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Abstract— In this work, we investigate algorithmic improve-
ments that navigation services can implement to steer road net-
works toward a system-optimal state while retaining high levels
of user compliance. We model the compliance of users using
marginal regret, and we extend the definition of the social cost
function to account for various traffic congestion externalities.
We propose a routing algorithm for the static traffic assignment
problem that improves the social cost with guarantees on the
worst-case regret in the network. This algorithm leverages
the connection we establish between this problem and that of
second-best toll pricing. We present numerical experiments on
different networks to illustrate the trade-off between regret and
efficiency of the resulting assignment for arbitrary social costs.

I. INTRODUCTION

Congestion in traffic networks is a long-standing challenge
with widespread societal, economic, and environmental im-
plications. Reducing congestion has been tackled through
intelligent transportation systems, which utilize existing in-
frastructure and advancements in sensing and communication
technologies for efficient traffic control [1]. One such tech-
nology is navigation services through mobile applications,
which leverage real-time data and algorithms to provide users
with optimized routes that account for current traffic condi-
tions. Today, services like Google Maps, Apple Maps, Waze,
and Moovit are widely used and have a strong influence on
motorists’ choices. Their growing adoption rates create new
traffic patterns, making them a crucial aspect to consider
when studying the traffic assignment problem [2], [3]. A
particular concern involves the potential negative impact they
may have on the efficiency of the road network [2], [4]–[6].

The core of the problem is that most navigation services
are designed to provide users with shortest path recom-
mendations without accounting for the potential externalities
of their routing algorithms. While these recommendations
minimize individual travel costs, they can lead to inefficient
outcomes, likely a Nash equilibrium [7], [8] (also called
user equilibrium (UE) or Wardrop equilibrium), which are
often far from the system-optimal (SO) outcomes [9]–[11].
This problem becomes even more eminent when users’ cost
metrics, such as travel time, tolls, and fuel consumption,
differ from the social cost metrics on which the system
efficiency is measured, like emissions or road utilization.
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Addressing the impact of navigation services and leverag-
ing their potential benefits in reducing congestion requires
an algorithmic solution. Specifically, we need routing al-
gorithms that steer users toward a system-optimal state.
However, system-optimal recommendations might not be
satisfactory to the users, as they can lead to much higher
costs for some users compared to alternative routes [12]–
[14]. So if users decide that these recommendations are
not in their best interest – even though they might lead to
system optimal outcomes – they can disregard them, abandon
the platform, and become non-compliant. Thus, the question
of compliance with the algorithm’s recommendations is of
utmost importance.

In this work, we design routing algorithms that steer users
toward a system-optimal state without compromising users’
compliance. To that end, we use the notion of fairness as
a criterion for compliance. Specifically, we propose using
marginal regret [7] as a measure of unfairness in the system,
which captures the maximum difference between a user’s
travel cost and the minimum cost of any path between the
same origin and destination pair. We then propose a game-
theoretic framework to design better route recommendations
with compliance as a core consideration. The proposed
framework is formulated as a constrained system optimum
(CSO) problem and utilizes the relaxed behavioral assump-
tion of bounded rationality [15]. Our solution approach
makes the connection between the CSO problem and optimal
toll design, which addresses the design of toll schemes that
induce system optimality in routing games [16]–[18].

A. Contributions

The key contributions of the article include
• Formulating the problem of system-optimal recom-

mendations. We formulate it as a constrained system
optimum problem with dual-criteria for the users and
the planner and unfairness constraint as a criterion for
compliance. We measure the unfairness in the system
using marginal regret.

• Formalizing the connection between this problem
formulation and that of optimal toll design. By intro-
ducing appropriate constraints on the tolls, we guarantee
that the equilibrium assignment resulting from such tolls
has bounded marginal regret.

• Proposing a heuristic algorithm for solving the
system-optimal recommendations problem. This al-
gorithm is based on the established connection with
optimal toll design. It finds assignments with bounded
regret and improved social cost by computing tolls
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with constraints on their maximum difference. As an
extension to the algorithm, we propose an iterative pro-
cedure that relaxes these constraints to further improve
the social cost. We evaluate the performance of the
proposed approach on benchmark networks at different
levels of allowable regret.

B. Related work

a) Constrained system optimum: The problem of sys-
tem optimal recommendations we formulate in this work is
part of the literature that studies the balance between the
efficiency of traffic assignments and their level of “unfair-
ness” to users. The first attempt to address this problem was
presented by Jahn et al. [13], who introduced the constrained
system optimum (CSO) model, which aims at finding system-
optimal assignments under constraints on the ratio of the
normal length of a given path to that of the shortest path.
The normal length refers to any exogenous property of the
path independent of the flow (e.g., length, free-flow travel
time, etc). This unfairness criterion simplifies the problem
significantly, and many studies have proposed algorithms for
this CSO model for various social objectives and normal
length choices [19], [20].

One drawback of the CSO model is that the experienced
unfairness in the network can be far worse than the bound
that the model guarantees. To overcome this limitation,
the model needs to incorporate flow-dependent criteria of
unfairness, and thus, flow-dependent constraints need to
be imposed on the CSO problem. A common choice for
such a criterion is the loaded unfairness defined as the ratio
between the travel cost along a path to the minimum travel
cost among all used paths, both flow-dependant. Using this
criterion, Angelelli et al. [21] proposed a heuristic algorithm
for the CSO problem that relies on linearizing the edge
cost functions. More recently, Jalota et al. [14] proposed
another algorithm to solve this problem by finding the
optimal interpolation between the system optimal and the
user equilibrium assignments.

In the present work, we propose marginal regret as an
alternative measure of unfairness. Bounds on the marginal
regret characterize the set of boundedly-rational user equi-
librium assignments (BRUE) [15]. Thus, our formulation nat-
urally connects this problem to that of finding the best-case
BRUE [22]. Further, [14] proposed a pricing mechanism to
enforce the resulting constrained system optimal assignment.
Our approach simultaneously solves the assignment and
pricing problems by translating the user fairness constraints
into toll constraints.

b) Optimal toll design: Imposing tolls on road net-
works is one of the most popular mechanisms for reducing
the inefficiency of selfish routing behavior, both in theory and
practice. The classical approach to toll design is the marginal
cost pricing, first introduced by Pigou [16]. Beckmann et
al. [17] showed that such marginal pricing is optimal in
the sense that it always induces system-optimal flows as
equilibrium. A long line of research then focused on studying
and characterizing the set of all optimal tolls [18], [23], [24],

showing that it can be described by linear equations and
inequalities. This enabled further development in designing
toll vectors that optimize a secondary objective, such as
minimizing the toll amount in the network or minimizing
the number of tolled edges [25]–[28].

A closely related problem, often referred to as second-
best pricing, is concerned with finding tolls that induce
equilibrium assignments with minimum social cost under
some constraints on the tolls. In this problem, achieving
system optimality might not be possible. Most studies on
second-best pricing consider support constraints to restrict
tolls to certain links in the network. The problem is typically
formulated as a mathematical program with equilibrium
constraints (MPEC) and heuristic algorithms are proposed to
approximate the optimal solution [29]–[34]. Hoefer et al. [35]
proved the NP-hardness of this problem for general networks.
Bonifaci et al. [36] studied bounds on the efficiency of
second-best tolls in the more general setup of threshold
constraints. In our work, we formulate the problem of
optimal route recommendations under unfairness constraints
as a second-best pricing problem where the constraints on the
tolls are used to control the regret of the resulting assignment.

C. Organization

The remainder of this article is organized as follows.
Section II gives formal definitions of our framework, in-
cluding the network model, equilibrium and system optimal
assignments, marginal regret as a measure of unfairness, and
our problem formulation. Section III outlines our proposed
algorithm and introduces the related problem of optimal toll
design. In section IV, we illustrate the use of the proposed
algorithm through numerical experiments.

II. PROBLEM SETUP

A. Non-cooperative routing games

a) Network: We represent the road network as a di-
rected graph G with node set N and edge set E. On this
graph, we let Z = {(ri, si, di)}Ki=1 be a set of K origin-
destination (OD) pairs (ri, si) and their corresponding non-
atomic demand di. Each element of Z corresponds to a
different commodity (a subset of users) that utilizes the
network. For each OD pair, there is a set of simple (non-
cyclic) paths Pi. We define the set of all simple paths in the
graph as P =

⋃K
i=1 Pi.

b) Flows: An assignment in graph G is a vector h ∈
R|P|

+ with non-negative entries hp denoting the flow routed
through each path p ∈ P . Such assignment is feasible if∑

p∈Pi
hp = di for all i = 1, . . . ,K. Intuitively, this means

that the demand di between an OD pair has been fully routed.
We denote by Hd the set of feasible flows corresponding to
the demand vector d ∈ RK

+ . The path flow vector h induces
a flow on each edge. We define the edge flow vector x ∈
R|E|

+ with non-negative entries xe for each edge e ∈ E. The
edge flows are related to the path flows as x = Hh, where
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H ∈ R|E|×|P| is the edge-path incidence matrix with entries

He,p =

{
1 if edge e is in path p

0 otherwise.

We denote by Hp the pth column of H . We define the set of
feasible edge flows as all such vectors that are induced by a
feasible path flow

Xd = {x ∈ R|E|
+ : ∃h ∈ Hd s.t. x = Hh}. (1)

Note that the edge flows vector is uniquely defined by the
assignment vector but the inverse is not necessarily true.

B. User behavior and social objectives

Central to the traffic assignment problem is the behavioral
assumption that users aim to “selfishly” minimize travel
cost. Such selfish behavior can lead to a user equilibrium
assignment. In contrast, the navigation service (which we
refer to as the planner) aims to achieve a system-optimal
assignment. Further, the metrics on which users evaluate their
travel costs and the planner evaluates the social cost need not
be the same. These two assignment rules can lead to very
different outcomes. We make this concrete in the following.

a) Edge cost functions: Let L = {le(·)}e∈E be a set
of flow-dependent cost functions where each le : R+ 7→ R+

maps xe, the flow on edge e, to the travel cost incurred
by users on that edge. Similarly, let W = {we(·)}e∈E be
another set of flow-dependent cost functions where each
we : R+ 7→ R+ maps xe to the cost incurred by the planner.
Throughout, we assume that the functions of both sets are
continuous, differentiable, and nondecreasing. Further, for
each we ∈ W , we assume the function xewe(xe) is convex.
We define the vectors of cost-functions l(x) = [le(xe)]e∈E

and w(x) = [we(xe)]e∈E . With a slight abuse of notation,
we denote the cost incurred along a path p ∈ P as lp(x) =∑

e∈p le(xe) or in matrix form lp(x) = H⊤
p l(x). Given the

graph G, a set of “user” cost functions L, a set of “planner”
cost functions W , and an origin-destination set Z , we define
the routing game instance as G(G,L,W,Z).

b) Assignment rules: Next, we define the user equi-
librium (also referred to as Wardrop’s first principle of
route choice [11]) and system-optimal (also referred to as
Wardrop’s second principle [11]) assignments.

Definition II.1. (User equilibrium (UE)) For a routing game
G(G,L,W,Z) a feasible assignment vector h ∈ Hd with
induced edge flows x is at user equilibrium if and only if
for every i = 1, . . . ,K and paths p1, p2 ∈ Pi with hp1 > 0

lp1
(x) ≤ lp2

(x).

This definition states that at UE, all used path between an
OD pair have equal and minimal travel cost.

Definition II.2. (System-optimal (SO) assignment) For a
routing game G(G,L,W,Z) a feasible assignment vector
h ∈ Hd with induced edge flows x is a system-optimal
assignment if

x⊤w(x) ≤ x̃⊤w(x̃) ∀x̃ ∈ Xd (2)

The system-optimal assignment minimizes the social cost
C(x) := x⊤w(x) with respect to the planner’s cost func-
tions W . Here, we generalized the definition of the social
cost [11] to not necessarily be based on the users’ cost
functions. This allows us to incorporate different factors in
the social cost that the users might not consider, such as
emissions and road utilization.

C. Marginal regret as a measure of unfairness

We consider the setting in which the planner aims to
achieve system optimality by giving route recommendations
to the users. A primary concern is ensuring compliance, as
users may deviate from the recommendations if they are not
in their best interest. To address this, we use fairness as
a criterion for determining user compliance. Our modeling
assumption is that users can tolerate a certain level of
unfairness and will follow the planner’s recommendations if
the perceived unfairness remains within acceptable range. To
quantify the unfairness of an assignment, we use the marginal
regret concept introduced in [7]. For a given feasible assign-
ment h ∈ Hd and induced edge flows x, we define the
marginal regret along a path p ∈ Pi as

Rp(x) = lp(x)− min
p̃∈Pi

lp̃(x), (3)

which captures how much users on path p could have reduced
their travel cost had they chosen the shortest path from their
origin to destination.

At the network level, we define the worst-case and average
marginal regrets below.

Definition II.3 (Worst-case marginal regret). The worst-case
marginal regret of a feasible assignment vector h ∈ Hd with
induced edge flows x is defined as

Rmax(x) = max
i=1,...,K

max
p∈Pi:hp>0

Rp(x) (4)

It measures the worst-case regret across all used paths and
commodities in the network.

Definition II.4 (Average marginal regret). The average
marginal regret of a feasible assignment vector h ∈ Hd

with induced edge flows x is defined as

R̄(x) =
1

∥d∥1

∑
i

∑
p∈Pi

hp(lp(x)− min
p̃∈Pi

lp̃(x)). (5)

It measures the weighted average of the regret on each path
weighted by the flow on that path.

Remark 1. Both notions of regret characterize the set of UE
in the network when the regret is zero. They are both suitable
measures of unfairness and indicators of user compliance.
The average marginal regret is a less stringent condition
and enjoys desirable computational properties, as discussed
in [7]. The worst-case regret guarantees bounded levels of
unfairness for all users and is aligned with the commonly
studied assumption of bounded rationality [22], [37]. In
our following problem statement, we will use the worst-case
regret as it is motivated by our proposed algorithm. In the
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numerical experiments, we report both regret measures and
show that the worst-case regret is much more conservative
in most cases.

D. Problem statement

Following the notion of regret introduced in definition II.3,
we can now write the planner’s recommendation as the
solution to the following constrained system optimum (CSO)
problem

min
x∈Xd

C(x) := x⊤w(x)

s.t. Rmax(x) ≤ ϵ
(CSO)

The feasible set of problem CSO, is referred to as the set
of ϵ−Nash equilibria or boundedly rational user equilibria
(BRUE) [22], [37]. Thus the planner’s task is to find the
best BRUE assignment that minimizes the social cost. Unlike
UE, BRUE can not be characterized as a solution to some
convex optimization problem. In fact, under additional mild
conditions (strict monotonicity of the cost functions), the
edge flows induced by the UE assignment are unique [17]
while BRUE are not. They do not define a convex set, even
for affine cost functions [22], [37].

III. COMPUTATIONAL APPROACHES

Our goal in this work is to devise a computational
algorithm to solve problem CSO. Our approach is based
on linking the problem we formulate here to the well-
studied optimal toll design problem. To set the stage, we
first provide an overview of relevant results that will inform
our methodology.

A. Optimal toll design

Optimal toll design tackles the problem of enforcing an SO
assignment (definition II.2) via the use of additive tolls on
the edges of the network. Let x⋆ be the edge flows induced
by an SO assignment of the game instance G(G,L,W,Z).
Consider a related game instance G(G,Lt,W,Z) defined by
a toll vector t ∈ R|E| with user cost functions

lte(xe) = le(xe) + te ∀e ∈ E where le(xe) ∈ L. (6)

The goal is to find t such that the edge flows xeq induced
by a UE assignment in G(G,Lt,W,Z) satisfy xeq = x⋆.

Here, we present results by Fleischer et al. [18], which give
a constructive proof of the existence of such toll vectors for
any feasible assignment in multi-commodity routing games.
In our proposed algorithm, we modify this construction to
find toll vectors that guarantee an ϵ−bound on the worst-case
regret.

Definition III.1 (Enforceable assignment). An edge flow
vector x is called enforceable if it is induced by a UE
assignement heq in the game instance G(G,Lt,W,Z) for
some toll vector t.

Theorem III.1 (Enforcing a feasible x [18]). Any feasible
edge flow vector x ∈ Xd is enforceable in the sense of
definition III.1.

The proof of theorem III.1 utilizes a linear programming
formulation of the optimal toll design problem and provides
a polynomial time algorithm to compute these toll. Now for
x⋆, an SO assignment of G(G,L,W,Z), being the flow we
want to enforce, define the following linear program

min
h

∑
p∈P

lp(x
⋆)hp

s.t. x⋆ = Hh∑
p∈Pi

hp = di ∀i = 1, . . . ,K

hp ