First,
finding conditions under which the origin of (7) is globally
asymptotically stable will answer Problem 1, and second,
this can be investigated by looking at the problem as the
stability of two interconnected systems.

B. Two preliminary results

Now, with the systems (7a) and (7b) at hand, we are in a
position to provide our first two results.

Lemma 1: Consider the system (7a) with input µ2 and
output y2. Fix Ti,12 > 0 and choose kp,12 such that

kp,12 >
(L(L+ 1)−RsTi,12)

2

4L2Ti,12

, (8)

then the system (7a) is strictly passive, with storage function

V2(χ̃2) =
1

2
χ̃⊤
2 P2χ̃2, P2 =

[
L+1
kp,12

1
L

1
L

kp,12

L2

]
. (9)

Lemma 2: Consider the system (7b) with input µ3 and
output y3. The system (7b) is passive if and only if

Ti,2 >
Jm
Rm

and kp,2 > 0, (10)

with storage function

V3(χ̃3) =
1

2
χ̃⊤
3 P3χ̃3, P3 =

[ Jmkp,2

3ϕf

Jmkp,2

3ϕfTi,2
Jmkp,2

3ϕfTi,2

Rmkp,2

3ϕfTi,2

]
. (11)

The proofs of Lemma 1 and Lemma 2 can be found in the
Appendix.

With Lemma 1 and Lemma 2, we can next state the result
that enables answering Problem 1.
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C. Main Result

Based on the passivity analysis done in Section IV-A,
we provide a solution to Problem 1, i.e., we give sufficient
conditions over the controller gains to ensure the internal
stability of the DT-PMSM and the correct regulation of its
speed. These conditions are given in the next theorem.

Theorem 1: Consider the Problem 1. Choose the con-
troller gains kp,11 > 0, Ti,11 > 0, kp,31 > 0, Ti,31 > 0,
kp,32 > 0, Ti,32 > 0, and kp,12 > 0, Ti,12 > 0, kp,2 > 0,
Ti,2 > 0, such that

Ti,2 >
Jm
Rm

,

kp,12 >
(L(L+ 1)−RsTi,12)

2

4L2Ti,12

.

(12)

Then, the origin of the interconnected system (7) with µ2 =
−y3 and µ3 = y2 is asymptotically stable. Consequently, the
desired speed regulation of the DT-PMSM is achieved, i.e.,
ωe → ωr

e as t → ∞.
The proof of Theorem 1 is given in the Appendix.

In the classical framework of designing cascade control
systems, a well-established practice is first tuning the inner
loop controller before addressing the outer loop. This ap-
proach is driven by the inherent differences in the dynamics
of these loops, typically with the inner loop exhibiting faster
dynamics than the outer loop. Departing from this conven-
tional sequence can result in a precarious state of system
instability, as documented in [17]. It is essential to emphasize
that in this classical approach, any reconfiguration of the
inner loop controller necessitates corresponding adjustments
to the gain parameters of the outer loop controller.
Unlike the traditional cascade control tuning approach, the
passivity-based method outlined in this paper provides a
clear advantage by ensuring the stability of the overall
closed-loop system for a PI-based cascade-speed control in
a PMSM. This is facilitated by decomposing the closed-loop
dynamics into a feedback interconnection of two subsystems
and deriving conditions under which the input-output maps
of both systems are passive. These conditions allow for an
independent tuning of the inner and outer loop controllers.
It should be emphasized that the stability criterion depends
only on the inherent parameters of the motor, which can
be particularly advantageous in a variety of applications and
practical scenarios.

