
A Novel Free-Matrix-Based Summation Inequality for Stability Analysis
of Discrete-Time Delayed System

Yongbeom Park1 and PooGyeon Park2

Abstract— This paper introduces an improved stability cri-
terion for discrete-time systems with time-varying delay. A
novel summation inequality based on the free-matrix is sug-
gested which considers the augmented vector of the state and
its forward difference. Additionally, the proposed summation
inequality is employed to derive an improved stability criterion
for the discrete-time system with time-varying delay. A new
Lyapunov-Krasovskii functional is established for applying the
summation lemma to reduce the conservatism of the stability
analysis. To verify the effectiveness of the proposed approach,
the maximum admissible upper bounds of the proposed method
is presented in comparison to existing methods with two
numerical examples.

I. INTRODUCTION

In the real world, signals and information require com-
munication time to be transmitted. Due to this physical
limitation, there are various dynamic system models with
time-varying delays, whose subsequent outputs depend on
the previous state of their system [1][2]. However, such time-
varying delays may cause the performance degradation of
the systems and even become a source of system instabili-
ties. Therefore, stability analysis of the time-delay systems
garnered great attention from academic and industrial re-
searchers in recent decades[3]-[4].

Since there is no analytic method available for sta-
bility analysis with the time-varying delayed system, the
Lyapunov-Krasovskii Functional(LKF) approach is one of
the primary methods used for stability of the system with
time-varying delay. The two main steps of the LKF approach
involve constructing appropriate LKFs and applying precise
bounding techniques [5]. Therefore several techniques have
been proposed to derive stability criterion with reduced con-
servativeness for this purpose. For example, the novel delay-
square-dependent LKF was suggested for stability analysis
of discrete-time delayed systems [6].

A common method used for stability analysis is the
application of summation inequalities. There are vari-
ous types of integral inequalities and summation in-
equalities that have been proposed for stability analy-
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sis [7][8]. By estimating these terms, the stability crite-
rion can be represented based on the linear matrix in-
equalities (LMIs) approach. For example, Jensen’s inequal-
ity [9][10] showed acceptable performance behavior with
fewer decision variables. Moreover, several other improved
summation inequalities were developed to figure out the
more concise bounds such as the Wirtinger-based integral
inequality[11][12], Bessel inequality[13], auxiliary function-
based integral inequality[14]. These inequalities enable the
estimation of the upper bound of the summation terms that
arise in the forward difference of LKFs.

Recently, some free-matrix-based integral inequalities and
summation inequalities have been proposed which allows
handling with the use of multiple integral terms for the
stability analysis of a continuous-time and discrete-time
system with time-varying delay[15][16]. Nevertheless, the
free-matrix-based inequality for discrete-time such as in
[17] only gives the estimation of energy of the state or
its forward difference without consideration of the cross
information of them. In continuous-time, the novel free-
matrix-based integral inequalities are suggested that involve
the augmented vectors to enlarge freedom for reducing the
conservatism of the inequality[18][19]. However, there is
still room for discrete-time stability analysis by reducing the
conservativeness of the stability criterion.

In this paper, inspired by the preceding discussion, we
develop a new summation inequality based on the free-
matrix-based method. By using the augmented vector of the
state and its forward difference, the summation inequality
reduces conservativeness. Also, a novel improved stability
criterion for the discrete-time system is derived by using
the proposed summation inequality. Two numerical examples
show the effectiveness of the proposed method compared to
the existing methods.

Notation: Throughout this paper, the superscripts ‘−1’
and ‘T ’ indicate the inverse matrix and the transpose matrix
of a given matrix. Rn represents the n-dimensional Euclidean
space and ‘∗’ stands for the symmetric terms in a symmetric
matrix. P > 0 implies that P is the positive definite matrix.
sym{X} denotes X+XT for square matrix X and diag{·}
signifies the a block-diagonal matrix. The matrix In stands
for the n × n identity matrix and the matrix 0 represents
the zero matrix with appropriate dimension. Define xa(i) =
x(a+ i), and ya(i) = xa(i+ 1)− xa(i).

II. PROBLEM STATEMENT

Consider the following linear system that contains a
time-varying delay term for h(k):
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{
x(k + 1) = Ax(k) +Adx(k − h(k)), k ≥ 0,

x(k) = ψ(k), k ∈ [−h2, 0],
(1)

where the x(k) represent the state vector, ψ(k) is the initial
condition with the time instant k ∈ [−h2, 0]. A, Ad ∈ Rn×n

are the constant system matrices.
The time-varying delay h(k) with time instant k satisfies

the condition
h1 ≤ h(k) ≤ h2,

for the positive constant integer h1 and h2.
In this section, motivated from [18], a new free-matrix-based
summation inequality lemma are suggested.
Lemma 2.1 Let x(k) ∈ Rn be a vector function and m are
constant integer with m > 1. The positive definite matrix
R ∈ R2n×2n and the free matrices Yi ∈ Rmn×n(i = 1, 2, 3),
the following summation inequality holds:

−
m−1∑
i=0

[
xa(i)
ya(i)

]T
R

[
xa(i)
ya(i)

]
≤ ζT (k)Ω(m)ζ(k) (2)

where

Ω(h) = h [Y1 Y2]R
−1 [Y1 Y2]

T
+
h

3
[Y3 0]R−1 [Y3 0]

T

+ sym

{
Y1N

T
1 + Y2N

T
2 + Y3N

T
3

}
,

NT
1 ζ(k) = xa(m)− xa(0),

NT
2 ζ(k) =

m∑
i=0

xa(i)− xa(m),

NT
3 ζ(k) = xa(m) + xa(0)−

2

m+ 1

m∑
i=0

xa(i).

Proof 2.1: Before the prove process, define the following
structured matrix Y ∈ R2mn×2n and orthogonal scalar
functions pi(s)(i = 1, 2) such that

Y =

[
Y3 0
Y1 Y2

]
, p1(i) = 1, p2(i) =

2i− (m− 1)

m+ 1
,

m−1∑
i=0

p21(i) = m,

m−1∑
i=0

p22(i) =
m(m− 1)

3(m+ 1)
,

m−1∑
i=0

p1(i)p2(i) = 0,

Since R > 0 , the following summation inequality can be
derived as follows:

0 ≤
m−1∑
i=0

ζ̄T (k)

[
Y R−1Y T Y

Y T R

]
ζ̄(k)

=

m−1∑
i=0

[
xa(i)
ya(i)

]T
R

[
xa(i)
ya(i)

]

+ ζT (k)

m−1∑
i=0

[
p2(i)I
p1(i)I

]T
Y R−1Y T

[
p2(i)I
p1(i)I

]
ζ(k)

+2ζT(k)

m−1∑
i=0

[
p2(i)I
p1(i)I

]T
Y

[
I 0
0 (m+ 1)I

] [
ya(i)
1

(m+1)xa(i)

]

=

m−1∑
i=0

[
xa(i)
ya(i)

]T
R

[
xa(i)
ya(i)

]
+ ζ(k)T {m [Y1 Y2]R

−1 [Y1 Y2]
T

+
m(m− 1)

3(m+ 1)
[Y3 0]R−1 [Y3 0]

T }ζ(k)

+ sym

{
ζT (k)

(
Y1(xa(m)− xa(0))

+ Y2
( m∑
i=0

xa(i)−xa(m)
)
+Y3

m−1∑
i=0

p2(i)ya(i)

)}
,

where

ζ̄(k) =

[
(p2(s)ζ(k))

T (p1(s)ζ(k))
T | xTa (i) yTa (i)

]T
.

Since
m−1∑
i=0

p2(i)ya(i) = xa(m) + xa(0)−
2

(m+ 1)

m∑
i=0

xa(i),

and m−1
m+1 ≤ 1, the (2) can be derived. This completes the

proof. ■
Remark 1: Note that the new free-matrix-based summation

inequality proposed in Lemma 2.1 is the generalized version
of the summation inequality in [20]. By letting Y2 = 0, the
summation inequality can be driven easily. Since Y2 is related
to both xa(i) and ya(i), the proposed lemma in Lemma 2.1
includes the additional information of them for reducing the
conservatism.

III. MAIN RESULTS

In this section, the improved stability analysis are intro-
duced with using the developed lemma. For brevity, the
following notations are introduced to simplify the represen-
tation:

ζ(k) = [ζT1 (k), ζ
T
2 (k)]

T

ζ1(k) = [xT (k), xT (k − h1) , x
T (k − hk) , x

T (k − h2)]
T ,

ζ2(k) = [sT1 (k), s
T
2 (k), s

T
3 (k)]

T ,

hk = h(k), h12 = h2 − h1, hk1 = hk − h1,

h2k = h2 − hk, g1(h) = h+ 1,

s1(k) =

k∑
i=k−h1

x(i)

g1 (h1)
, s2(k) =

k−h1∑
i=k−hk

x(i)

g1 (hk1)
,

s3(k) =

k−hk∑
i=k−h2

x(i)

g1 (h2k)
,

χ1(k) = [xT (k),

k−1∑
i=k−h1

xT (i),

k−h1−1∑
i=k−h2

xT(i)]T ,

χ2,k(i) = [xT (k), xT (i)]T

ei =
[
0n×(i−1)n In 0n×(7−i)n

]
, (i = 1, 2, · · · , 7)

es = Ae1 +Ade3,
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The following stability criterion for the discrete-time linear
system (1) can be derived using the summation inequality
lemma (2).
Theorem 3.1 For the time-varying delay hk with given
nonnegative constant h1 and h2 satisfying (2), linear discrete-
time varying delay system (1) is asymptotically stable if
there exists symmetric positive definite matrices P > 0,
Q1 > 0(i = 1, 2), Ri > 0(i = 1, 2) and free matrices
Y1, Y2, Y3 such thatΓ(h1) h1Y1 h12Y 3

∗ −h1R1 0
∗ ∗ −h12R2

 < 0, (3)

Γ(h2) h1Y1 h12Y 2

∗ −h1R1 0
∗ ∗ −h12R2

 < 0, (4)

where

Γ(hk) = Φ1(hk) + Φ2(hk) + Φ3(hk),

Φ1(hk) = ΛT
2 Λ2 − ΛT

1 PΛ1 + sym{(Λ2 − Λ1)
TPΛ0(hk)},

Φ2(hk) = ωT
1 Q1ω1 − ωT

2 Q1ω2 + h1ω
T
3 Q1ω3

+ ωT
2 Q2ω2 − ωT

4 Q2ω4 + h12ω
T
3 Q2ω3,

+ sym
{
ωT
3 Q1ω5 + ωT

3 Q2ω6(hk)
}
,

Φ3(hk) = ωT
7 (h1R1 + h21R2)ω7

+ sym
{
Y11N

T
11+ Y12N

T
12+ Y13N

T
13+ Y21N

T
21

+ Y22N
T
22+ Y23N

T
23+ Y31N

T
31+ Y32N

T
32+ Y33N

T
33

}
Λ1 = [eT1 , −eT1 , −eT2 − eT3 ]

T ,

Λ2 = [eTs , −eT2 , −eT3 − eT4 ]
T ,

Λ0(hk) = [0, g1(h1)e
T
5 , g1(hk1)e

T
6 + g1(h2k)e

T
7 ]

T ,

ω1 = [eT1 , e
T
1 ]

T ζ(k), ω2 = [eT1 , e
T
2 ]

T ζ(k),

ω3 = [eTs − eT1 , 0]
T ζ(k), ω4 = [eT1 , e

T
4 ]

T ζ(k),

ω5 = [h1e
T
1 , g1(h1)e

T
5 − eT2 ]

T ζ(k),

ω6(hk) = [h21e
T
1 , g1(hk1)e

T
6 + g1(h2k)e

T
7 − eT3 − eT4 ]

T ζ(k),

ω7 = [eTs − eT1 , e
T
1 ]

T ζ(k),

Ωi(h) = h [Yi1 Yi2]R
−1
1 [Yi1 Yi2]

T
+
h

3
[Yi3 0]R−1

1 [Yi3 0]
T

+ sym
{
Yi1N

T
i1 + Yi2N

T
i2 + Yi3N

T
i3

}
(i = 1, 2, 3)

Yi = [Yi1 Yi2 Yi3 0], Yij ∈ R7n×n (i = 1, 2, 3)

Ri = diag{Ri, 3Ri}, Ri ∈ R2n×2n (i = 1, 2)

Proof ) Consider a LKF V (k) =
∑3

i=1 Vi(k), where

V1(k) =


x(k)

k−1∑
i=k−h1

x(i)

k−h1−1∑
i=k−h2

x(i)


T

P


x(k)

k−1∑
i=k−h1

x(i)

k−h1−1∑
i=k−h2

x(i)

 , (5)

V2(k) =

k−1∑
i=k−h1

[
x(k)
x(i)

]T
Q1

[
x(k)
x(i)

]

+

k−h1−1∑
i=k−h2

[
x(k)
x(i)

]T
Q2

[
x(k)
x(i)

]
, (6)

V3(k) =

k−1∑
i=k−h1

k−1∑
j=i

[
x(j)
y(j)

]T
R1

[
x(j)
y(j)

]

+

k−h1−1∑
i=k−h2

k−1∑
j=i

[
x(j)
y(j)

]T
R2

[
x(j)
y(j)

]
, (7)

where y(k) = x(k + 1)− x(k).
Throughout the trajectory of the system (1), the forward

difference of Vi(k) is defined as ∆Vi(k) = Vi(k + 1) −
Vi(k) (i = 1, 2, 3). Note that χ1(k) = (Λ0(hk) + Λ1)ζ(k)
and χ1(k + 1) = (Λ0(hk) + Λ2)ζ(k), so the forward
difference of the V1 yields:

∆V1(k) = χT
1 (k + 1)Pχ1(k + 1)− χ1(k)

TPχ1(k)

= ξ(k)TΦ1(hk)ξ(k). (8)

Then, we compute the forward difference of the V2,
throughout the trajectory of the system (1).

∆V2(k)

= χT
2,k(k)Q1χ2,k(k)− χT

2,k(k − h1)Q1χ2,k(k − h1)

+

k∑
i=k−h1+1

∆(χ2,k(i)
TQ1χ2,k(i))

+ χ2,k(k − h1)
TQ2χ2,k(k − h1)− χ2,k(k − h2)

TQ2

χ2,k(k − h2) +

k−h1∑
i=k−h2+1

∆(χ2,k(i)
TQ2χ2,k(i))

= ζT (k)Φ2(hk)ζ(k) (9)

where ∆
(
χT
2,k(i)Qiχ2,k(i)

)
= χT

2,k+1(i)Q1χ2,k+1(i) −
χT
2,k(i)Q1χ2,k(i).
Throughout the trajectory of the system (1), calculating

the forward difference of V3 leads to:

∆V3(k) =

[
x(k)
y(k)

]T
(h1R1 + h21R2)

[
x(k)
y(k)

]
−

k−1∑
i=k−h1

[
y(i)
x(i)

]T
R1

[
x(i)
y(i)

]
−
k−h1−1∑
i=k−hk

[
x(i)
y(i)

]T
R2

[
x(i)
y(i)

]

−
k−hk−1∑
i=k−h2

[
x(i)
y(i)

]T
R2

[
x(i)
y(i)

]
(10)

By applying Lemma 1 to estimate the summation terms in
(10), we can get

∆V3(k) ≤ ζT (k)
{
ωT
7 (h1R1 + h21R2)ω7 +Ω1(h1)

+ Ω2(hk1) + Ω3(h2k)
}
ζ(k) (11)

Therefore, combining the (8) with (9), (11), we get:

∆V (k) ≤ ζT (k)

{
Φ1(hk)+ Φ2(hk)+ Φ3(hk)+ h1Ȳ1R̄1Ȳ1

T

+ hk1Ȳ2R̄2Ȳ2
T
+ h2kȲ3R̄3Ȳ3

T
}
ζ(k)
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= ζT (k) Ξ(hk) ζ(k) (12)

According to Schur’s complement, inequality (12) can be
represented as LMI forms which are equivalent to the LMI
condition (3) and (4). Since Ξ(hk) ≤ 0 is affine with
hk ∈ [h1, h2], the negativity condition of the LKF (5) is
equivalent to (3) and (4). This completes the proof. ■
Remark 2: Compared to Theorem 1 proposed in [21], it
is shown that Theorem 1 can provide the less conservative
stability criterion. The double summation terms using aug-
mented vectors with x(j) and y(j) are used for the LKF term
V3(k) to utilize more information about the given system.
Also, comparing to [15], the cross information between state
x(k) and its forward difference y(k) are utilized by using a
summation lemma.

IV. NUMERICAL EXAMPLES
This section presents a comparison of the performance of

the proposed method with that of existing methods through
the use of the following two numerical examples.
Example 1: Consider the discrete linear time-delayed system
(1) with the following matrices

A =

[
0.8 0
0.05 0.9

]
, Ad =

[
−0.1 0
−0.2 −0.1

]
.

Example (1) is widely used for stability analysis of discrete-
time systems. Table I lists the maximum admissible upper
bounds (MAUBs) h2 for difference h1 obtained by the
proposed method and the other existing methods. Compared
with result by obtained with existing method [22]-[23],
the enlarged or at least the same MAUBs obtained by
the proposed method. Furthermore, Theorem 1 produces
comparable results to those of the existing method in [20][21]
with fewer the number of variables(NVs). Thus, this indicates
that Theorem 1 gives a less conservative result while also
reducing the burden of computational complexity.

Example 2: Consider the discrete linear time-delayed sys-
tem (1) with the following matrices

A =

[
0.68 −0.4
0.40 0.52

]
, Ad =

[
−0.1 −0.2
−0.2 −0.1

]
.

Table II lists the MAUBs of h(k) for the different h1. It is
shown that Theorem 1 gives the larger or at least the same
upper bound than those of obtained by existing method[27]-
[29]. Considering the given system in Example 2, utilizing

TABLE I
THE MAXIMUM ADMISSIBLE UPPER BOUNDS h2

FOR DIFFERENT h1 IN EXAMPLE 1

h1 5 7 9 11 13 NVs
Thm. 5 [22] 21 22 23 22 23 10.5n2 + 3.5n
Thm. 1 [24] 20 21 21 22 23 29.5n2 + 12.5n
Thm. 1 [25] 20 21 21 22 23 32.5n2 + 6.5n
Thm. 1 [26] 21 22 22 23 23 78.5n2 + 12.5n
Thm. 1 [23] 21 22 22 23 24 10.5n2 + 3.5n
Thm. 2 [20] 22 22 22 23 24 97n2 + 4n
Thm. 1 [21] 22 22 22 23 24 160.5n2 + 5.5n
Thm. 1 [proposed] 22 22 23 24 24 75.5n2 + 4.5n

TABLE II
THE MAXIMUM ADMISSIBLE UPPER BOUNDS h2

FOR DIFFERENT h1 IN EXAMPLE 2

h1 7 9 10 15 20 24 26 28
Thm.1 [27] 8 10 11 16 21 14 27 29
Thm.1 [28] 8 10 11 16 21 14 27 29
Thm.1 [29] 8 10 11 16 21 14 27 29
Thm.1 [30] 8 10 11 16 21 14 27 29
Thm.1 [13] (m=2) 9 10 11 16 21 25 27 29
Thm.1 [13] (m=8) 10 11 12 17 22 26 28 29
Thm.1 [proposed] 10 12 13 18 23 27 29 31

the cross information of state x(k) and its forward difference
y(k) leads Theorem 1 to ensure the larger stability region.
Thus, it is shown that Theorem 1 gives less conservatism of
the stability criterion.

V. CONCLUSIONS

This paper presented the improved stability analysis for
the discrete-time system that has a time-varying delay. The
new novel summation inequality lemma based on free-
matrix-based is introduced to provide the less conservative
stability criterion of the system. By considering the cross
terms between the state and the forward difference, the
proposed lemma provides additional information to reduce
the conservativeness of stability analysis. Furthermore, the
novel LKFs with an augmented vector containing x(t) and
y(t) are constructed to apply the lemma. The results of
two numerical examples indicate that the proposed stability
criterion guarantees the expanded stability region with lower
computation complexity. Therefore, the proposed stability
criterion could provide a less conservative result for stability
analysis.
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