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Abstract— In this paper, we examine a class of counter-swarm
problems featuring small teams of antagonists. The objective of
the counter-swarm algorithm is to minimize the connectivity of
the team using a single adversarial pursuer. We devise a novel
criterion for the connectivity of an undirected graph, based on
an augmentation of its Laplacian. We prove theoretically how
the criterion depends on the size and the connectivity of the
graph. Next, we pose optimal control problems which use this
criterion as well as the eigenvalues of the Laplacian. We show
how the properties of the team dynamics and their interaction
with the pursuer define an envelope within which the pursuer
achieves the desired objectives.

I. INTRODUCTION

Robotic swarms are a promising technology for carry-
ing out complex missions using numerous simple, low-
cost robots. The development of methods that enable ro-
bust swarming has been accompanied by the development
of methods that disrupt swarms, primarily through some
form of herding or combat. In this paper, we consider the
problem where the objective is to fragment the swarm into
disconnected pieces using a single adversarial agent as shown
in Figure 1. This objective can be viewed in two ways. First,
the fragmentation of the swarm into disconnected pieces can
be seen as a prelude to functional failure. This is relevant in
applications where a quorum of agents is needed to complete
the mission. Second, the act of breaking the swarm can
be seen as the prelude to effective herding using multiple
pursuers, since herding a single cohesive swarm can be
challenging due to its sheer inertia [6].

A. Overview of the literature

The most common counter-swarm technique explored in
the literature is that of herding. The objective of herding is to
the preserve the swarm as a cohesive unit and divert its flight
path. That way, the swarm can be prevented from entering
sensitive airspace such as those around airports [6]. This task
can be accomplished using either a single pursuer nudging
an inherently cohesive swarm [6] or a group of pursuers
working to contain and herd the swarm simultaneously, even
when it is splintered into one or more components [2], [1].
An alternative to herding is to engage the swarm using a
group of pursuers that seek to destroy individual agents of
the swarm [9], [8]. While it can be challenging to herd
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Fig. 1: A pursuer engaging a swarm has two options to
fragment the swarm, as shown in dashed lines. The dashed
line on the right separates the leading agent from the rest of
the swarm, while the one on the left breaks the swarm into
two equal, mutually disconnected halves.

swarms using one or more pursuers, additional difficulties
arise from the need to estimate the dynamics of the swarms
[3] and dealing with instances where the swarm might prefer
to split in order to maximize effectiveness [1]. The problem
of swarm engagement can be posed as an optimal control
problem, such as in [9] where the survival probability was
maximized during a combative engagement.

B. Contribution

We consider the problem of breaking the swarm into
disconnected components and pose it as an optimal control
problem (OCP). This is a novel problem formulation, to
the best of our knowledge. As an example, consider a
swarm consisting of agents with specialized capabilities, all
of which are essential for completing its mission. For each
capability, such a swarm may have redundancies. However,
if the agents can be separated from each other into smaller
groups that are functionally incomplete, it follows that the
swarm’s mission can be successfully obstructed. This may
be viewed as a middle ground between herding and combat.

In this paper, we pose the problem of minimizing the
connectivity of a homogeneous swarm as an OCP which
we proceed to solve numerically. We investigate several
candidate objective functions that capture the connectivity of
the graph and are differentiable with respect to the separation
between the agents in the swarm. This enables us to use
these objective functions in a standard OCP solver such
as ICLOCS2 [5]. The numerical solutions help identify, in
terms of the system parameters, the envelope within which
a successful counter-swarm operation is feasible.
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Of possible theoretical interest, we introduce a novel
metric to capture connectivity, based on the determinant of an
augmented Laplacian matrix. While the traditional Laplacian
matrix is rank-deficient by default, the augmented Laplacian
introduced in the paper loses rank only when the graph is
disconnected.

The rest of the paper is organized as follows. We present
the optimal control problem formulation in Sec. II, and the
augmented Laplacian matrix in Sec. III. We present numer-
ical solutions to the optimal control problem in Sec. IV,
followed by the concluding discussion in Sec. V.

II. PROBLEM FORMULATION

We consider a group of n agents (antagonists in our
setting) with second order dynamics flying in a formation
under Reynolds’ rules [7]. We assume that each agent i
maintains a fixed address-book Ai of the other agents in
the graph.

Assumption 1: The address book Ai of each agent i is set
once and for all at time t = 0 as follows: Ai = {j | rij(t =
0) < Rcom}.

At each time instant, we define the set

Ni = {j | j ∈ Ai and rij < Rcom}

where Rcom is communication threshold and rij is the
distance between agents i and j. Notice that the set Ai is
fixed for all time, while Ni can be time-varying, and even
empty if agent i is disconnected from the swarm.

The communication network can be modeled as an undi-
rected graph G = (V,E), where V is the set of n agents and
E ⊆ (V, V ) is the set of edges with (i, j) ∈ E if and only
if j ∈ Ni.

Assumption 2: The graph G is connected at time t = 0.
We consider the motion of the swarm in 2-D space

and denote the position and the velocity of each agent by
x{·}, v{·} ∈ R2. The swarm is engaged by a single pursuer
whose position and velocity are denoted by xp, and vp ∈ R2,
respectively. The dynamics of the ith agent are described by

ẋi = vi

v̇i =
∑
j∈Ni

kr

(
1−

(
Rsafe

‖rij‖

)3
)
rij + kv

∑
j∈Ni

(vj − vi)

+kpH(rpi) + kd(vd − vi) (1)

where rij = xj − xi, the subscript p denotes a pursuer,
vd denotes a reference velocity for the swarm, and H(rpi)
denotes the evasive response to the pursuer. The gains k{·} >
0 are typically unknown and need to be estimated. We
assume in this paper that the gains are known. We model
H(·) as follows

H(rpi) =

{
rip

‖rip‖2 , if ‖rip‖ < Rfear

0, otherwise
, (2)

where Rfear denotes the distance from an agent within which
a pursuer can effectively influence its motion. We assume

that the motion of the pursuer p is governed by the first
order equation

ṙp = vp, ‖vp‖ ≤ vp,max (3)

Let C ∈ R≥0 denote the instantaneous connectivity metric
under consideration. Given a metric C, we wish to solve
the following optimal control problem (OCP) for a known
horizon T :

min
vp[0:T ]

∫ T

0

C(t) dt (4)

subject to the dynamics in (1) and (3), where vp[0 : T ]
denotes the values of the pursuer velocity over the time
interval [0, T ].

Remark 1: An alternate way to formulate the OCP is to
solve for the minimum time T such that C(T ) < Cmin. We
choose the fixed horizon problem for its relative simplicity,
and because it suffices to illustrate our general approach to
formulating and solving the swarm fragmentation problem.

III. CONNECTIVITY METRICS AND THE AUGMENTED
LAPLACIAN

Recall that the Laplacian matrix L ∈ Rn×n of an undi-
rected graph consisting of n vertices is defined as

Lij =


1 j ∈ Ni
0, j 6= i, j /∈ Ni
−
∑
j 6=i Lij otherwise

We recall the following properties of the Laplacian.
Lemma 1: Let L ∈ Rn×n denote the Laplacian matrix of

the undirected graph G. Clearly, L = L>. Let λ1 ≤ λ2 · · · ≤
λn denote the ordered list of eigenvalues of L. Then, we have
that

1) λ1 = 0, with 1n ∈ Rn as the corresponding eigenvec-
tor. We will drop the subscript n where the dimension-
ality is unambiguous.

2) G is connected if and only if λ2 > 0.
3) The edge set is empty, and the graph is fully discon-

nected, if and only λn = 0.
It is clear that a combination of λ2 and λn could serve

as a connectivity metric for the OCP. However, L is not
a continuous function of the distance between two agents.
Moreover, the eigenvalues may not be computable as part of
off-the-shelf OCP solvers and, therefore, we need a simpler
way to get information about the connectivity.

A continuously differentiable, weighted (distance-based)
Laplacian Lw ≡ Lw(x) is constructed as follows.

Definition 1 (Smooth step): For δ ∈ R, let σα(·; δ) : R→
[0, 1] denote the smooth step function given by

σα(x, δ) =
1

2
(1− tanh(α(x− δ)))

where α > 0 governs the steepness of the step.
Definition 2: Let i = (j, k) ∈ E denote the edge with

label i, and connecting nodes j, k ∈ V . The set of edge
weights is written as WE = {w1, . . . , wm} denote the set of
edge weights, where

wi = wj,k , σα(‖ri‖; rthr)
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for a sufficiently large α� 1.
Definition 3: We define the weighted Laplacian Lw as

Lw,ij =


−wi,j i 6= j, (i, j) ∈ E
0 i 6= j, (i, j) /∈ E∑
k wi,k i = j

(5)

and the augmented (unweighted and weighted) Laplacians as

Λ = L+ 11>, Λw = Lw + 11> (6)
The following lemma allows us to obtain an analytical

expression for the determinant of the augmented Laplacian.
Lemma 2: Let ST denote the set of all spanning

trees of G; i.e., ST = {(i1, . . . , ik) : i1, . . . , ik ∈
E and (i1, . . . , ik) is a spanning tree of G} Let S denote
the set of products of edge weights containing all the span-
ning trees of G; i.e., S = {S : S = wi1 · · ·wik ; (i1, . . . , ik) ∈
ST }. Then,

det(Lw + 11>) = n2

(∑
S∈S

S

)
. (7)

Proof: Since Lw is a weighted graph Laplacian, it follows
that det(Lw) = 0 and all the cofactors of the matrix are
equal (from the weighted matrix-tree theorem) . Let Lw(i, j)
denote the (i, j)th cofactor of Lw; i.e., the cofactor obtained
by removing the ith row and the jth column. According to
the weighted matrix-tree theorem,

∑
S
wi1 · · ·wik =

(∑
S∈S

S

)
= (−1)i+jLw(i, j) (8)

for any pair (i, j) ∈ {1, . . . , n}×{1, . . . , n} [4]. Let adj(Lw)
denote the adjugate (adjoint) of Lw. Since, the cofactors
Lw are all equal (8), one can then deduce that adj(Lw) =(∑

S∈S S
)
11>. Using matrix-determinant lemma, one can

then obtain

det(Lw + 11T) = det(Lw) + 1> adj(Lw)1

= 0 + 1>

(∑
S∈S

S

)
11>1

= n2

(∑
S∈S

S

)
.

We state the main result of this section.
Theorem 1: Let Λw denoted the weighted augmented

Laplacian of an undirected graph G. Then, Rank(Λw) = n
iff G is connected.

Proof: We start by proving the sufficiency of the result.
Consider the case where the graph G is connected and
Rank(Lw) = n − 1. It follows from Lemma 2 that Λw is
also full ranked (since its determinant is non-zero).

To prove the necessity, suppose that Λw is full-ranked but
that G is not connected. Since G is not connected, there
exists a vector p ∈ Rn satisfying

Lwp = 0, p>1 = 0

where the second equation follows from Lw = L>w . It follows
that p>Λw = 0, which contradicts our supposition that Λw
is full-ranked. Thus, it follows that if Λw is full-ranked, then
G must be connected. �

Example 1: Consider the 3-complete graph G with edge
weights w12, w23, and w31. Then, it is easy to verify that

det(Λw) = 9(w12w23 + w31w23 + w12w31) �

Lemma 3: Let 0 ≤ λ′1 ≤
. . . ≤ λ′n denote the ordered

set of eigenvalues of Λw for an undirected graph G with n
vertices. Then G is fully disconnected if and only λ′n−1 = 0.

Proof: We first prove the necessity. For a fully disconnected
graph, Lw = 0, so that Λw = 11>. It is easy to check that
Rank(11>) = 1. Thus, λ′n−1 = 0. In order to prove the
sufficiency, suppose that λ′n−1 = 0. Then, there exist n −
1 mutually orthogonal eigenvectors v1, . . . ,vn−1 satisfying
v>i 1 = 0 (since 1 is an eigenvector of Λw with eigenvalue
n) and Lwvi = 0 for all i = 1, . . . n− 1. Since Lw1 = 0, it
follows that all eigenvalues of Lw are zero. Hence Lw is a
zero matrix and G is fully disconnected. �

The analysis presented above suggests that det(Λw) can
serve, entirely by itself or in combination with other terms, as
the objective function for the OCP. Notice that it is a positive
semi-definite function of the graph connectivity, takes a value
of zero if and only if the graph is disconnected, and is
continuously differentiable with respect to the inter-agent
distances.

There are two significant limitations of det(Λw) as an
objective function. First, its value is proportional to n2 and
the number of spanning trees. Second, while det(Λw) =
0 indicates a loss of connectivity, it does not provide any
information about the connectivity of the result components
of the swarm. As a result, loss of connectivity needs to be
interpreted conservatively, as possibly just one agent is being
pulled away from the remaining swarm.

To circumvent this limitation of det(Λw), we need addi-
tional metrics which capture the size of the largest com-
ponent of the fragmented swarm. Thus, for the optimal
control problems described in the previous section, we use
an additional cost function C(t) = λ′n−1(1 + λ′1).
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Fig. 2: Different simulation scenarios. Lines between the
agents show the initial communication link. Case (1) Agent
1 has communication link with Agents 2 and 3 only. Case
(2) All three agents can communicate with each other. Case
(3) Six agents are arranged in a hexagon around agent 7,
where agent 7 can communicate with all agents while other
agents can communicate with their geometric neighbors and
agent 7.
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IV. NUMERICAL RESULTS

A. Problem formulation

In this section, we solve a modified version of the OCP
(4)

min
up[0:tf ]

∫ tf

0

(
C +W1u

T
p up +W2

(
1

‖rip‖

)2
)
dt (9)

subject to the dynamics (1) and (3). We consider two cost
functions for a comparative study:

C1(t) = det(Λw), C2(t) = λ′n−1(1 + λ′1) (10)

where 0 ≤ λ′1 ≤ · · · ≤ λ′n is the ordered set of eigenvalues
of Λw. The parameters of the flocking model used for the
simulation are as follows: kr = 0.02, kv = 0.2, kd =
0.2, kp = 10, Rsafe = 5m, Rcom = 15m,Rfear = 15, α =
4, δ = 14.5,W1 = W2 = 0.1 to perform the simulations.
We consider three starting scenarios as shown in Figure 2.
We use the ICLOCS2 toolbox [5] in MATLAB to solve the
OCP.

We use the following metric to analyze the results (i)
the distance between swarm agents (ii) the determinant of
the augmented Laplacian det(Λw), and (iii) the eigenvalues
of the augmented Laplacian eig(Λw). For each case, we
evaluate the performance with the proposed two connectivity
metrics in (10).
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Fig. 3: Simulation Results for Case 1 with C1(t). In the
trajectory subplot, the pursuer’s trajectory is shown in red,
while the agents’ trajectory is shown in blue.
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Fig. 4: Simulation Results for Case 1 with C2(t)

B. Simulation results for the three cases

The results for Case 1 using different connectivity metrics
are shown in Figures 3 and 4, respectively. We briefly clarify
the notation used in the plots. In the plot showing the tra-
jectory, the red curve indicates the pursuer’s trajectory while
the blue curves show the antagonistic agents’ trajectory. The
plot showing the inter-agent distance shows the inter-agent
communication threshold using a dotted line. A necessary
condition for the swarm to be fragmented is the det(Λw) = 0
(see the subplots (c)). Finally, the eigenvalues of Λw are
shown in subplot (d).

The results show that when the connectivity metric C1 is
used as the cost function, the optimal control law ensures
that one agent is pushed away from the the other two agents
which continue to remain connected. In contrast, when the
metric C2 is used, we observe that the pursuer is able to
execute a trajectory which fragments the swarm entirely; i.e.,
|E| = 0 which is equivalent to λ

′

2 = 0 (see Lemma 3).
The results for Case 2, presented in Figures 5 and 6 for
connectivity metrics C1 and C2 respectively, are similar to
those for Case 1.

Finally, the results for Case 3, with connectivity metrics
C1 and C2, respectively, are presented in Figs. 7 and 8. Like
Case 1 and Case 2, the use of the connectivity metric C2

leads to a higher degree of fragmentation compared to C1.
The trajectories of the individual swarm agents shows that
they are pushed to distances far greater than those seen in
Cases 1 and 2. This appears to be due to the repeller term
in (1), which creates a rebound effect when the distance
between two agents becomes considerably smaller than the
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Fig. 5: Simulation Results for Case 2 with C1(t)

safe inter-agent distance Rsafe.

C. Effect of variations in kp, kv on the feasibility of opti-
mization for Case 2

The optimal control problem illustrated earlier may lead
to fragmentation or loss of connectivity for all values of the
system parameters (kp, kv , etc. in (1)). As an illustration,
we identify the values of kp and kv for which the solution
of the optimal control problem leads to a fragmented or
disconnected swarm. We use the metric C2 from (10) with
W1 = W2 = 0.01 in (9). Figure 9 shows the effect
of kp vs kv on the fragmention of the swarm. The plot
marks the tested values of (kv, kp), with the color of the
marker indicating the outcome. The broad trend appears to
be that kp and kv need to lie inside a bounded region of
the quadrant. When kp is small, the penalty imposed by C2

on the pursuer’s approach distance from individual agents
limits the ability of the pursuer to fragment the swarm. An
unexpected observation is that the ability of the pursuer to
break the swarm may also be jeopardized by high values of
kp. We would have expected a high value of kp ought to
generate a high degree of instability in the swarm; however,
for the three-agent team in Case 2, the high value of kp
simply causes all of the agents to move away rapidly from
the pursuer without losing connectivity. This explanation
suggests that the success of the optimal control technique
may be sensitive to kv , kp as well as the size of the swarm.
Further analysis along these lines is left as a subject for future
work.
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Fig. 6: Simulation Results for Case 2 with C2(t)

V. CONCLUSIONS

In this paper, we addressed the problem of fragmenting
a swarm of agents using a single pursuer. We posed the
fragmentation problem as an optimal control problem (OCP)
and solved it numerically. We introduced novel connectivity
metrics which enabled the formulation of the OCP as well
as its numerical solution. We illustrated our techniques for
a few canonical examples and identified the bounds on the
modeling parameters for which fragmentation is feasible.

The goal of fragmentation was motivated by swarms which
rely on heterogeneous agents with non-overlapping capabili-
ties to complete their mission. Fragmentation can be viewed
as a tool to break the swarm into functionally inadequate sub-
units, thereby providing an intermediate solution between
herding the swarm and engaging in a combat of attrition.

The work presented in this paper can be extended along
a number of lines. First, it is open problem to determine
how the results presented in the paper would scale to larger
swarms. Second, the OCP presented here relies on the knowl-
edge of the underlying graph and it is essential to extend it
using a combination of estimation and methods robust to
uncertainty. Finally, as seen in Sec. IV, fragmentation works
for a range of system parameters, and herding or attrition-
driven engagement might be essential when the parameters
fall outside this range. It remains to be seen whether a general
OCP can be formulated such that modes (herding, functional
incapacitation via fragmentation, and attrition) actually arise
as a solution to the problem.
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Fig. 7: Simulation Results for Case 3 with C1(t)
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Fig. 8: Simulation Results for Case 3 with C2(t)
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problem with C2(t) over varying kp, kv . ◦ shows fully
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′
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