V. SIMULATION EXAMPLE

To illustrate the applicability of the proposed method
for choosing the controller gains given in Theorem 1, we
simulate the cascade control scheme for a DT-PMSM using
Matlab/Simulink. The parameters used for the DT-
PMSM model are given in Table I, which are adapted
from the ones used in [9]. During the simulation, both the
speed reference ωr

e and the load torque Tl are generated as

TABLE I
PARAMETERS OF THE DT-PMSM USED IN SIMULATION

Motor Parameters Value
Number of pole pairs p 3

Inductance L [mH] 55.0
Stator resistance Rs [Ω] 6.0

Moment of inertia Jm [kgm2] 3.61× 10−4

Viscous friction coefficient Rm [kgm/s2] 0.2
Permanent magnet flux ϕf [Wb] 0.236

piecewise-constant functions defined as

ωr
e [rad/s] =

 0 t ∈ [0, 0.5) [s]
100 t ∈ [0.5, 1.5) [s]
−50 t ∈ [1.5,∞) [s]

,

Tl [Nm] =

 0 t ∈ [0, 1.25) [s]
−2 t ∈ [1.25, 2.25) [s]
2 t ∈ [2.25,∞) [s]

.

The reference for id is set to zero, as explained in Section
III. In the case of iq , its reference follows (3). The dynamics
of iz1 and iz2 is not included in the simulation, since those
states are decoupled from the dynamics of the motor’s speed.
For the gains of the controller (2), we chose kp,11 = kp,12 =
184 and Ti,11 = Ti,12 = 0.08. For the controller (3), the gains
used in the simulation are kp,2 = 0.049 and Ti,2 = 0.002.
In both cases, the used gains satisfy the constraints in (12).

The simulation results are shown in Figure 2 and Figure
3. In Figure 2, it is shown, how the controllers with the
proposed gains achieve the regulation of the motor speed
even in the presence of a changing reference. Additionally,
the tracking of the current reference is also illustrated, and,
as can be seen, it is also correctly done. Finally, in Figure 3,
the DC and quadrature currents are illustrated alongside the
external load torque applied to the motor. Here it is shown
how the DC current is kept at zero, while the quadrature
current is the one used to generate the electric torque.
Finally, we would like to emphasize once again that the gains
of each controller are chosen independently of the gains of
the other, thanks to the passivity-based approach derived in
Section IV-A to guarantee asymptotic stability of the closed-
loop system. This is the main comparative advantage of the
proposed method over the standard cascade control design,
where the outer loop gains depend on the inner loop gains.

VI. CONCLUSION

In conclusion, this analysis has addressed the challenge of
achieving global asymptotic speed regulation in DT-PMSMs
with non-salient poles. By applying the VSD transforma-
tion and adopting a passivity-based approach, the presented
method offers a novel solution that guarantees stable and
efficient speed regulation, while enabling independent tuning
of each controller.

Traditionally, the approach to speed regulation in this class
of machines involves the use of two nested PI controllers
in a cascade configuration. However, this method introduces
a dependence between the gains of the inner and outer
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Fig. 2. Results of the speed regulation simulation. The graphs show the
tracking of speed and quadrature current.
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Fig. 3. Behavior of direct and quadrature currents and external load torque
applied to the motor.

controllers, making it challenging to design their gains to
ensure stable machine operation. In contrast, by adopting
a passivity-based approach, this paper establishes sufficient
conditions that guarantee global asymptotic regulation of the
speed, while enabling independent tuning of each controller.
This achievement is made possible through a novel decom-
position of the closed-loop machine dynamics, resulting in
two passive subsystems interconnected in negative feedback.

Possible directions for extending this work are the consid-
eration of machines with saliency and cross-magnetization
and the gain design for attenuation of disturbances.

APPENDIX

A. Proof of Lemma 1

Consider P2 in (9). Since its trace is positive, P2 is positive
definite if det(P2) > 0. This results in the inequality

L+ 1

L2
− 1

L2
=

1

L
> 0,

which trivially holds for any positive inductance value L > 0.
Now, it is straightforward to verify that

P2B2 = C⊤
2 =

[
1
0

]
.

Thus, to show that (7a) is passive, it is only left to demon-
strate that [18, Lem. 6.4]

Q2 = P2A2 +A⊤
2 P2 =

[
q11 q12
q12 q22

]
≤ 0, (13)

with

q11 = −2(kp,12L+Rs(L+ 1))

Lkp,12
, q22 = − 2kp,12

L2Ti,12

,

q12 = −RsTi,12 + L(L+ 1)

L2Ti,12

.

The trace of Q2 is negative for kp,12 > 0 and Ti,12 > 0.
Thus, to show that Q2 is negative definite, it is enough to
prove that det(Q2) > 0. For det(Q2), we have:

det(Q2) = −R2
s

L4
− 1

(Ti,12)
2
− 1

L2(Ti,12)
2
− 2

L(Ti,12)
2

+
4kp,12
L2Ti,12

+
2Rs

L3Ti,12

+
2Rs

L2Ti,12

.

By isolating kp,12 , det(Q2) > 0 is equivalent to (8).
□

B. Proof of Lemma 2

Consider P3 in (11). Since its trace is positive, P3 is
positive definite if and only if det(P3) > 0. This results
in the following inequality:

JmRm

(
kp,2

)2(
3ϕf

)2
Ti,2

− J2
m(kp,2)

2(
3ϕf

)2(
Ti,2

)2 > 0.

The inequality above holds if and only if the conditions in
(10) are satisfied. Thus, V3(χ̃3) in Lemma 2 is a proper
storage function. Now, it is straightforward to verify that

P3B3 = C⊤
3 =

[
kp,2

kp,2

Ti,2

]⊤
.

Thus, to show that (7b) is passive, it is only left to demon-
strate that [18, Lem. 6.4]

Q3 = P3A3 +A⊤
3 P3

=

[
− 1

3ϕf

(
− Jm

kp,2

Ti,2
+Rmkp,2

)
0

0 0

]
≤ 0.

This is also the case if and only if the gains satisfy (10).
Therefore, the subsystem (7b) is passive if and only if (10)
is satisfied.

□
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C. Proof of Theorem 1

The conditions over the first set of gains (kp,11 > 0,
Ti,11 > 0, kp,31 > 0, Ti,31 > 0, kp,32 > 0, Ti,32 > 0) follow
from the arguments given in Section IV. The conditions for
the second set of gains (kp,12 > 0, Ti,12 > 0, kp,2 > 0,
Ti,2 > 0) in (12) are obtained from Theorem 1, following
the next rationale.

To prove asymptotic stability of the origin of (7), we take
as Lyapunov function candidate the storage function

V
(
χ̃2, χ̃3

)
= V2

(
χ̃2

)
+ V3

(
χ̃3

)
,

with V2 and V3 as in Lemma 1 and Lemma 2, respectively.
Under the condition (12) (or equivalently (8) and (10)) V is
positive definite and its derivative along the solutions of (7)
satisfies

V̇ = χ̃⊤
2 Q2χ̃2 −

1

3ϕf

(
− Jm

kp,2
Ti,2

+Rmkp,2
)
ω̃2
e , (14)

with Q2 in (13). Note that the interconnection between (7a)
and (7b) cancels out due to the passivity of the subsystems
and the negative feedback interconnection. Under condition
(12), Q2 is negative definite. Hence, there exists a ε > 0,
such that

V̇ ≤ −ε χ̃⊤
2 χ̃2 −

1

3ϕf

(
− Jm

kp,2
Ti,2

+Rmkp,2
)
ω̃2
e ≤ 0.

This shows that the derivative of V is negative semidef-
inite. Thus, by invoking LaSalle’s Invariance Principle [18]
and inspecting the set W = {χ̃2 ∈ R2, χ̃3 ∈ R2 | V̇ = 0},
we conclude that χ̃2 = 0 and ω̃e = 0 on this set. Further-
more, from (7b) we see that ω̃e = 0 implies z2 constant.
Thus, any element contained in W is an equilibrium point.
Since the origin is the only equilibrium point of the dynamics
(7), we can conclude that the origin is asymptotically stable,
thus completing the proof of the theorem.

□
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