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Abstract— In balancing safety with the nominal control
objectives, e.g., stabilization, it is desirable to reduce the time
period when safety filters are in effect. Inspired by traditional
spacecraft maneuvers, and with the ultimate goal of reducing
the duration when safety is of concern, this paper proposes
an event-triggered control framework with switching state-
based triggers. Our first trigger in the scheme monitors safety
constraints encoded by barrier functions, and thereby ensures
safety without the need to alter the nominal controller—and
when the boundary of the safety constraint is approached, the
controller drives the system to the region where control actions
are not needed. The second trigger condition determines if
the safety constraint has improved enough for the success of
the first trigger. We begin by motivating this framework for
impulsive control systems, e.g., a satellite orbiting an asteroid.
We then expand the approach to a more general nonlinear
system through the use of safety-filtered controllers. Simulation
results demonstrating satellite orbital maneuvers illustrate the
utility of the proposed event-triggered framework.

I. INTRODUCTION

The idea of filtering a nominal control action to sat-
isfy safety constraints—that is safety filtering [1], [2]—
has proven to be a powerful tool in controller synthesis.
This technique facilitates the controller design process as
we can decouple different control objectives, e.g., stability
and safety. An unfortunate consequence of applying safety
filters is the possibility that the deviation from the nominal
controller will affect the success of the nominal objective,
e.g., stability. Addressing this potential conflict involves
bounding the deviation from, and the effect on, the nominal
controller—a difficult task in nonlinear system.

This paper presents a new approach to safety filtering
that is intermittent in nature, with the result being event-
triggered safety maneuvers. To this end, we take inspiration
from safety maintenance of a satellite via orbit transfers
[3]. Satellites spend most of their time during a given mis-
sion with the nominal objectives, and only apply corrective
maneuvers intermittently to ensure safety, e.g., in response
to unmodelled environmental dynamics. Because there are
periods where no deviation from the nominal controller is
needed, guarantees can be made if enough time is spent
in these safe operating regions. The goal of this paper is
to develop an event-triggered framework that imitates the
behavior of satellites that has proven useful in practice. In
particular, the switching between safety objective in an “on
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Fig. 1. Satellite safe orbit trajectory around 25143 Itokawa utilizing event-
triggered safety maneuvers.

demand” fashion, and the application of safety filters in an
intermittent fashion. The end result will be the introduction
of event-triggered intermittent safety filtering. The hope is
that this will lay the necessary groundwork for an alterna-
tive approach enforcing safety guarantees while minimally
modifying the nominal performance objectives.

Literature Review

Our paper relies on two main bodies of literature: safety-
critical control via certificates, e.g., control barrier functions,
and event-triggered control.

Safety-critical controls aims to provide a framework
for formally guaranteeing the safety of nonlinear control
systems—with safety typically framed as avoiding unde-
sirable states, or equivalently always staying in a set of
desirable states. Barrier certificate [4] describes a safety of a
set utilizing a scalar function, wherein it is simpler to analyze
corresponding violations. In this context, barrier certificates
are related to ideas underlying nonovershooting control that
restricts outputs [5] or Lyapunov function evolving within
a specified bound [6]. Nevertheless, the attractiveness of
barrier certificate is that it isolates safety problem from
the design of the controller for other objectives, thereby
transforming the problem into a more tractable form.

Control barrier functions as first introduced [7] mirror
control Lyapunov functions by studying barrier certificates
associated with control systems. Yet the result was overly
conservative, and as a result the modern form of control bar-
rier functions (CBFs) where introduced in [8]–[11]; these are
necessary and sufficient for forward set invariance thereby
generalizing Nagumo theorem [12] to control systems. The
non-conservative nature of CBFs lead to the idea of a safety
filter [1]—and optimization-based controller that minimally
modifies a nominal controller to ensure safety. This paper
seeks to expand the notion of a safety filter by shortening
the filtering period, thereby allowing the nominal controller
more freedom. The idea is made possible by event-trigger
control.
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Event-triggered control [13]–[15] synthesizes property
preserving discrete implementations of continuous con-
trollers. The seminal work [13] studies sample-and-hold
system and proposes an aperiodic sampling scheme that is
based on system states rather than fixed time. Event-triggered
control shows great improvement in the average sampling
time. Event-triggered control implemented in the context
of sample-and-hold can be formalized as an impulsive sys-
tem [16], and in general as a hybrid system [17], [18]. This
hints at the possibility of transferring the trigger ideas and
applying them to different type of hybrid systems.

In this paper, we study event-triggered control of impulsive
systems in the context of safety; this can, for example,
be used to describe satellite systems. There are works on
event-triggered impulsive control, but they focus on stabi-
lization [19]–[22] which is not applicable to safety because
of difference in two objectives, cf. [23]. Additionally,
there are works that deal with safety [23]–[25] but not for
impulsive control systems. Finally, this paper also studies
event-triggered control in the context of intermittent control.
Our previous work [26] also considers intermittent control,
but in the context of sample-and-hold whereas this paper
considers the frequency of safety filtering.

Statement of Contribution

This paper investigates the idea of lengthening the time
period during which a safety-critical controller does not
need to actively spend control effort in order to satisfy
safety constraints. To this end, we use event-triggered control
with barrier functions to monitor safety and opportunistically
determine when to start applying control for the purpose of
satisfying safety objectives. The first contribution of this pa-
per is the formalization of an event-triggered implementation
of safety-critical controllers for impulsive control systems.
We provide a trigger design that guarantees safety, along
with the sufficient conditions for establishing the minimum
inter-event time, which rules out the possibility of Zeno
behavior. The second contribution is another trigger design
for impulsive system that is built on the first trigger design,
with the goal of imitating the key elements of a satellite
maneuver. To accomplish this, we add an additional trigger
condition that monitors the increase of the inter-event time
of the subsequent application of control.

To demonstrate the effectiveness of the two trigger de-
signs presented in this paper, we consider the problem
of maintaining a satellite within an orbital radius range—
the satellite orbit safety problem. For the second trigger
design, we demonstrate its similarity to traditional orbit
transfers. This motivates the third contribution of the paper:
an event-triggered intermittent safety filter framework, which
is developed as an extension of our first trigger design in the
context of intermittent control systems. This framework takes
inspiration from satellite maneuvers, i.e., our design is based
on (1) maneuvering to safer states in order to avoid the need
to filter the nominal controller, and (2) monitoring the barrier
function to determine when safety is critical. Our framework
actively allows a period for where nominal controller may

be applied without a safety filter, and is thus able to make
progress towards nominal objectives.

Notation: We denote with N and R the set of all natural
and real numbers respectively. For a vector x ∈ R, ∥x∥ is its
Euclidean norm. A function α : R → R is of extended class-
K if α(0) = 0, and α is strictly increasing. Let t 7→ x(t) be
a solution to a dynamical system for an initial condition x0,
a set C is forward invariant and safe if x(t) ∈ C for all time
whenever x0 ∈ C.

II. PRELIMINARIES

We begin by providing some background on the safety
concept and the common practice of using safety filter, in
order to motivate the problem we consider in this paper.
In addition, we provide the background on event-triggered
control, which we believe to be the key tool for solving our
problem. Here, we consider the nonlinear system

ẋ = f(x, u) + d (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
and d ∈ Rn is the disturbance to the system. We assume
throughout the paper that the disturbance is bounded, i.e.,
∥d∥ ≤ d̄.

A. Safety Formulations and Safety Filters

For safety problems, we are interested in ensuring that the
states along system trajectories are not undesirable states.
To address these problems, one approach is to define the
safe set C, consisting of only “safe” states via a barrier
function h : Rn → R (cf. [11]) such that:

C =
{
x ∈ Rn | h(x) ≥ 0

}
, (2a)

∂C =
{
x ∈ Rn | h(x) = 0

}
, (2b)

Int(C) =
{
x ∈ Rn | h(x) > 0

}
. (2c)

With a barrier function, safety problems involve finding an
input signal t 7→ u(t) that ensures h always remains positive
so that the safe set C is forward invariant, and the trajectories
do not reach the undesirable states. To this end, we can use a
state-feedback control u = k(x) with a controller k : Rn →
Rm satisfying the following barrier condition:

∂h

∂x

∣∣∣∣
x

f(x, k(x))︸ ︷︷ ︸
≜Lfh(x,k(x))

−
∥∥∥∥ ∂h

∂x

∣∣∣∣
x

∥∥∥∥ d̄ ≥ −α(h(x)). (3)

for some extended class-K function α. The condition above
is a conservative way to keep the function h positive. Not
only does it require h to not decrease whenever it is zero,
but it also requires that h does not decrease too quickly as it
gets closer to zero. Nevertheless, it provides many benefits
in many applications, one of which is the ability to monitor
safety. We will discuss this point later in the paper.

More often than not, safety is not the only objective in
control systems. To this end, a nominal controller knom :
Rn → Rm is first designed to meet other objectives. Then
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to enforce the barrier condition, a safety filter defines a
controller using an optimization:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (4)

s.t. Lfh(x, u)−
∥∥∥∥ ∂h

∂x

∣∣∣∣
x

∥∥∥∥ d̄ ≥ −α(h(x)).

The idea is that we prioritize safety above other objectives,
so we adjust the nominal controller so that barrier condition
is always maintained. The optimization assures that the
resulting controller deviates from the nominal controller as
little as possible (minimal Euclidean distance in this case).

Nevertheless, the deviation from the nominal controller
when using safety filters can pose an issue because the fil-
tered controller may no longer satisfy the original objectives.
This motivates the problem we seek to address.

Consider the state-feedback control u = k(x) of the
nonlinear system (1). We can separate the periods when the
constraint of the filter (4) is active and inactive and turn it
into an intermittent nonlinear system as:

ẋ =

{
f(x, knom(x)) + d, t ∈ [toffi , toni )

f(x, k(x)) + d, t ∈ [toni , toffi+1).
(5)

Here, the time at which the filter is on and off is automati-
cally determined by whether or not the constraint is active.
Notice that it is possible for the off period to be nonexistent
if the constraint never becomes inactive. In this work, we
identify a method to assure the existence of the off period
and we use event-triggered control to lengthen the off period
for as long as possible.

B. Event-Triggered Sample-and-Hold Control

Event-triggered control is often studied in the context
of sample-and-hold systems where it is used as a tool to
reduce the frequency of control adjustments. Consider the
feedback implementation of any given controller k for the
nonlinear system (1) on a digital platform. The controller is
not applied in a continuous fashion. Instead, the value of the
controller k(x(ti)) is sampled at a time instance ti, and it
is then held u = k(x(ti)) until the controller next sampled
again. Traditionally, this sampling is performed periodically,
so the sampling time instance ti+1 occurs after some time
has elapsed since ti. On the other hand, under the event-
triggered control framework, controls are sampled according
to a trigger condition. Such condition is usually based on
the states of the system, so the control is applied only when
necessary. Trigger designs are often written as:

ti+1 = min
{
t ≥ ti | Ξ(x(t)) ≤ 0

}
(6)

with a trigger condition Ξ : Rn → R and time instance ti
when controls are applied. The trigger enforces Ξ(x(t)) >
0 for the duration [ti, ti+1) because the control is applied
otherwise. Because of this useful fact, trigger conditions are
often designed based on certificates like Lyapunov function
or barrier function (see e.g., [13] and [23], respectively).

III. EVENT-TRIGGERED IMPULSIVE SAFETY

We begin the exposition with the consideration of impul-
sive control systems, for which we model as hybrid systems
with flow dynamics F : Rn → Rn and a jump map
G : Rn × Rm → Rn:

ẋ = F (x) + d, (7a)
x+ = G(x, u) (7b)

where x ∈ Rn, u ∈ Rm and d ∈ Rn are the system state,
the control input, and the flow disturbance, respectively. The
example for impulsive systems we will use in this paper is
the satellite system, which we will give more details later.

We note importantly that sample-and-hold systems can be
rewritten as impulsive control systems. For instance, consider
a nonlinear system ẏ = f(y, v) with system states y ∈ Rny

and control inputs v ∈ Rmv . Then in the context of sample-
and-hold, considering v as part of the state yields:[

ẏ
v̇

]
=

[
f(y, v)

0

]
,

[
y
v

]+
=

[
y

v +∆v

]
.

Defining the state x =
[
y v

]⊤
and the control input u =

∆v = v(ti+1)− v(ti), we have transformed the sample-and-
hold control system as an impulsive control system (7a)-
(7b). Indeed, we can translate existing event-triggered control
ideas to the new context. We are particularly interested in
event-triggered control for safety problems in the impulsive
control systems.

A. Safeguarding Impulsive Controller

For a safeguarding impulsive controller K : Rn → Rm,
we consider two following objectives. First, we require that
each jump results in a state that remains in the safe set:

h(G(x,K(x))) ≥ 0. (8)

Meeting this requirement is straightforward and relatively
easy because the control has a direct impact to the jump
map. However, we also need the states along the trajectory
during the flow to meet the barrier condition:

LFh(x(t))−

∥∥∥∥∥ ∂h

∂x

∣∣∣∣
x(t)

∥∥∥∥∥ d̄ ≥ −α
(
h(x(t))

)
, (9)

which is more problematic to satisfy. We have to rely on
our control input at each jump to guarantee safety of the
ensuing trajectory during the flow, up until the next jump
occurrence. To address this second requirement, we build on
the idea in [23] on establishing a minimum inter-event time
(MIET), which is to require the controller K meets:

LFh(G(x,K(x)))−

∥∥∥∥∥ ∂h

∂x

∣∣∣∣
G(x,K(x))

∥∥∥∥∥ d̄
≥ −α

(
h(G(x,K(x)))

)
+ c. (10)

with some positive constant c. The idea is to use the constant
c to provide a buffer so that some time has to elapse (due to
continuity) after each jump, before the barrier condition (9)
gets violated.
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B. Event-Triggered Safeguarding Impulsive Control

We aim at reducing the frequency of the controls, and
a reasonable approach is to employ event-triggered control
to prescribe when to apply controls. To this end, our main
trigger condition is based on monitoring the barrier condi-
tion (9). Denoting ti as the last instance when the jump occur,
we determine the jump time iteratively with:

ti+1 = min
{
t ≥ ti | Ξ(x(t)) ≤ 0

}
, (11a)

Ξ(x) = LFh(x)−
∥∥∥∥ ∂h

∂x

∣∣∣∣
x

∥∥∥∥ d̄+ α
(
h(x)

)
. (11b)

The trigger above makes sure that controls are applied only
when necessary, i.e., when the barrier condition is violated.
This strategy is a greedy approach to maximizing the times
between jumps and reducing how often the jumps occur.

The main concern when relying on event-triggered control
is the possibility of Zeno behavior. That is, because the
elapsed time between ti and ti+1 are not uniform for all
i ∈ N, it becomes possible that the sequence {ti}i∈N can
converge to a constant value rather than infinity. This would
mean there are infinite numbers of jumps in finite time,
making it impractical to implement in practice.

The common approach of ruling out Zeno behavior is to
establish a MIET, i.e., a common positive lower bound τ ≤
ti+1 − ti for all i ∈ N. The task of establishing a MIET
is often difficult, especially when the system is subjected
to an unknown disturbance d. In this paper, we endow our
controller with condition (10). This means that whenever a
jump occurs, the trigger condition Ξ has a value greater than
c. Thus, if the rate at which trigger condition can decrease
is bounded by a constant, a MIET can be derived. A set
of assumptions we can make to achieve this is given in the
following result.

Proposition 1. (Event-Triggered Safety for Impulsive Con-
trol Systems): Consider the impulsive control system (7) with
a controller k satisfying (8) and (10), and let the jump times
{ti}i∈N be determined iteratively by the trigger design (11).
Assume the followings:

(i) the flow dynamics F is bounded on C;
(ii) the trigger condition Ξ is Lipschitz and continuously

differentiable on C.

Then there exists a MIET τ ≤ ti+1 − ti. As a consequence,
x(t) ∈ C for all time if x0 ∈ C. That is, the set C is safe.

Proof. Let B ≥ ∥F (x)∥ denote the bound of the flow
dynamics and LΞ ≥

∥∥ ∂Ξ
∂x

∣∣
x

∥∥ denote the Lipschitz constant
of the trigger condition. We can estimate the lower bound of
the value of the trigger condition as follow:

Ξ(t) = Ξ(x(ti)) +

∫ t

ti

∂Ξ

∂x

∣∣∣∣
x(t)

(F (x(t)) + d)dt

≥ c−
∫ t

ti

LΞ(B + d̄)dt

= c− LΞ(B + d̄)(t− ti).

Hence, it is only possible for Ξ(t) ≤ 0 when t ≥ c/(LΞ(B+
d̄))+ ti = τ+ ti. Therefore, ti+1− ti ≥ τ and the possibility
of Zeno behavior is ruled out.

Without Zeno behavior, system trajectories are defined at
all time. Now note that (8) is by design of the controller, so
x(ti) ∈ C for all i ∈ N. Then, we may conclude x(t) ∈ C
because the barrier condition (9) is satisfied at all time due
to the trigger (11). This concludes the proof.

Proposition 1 provides an event-triggered implementation
solution of an impulsive safeguarding controller. We have
made two regularity assumptions in order to sufficiently
establish the MIET. Even though MIET is not required
for deducing safety (unlike the case of stabilization), it is
important that our trigger scheme is practical, i.e., there
is a big enough time separation between two consecutive
control actuation. Next, we demonstrate the effectiveness of
our trigger design through a satellite safety problem.

C. Application to Satellite Systems

Satellites orbiting around a central body can be described
by Newton’s gravitation model. Particularly, denoting the
position and velocity vectors of a satellite with r⃗ ∈ R3 and
v⃗ ∈ R3, the satellite is subjected to the dynamics from the
gravity field:

d

dt

[
r⃗
v⃗

]
=

[
v⃗

− µ
r3 r⃗

]
+

[
0
d

]
where µ is the gravitational parameter of the central body,
r is the shorthand notation for ∥r⃗∥, and d ∈ R3 is the
disturbance to the dynamics such as the higher order gravity
field not considered in the Newton’s model.

The satellite is controlled by firing thrusters to apply a
change in velocity ∆v⃗. This change is assumed instanta-
neous, and a jump map is given by:[

r⃗
v⃗

]+
=

[
r⃗
v⃗

]
+

[
0
∆v⃗

]
.

In reality, the thruster firings are not impulses; instead, they
last for a few seconds. However, this timescale is much
smaller than the time elapsed between each firing, which is
in the scale of tens to hundreds of hours. Thus, the impulsive
approximation is often used in orbital mechanics for satellite
maneuvers, and we adopt this model.

We simulate an application of the impulsive trigger de-
sign (11) to the satellite system. The satellite is orbiting
around an asteroid, 25143 Itokawa, and the disturbance d
comes from the unmodelled higher order gravity field, which
is due to the asteroid not being a perfect sphere. In term of
safety, we are interested in maintaining the satellite within a
range of desirable orbital distance. In our example, we want
the satellite to orbit in the range 1.6R ≤ r ≤ 2.4R where R
is the mean radius of the central body. The barrier function
we will use is:

h(r⃗, v⃗) = (0.4R)2 − (r − 2R)2.

We design a safeguarding controller based on our understand-
ing of orbital mechanics [27] of Newton’s gravity model. For
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the reasons of space and the background needed to explain
it, we omit details and reasoning in this paper. The overall
explanation is that we apply impulses to inject the satellite in
an orbit (without changing planes) towards the orbital radius
rtarget(r) = 2R+0.5(r− 2R) at peri/apoapsis. We place the
satellite at the true anomaly that varies linearly from −π to
−π/2 (or 0 to π/2) depending on the current orbital distance.

We simulate the satellite orbiting the asteroid for 2400
hours. Fig. 2 shows the result of our simulation for the
first 150 hours of satellite orbit. We report that the satellite
remains within the specify safe range, and the barrier con-
dition does not get violated. The trigger sporadically occurs
for a total of 267 times across the 2400 hours, which is
approximately 1 trigger every 9 hours.
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Fig. 2. [Top] Distance to the asteroid over 150 hours of satellite orbit. The
plot shows the distance remains within the safe range at all time. [Bottom]
Trigger condition over 150 hours of satellite orbit.

IV. IMPULSIVE SAFETY MANEUVERS

In this section, we investigate the concept of safety maneu-
vers as a way to improve the performance of event-triggered
control using a barrier condition. Our idea is inspired by how
satellites maneuver via orbit transfers.

A. Inspiration from Orbit Transfers

We first discuss the common practice to guarantee safety
for satellites in term of maintaining within a desirable range
of orbital radius. This will serve as a reference point and a
motivation to our approach.

Typically, desired orbits are designed for the satellites so
that they would be safe at all points along their orbits. Then
to mitigate the effects from disturbances, satellite maneuvers
are performed periodically, e.g. once a day, to reset the satel-
lites back to the desired orbit. Simulations on the satellites
from different initial positions on the desired orbit, i.e, Monte
Carlo analyses, are performed in order to study the deviations
from the desired orbits under disturbances and to ensure all
safety criteria. From these analyses, an acceptable frequency
of maneuvers can be found.

A satellite maneuver consists of two different impulses.
The first impulse aims at repositioning the satellite to a point
along the desired orbit. Once reached, a second impulse is
applied to adjust the velocity in order to insert the satellite
into the desired orbit. The maneuver is usually performed
relatively quickly, i.e., within less than an hour for aster-
oid orbits. We believe there are benefits to this traditional
approach, and we seek to develop our version of safety
maneuver using event-triggered control.

B. Inter-event Time Improvement

We believe the success of the strategy relies on the
improvement in inter-event time at the desired orbit. For
example, in our problem of keeping a satellite within a
certain range, a typical desired orbit is a circular orbit at
the midpoint of the range (r=2R). Fig. 3 shows the median
time at different radii, for triggers to occur after the control
is applied. It should be noted that the expected inter-event
time towards the center of the safe set is superior to those
close to the boundary. It is cost-effective to apply two control
instances (one to reposition the satellite) to enjoy the longer
inter-event time.
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Fig. 3. We randomize 100 satellite positions at each orbital radius. For
each position, we apply the impulsive safeguarding controller and collect
the time it takes for the trigger to occur. The plot shows the median time
values across the 100 samples at each radius.

The idea of increase in inter-event time can be abstracted
in the context of barrier function. We define a function
τp : R → R to be such that τp(h(x)) is the expected inter-
event time when the control is applied at the value of barrier
function h(x). If we have such a function, we can find its
rate of change via:

τ̇p(x) =
dτp
dh

∣∣∣∣
h(x)

LFh(x),

which we can monitor along the trajectory. In the satellite
example, we essentially assume dτp

dh is always positive, and
thus, the maximum value of h translates to the longest inter-
event time.
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We assume the function τp is obtained via data collection.
Much like what we have done in Fig 3, a likely scenario is
that inter-event time data are collected for each value of h,
and then, a curve fitting technique is performed along those
data points. In the perfect scenario, the full knowledge of
τp is preferably known as a function of state x, rather than
the value of barrier function h. However, our approach uses
the barrier function h as a proxy to reduce the sampling
dimension and the number of samples needed. We believe
this is a good strategy because h can affect inter-event time
in a significant way. Referring to the trigger condition (11b),
our underlying logic is that higher h will increase the value
of the trigger condition Ξ, and thus, it would take longer
time for it to reach zero.

Indeed, our logic is not perfectly sound. The inter-event
time does not depend only on the value of the barrier
function. There are many variables involved such as how fast
the trigger condition changes, how LFh changes with respect
to h, and how much h affects the overall value of the trigger
condition via α. Nevertheless, the collected data will reflect
that, and the function τp will simply not be useful. However,
if everything aligns, then we can obtain a function τp that
we can exploit.

C. Event-triggered Impulsive Safety Maneuver

Our safety maneuver is based on monitoring a barrier
condition and expected inter-event times. Each maneuver
consists of two impulses. We note that, just like the satellite
maneuvers, these two impulses do not need to be sampled
from the same safeguarding controller. However, for sim-
plicity, we will consider only one common safeguarding
controller.

In order to maintain safety, both impulses rely on the trig-
ger design (11). Let ti be the last control application, the time
of first impulse ti+1 is determined solely according to the
trigger design (11). On the other hand, the second impulse
is designed to be less myopic. The trigger will not wait until
the violation of safety to maximize its immediate inter-event
time. Instead, we allow the second impulse instance ti+2

to occur prematurely if continuing on will reduce expected
average inter-event time. More precisely, we consider the
average between the current inter-event time and the expected
inter-event time after an impulse if one were to be applied:(

(t− tk) + τp(h(x))
)
/2.

To optimize the above quantity, we simply monitor the
trigger condition:

Ξτ (x) = (1 + τ̇p)/2. (12)

The trigger makes sure that we reach the local maximum
point before we apply controls. However, the optimized
average may be below the current expected inter-event time
τp(h(x(ti))). To avoid this, the trigger condition Ξτ will only
be considered after ti+1+ τp(h(x(ti))). Mathematically, our
second trigger is given by:

ti+2 = min{tsafe
i+2, t

τ
i+2}, (13)

tsafe
i+2 = min

{
t ≥ ti+1 | Ξ(x(t)) ≤ 0

}
,

tτi+2 = min
{
t ≥ ti+1 + τp(h(x(ti+1))) | Ξτ (x(t)) ≤ 0

}
.

Because both triggers contain the monitoring of barrier
condition, we can conclude the same safety guarantee. We
state this formally as follows.

Proposition 2. (Event-triggered Impulsive Safety Maneu-
vers): Consider the impulsive control system (7) with jump
time {ti}i∈N determined iteratively by switching trigger
designs (11) and (13). Under the same set of assumptions
as in Proposition 1, x(t) ∈ C for all time if x0 ∈ C. That is,
the set C is safe. ■

We have proposed an alternative event-triggered scheme
for maintaining safety in an impulsive control system. In the
scheme, the trigger conditions switch between being greedy
in maximizing immediate inter-event time and predicting one
step ahead in term of maximizing the inter-event time. We
note that the trigger scheme with only trigger design (13)
can also work in term of safety guarantee, but it is unclear
whether doing so will improve in term of inter-event times.

Remark 3. (Inter-event Time Heuristic): For our result, we
can claim that the average inter-event time of two consecutive
flow periods would be higher than without maneuver. How-
ever, this does not guarantee an overall increase in average
inter-event time. This is because each trigger design creates
a different trajectory, so it is impossible to make a guarantee
on the overall average inter-event time. •

Remark 4. (Maneuver Behavior with Safety Promoting Con-
troller Codesign): Our trigger scheme takes an opportunistic
approach in extending the inter-event time. To fully imitate
safety maneuver behavior, the first impulsive control must
actively try to drive the system state to a position where
the inter-event time may increase, e.g., safer location with
higher value of barrier function h. This would involve a
codesign of the controller—designing the controller with the
expectation of using our trigger scheme. For our satellite
example, we assure that each impulse would promote safety
in order to take full advantage of the trigger design. In
our following simulation, we demonstrate the success in
imitating maneuver behavior. •

D. Simulation Result

We simulate our impulsive safety maneuver trigger scheme
for the satellite safety problem explained earlier in the paper.
In addition, we use the inter-event time data collected shown
in Fig. 3 to fit a curve in order to estimate the function τp.
Fig. 1 and 4 shows the results for the first 150 hours of the
simulated orbital time. Safety is maintained as expected. In
addition, the bottom figure shows the behavior of a safety
maneuver. The trigger alternates between safety and finding
the optimal location to trigger for inter-event time. Although
there is no guarantee in an increase in inter-event time, we
report that there are total of 215 trigger occurrences across
the 2400 hours of orbital time, a reduction of 19.5 percent
from the earlier simulation result.
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-5 Evolution of Trigger Condition

Fig. 4. Safety Maneuvers Simulation. [Top] Distance to the asteroid over
150 hours of satellite orbit. The plot shows the distance remains within
the safe range at all time. [Bottom] Trigger condition over 150 hours of
satellite orbit. Stars indicate the time at which the trigger occurs, showing
the behavior of traditional spacecraft maneuvers.

V. EVENT-TRIGGERED INTERMITTENT SAFETY FILTER

With the development of our event-triggered control for
safety in impulsive systems, we can combine different ele-
ments from our earlier results to develop the framework for
intermittent safety filter. We consider the intermittent system
model for safety filter as given in (5). Here, instead of letting
the time instances toffi and toni be determined automatically
based on whether the constraint of optimization (4) is active.
We design different trigger conditions for switching the
controller between knom and k in (4).

Our trigger scheme mimics our event-triggered safeguard-
ing impulsive control in Section III. Recall that for impulsive
systems, we use event-triggered control to monitor the barrier
condition along the flow, and whenever it becomes unsafe,
we apply control to jump to safety. Our idea is similar for
intermittent safety filter, but instead of being able to jump
directly to safety, we have periods where we apply controls
to promote safety.

The first trigger condition in our scheme determines when
safety is at risk and the filter needs to be back on in
intermittent control system (5):

toni = min
{
t ≥ toffi | Ξon(x(t)) ≤ 0

}
, (14a)

Ξon(x) = Lfh(x, knom(x))−
∥∥∥∥ ∂h

∂x

∣∣∣∣
x

∥∥∥∥ d̄+ α
(
h(x)

)
.

(14b)

This trigger relies on the same idea of monitoring the barrier
condition and turning the filter back on when the condition
gets violated. Indeed, in order to establish the MIET of the
off duration, as we have studied in the impulsive control
systems in Section III, we would require that Ξon(x(t

off
i )) ≥

c at time toffi . To assure this is true, we use another trigger
to determine when we can turn the filter off:

toffi+1 = min
{
t ≥ toni | Ξoff(x(t)) ≤ 0

}
, (15a)

Ξoff(x) = Ξon(x)− c. (15b)

The final key element in our framework is to guarantee that
the above will occur. To this end, we will use the idea of
increasing the value of barrier function h, which will increase
the value of the trigger condition (15b). Hence, we modify
the constraint filter:

k(x) = argmin
u∈Rm

∥u− knom(x)∥2 (16)

s.t. Lfh(x, u)−
∥∥∥∥ ∂h

∂x

∣∣∣∣
x

∥∥∥∥ d̄ ≥ b,

where b > 0 is a positive constant. We will simply assume
that the filter is feasible, and leave feasibility as a line of
future research. In any case, even with the barrier function
increasing, the trigger might still not occur because the value
of Lfh(x) may dominate α(h(x)). Therefore, we assume α
is large enough so that the nominal controller satisfies the
barrier condition, at least for a large value of h.

Assumption 5. (Nominal Safety): Given a nominal con-
troller knom, the function α is such that

Lfh(x, knom(x))−
∥∥∥∥ ∂h

∂x

∣∣∣∣
x

∥∥∥∥ d̄ ≥ −α
(
h(x)

)
+ c

for all x ∈ C such that h(x) ≥ h̄ for some positive h̄ > 0. •

The assumption is related to the existence of a safety level
(as described by h) where the nominal controller may operate
without any filter. With this assumption, we assure that our
safety promoting controller can drive the trajectories to such
safe level, and therefore the off trigger will occur in finite
time. The assumption in itself is not a strict one because a
user usually gets to pick α and there always exists α large
enough for the assumption to hold. Note however that the
implication of choosing a large α lead to a less conservatism
in safety because the trajectory is allowed to approach the
boundary at a faster rate.

Now, we have all the elements for our intermittent safety
filter framework. We are ready to give the following result.

Theorem 6. (Event-triggered Intermittent Safety Filter):
Consider the intermittent nonlinear system (5) with a
nominal controller knom satisfying Assumption 5 and a
safety-filtered controller given by (16). Let the trigger de-
signs (14) and (15) determine the time sequences {toni }i∈N
and {toffi }i∈N iteratively. Then there exists toffi for every
toni . In addition, under the same set of assumptions as in
Proposition 1, there exists a MIET for the off period, i.e.,
τ ≤ toni+1 − toffi for all i ∈ N. Consequently, x(t) ∈ C for all
time if x0 ∈ C. That is, the set C is safe.

Proof. First, we prove the existence of toffi . Due to the
constraint in the filter (16), we can deduce dh

dt ≥ b Therefore,
h̄−h(x(toni )) is reached in finite time T ≤ (h̄−h(x(toni )))/b.
At which point, the trigger criterion (15) must already be
satisfied.

The proof of MIET is as in the proof of Proposition 1.
With a MIET established, we can conclude that all maximal
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solutions are complete, i.e., exists for all time. Then, for
the time period [toni , toffi+1), safety is guaranteed due to the
satisfaction of constraint in the safety filter (16) where h
is increasing. In addition, for the time period [toffi , toni ),
safety is guaranteed due to the monitoring of the trigger
condition (15b). Thus, it can be determined iteratively that
x(t) ∈ C at all time if x0 ∈ C using the barrier function h,
concluding the proof.

Theorem 6 formalizes our event-triggered intermittent
safety filter framework. We summarize how our framework
maintains safety as follows. We no longer use the barrier
condition to filter the nominal controller. Instead, the filter
aims to promote safety by increasing the barrier function in
order to maneuver into states where it is possible to turn the
filter off. We only use barrier condition to monitor safety
and when to filter. The trigger framework effectively adds
hysteresis to the system, allowing for a switching period
between filtering and not filtering.

VI. CONCLUSION

In this paper, we have proposed various trigger designs for
the purpose of reducing control effort for safety objectives.
We have developed trigger schemes for safeguarding con-
trollers in impulsive control systems and for safety filters in
nonlinear systems. One particular interesting idea explored
is safety maneuver which switches between actively using
control effort for safety and only monitoring safety. Our
future work includes the application of our event-triggered
intermittent safety filter on a robotic system with the goal of
accomplishing simultaneously a nominal task and collision
avoidance. In addition, we will analyze the tradeoff between
safety maneuver and progress towards the nominal objective,
particularly in the context of the optimization-based con-
troller with Lyapunov and barrier conditions as constraints.
Our hope is that safety maneuvers will allow us to make
guarantee for the satisfaction of nominal objectives.
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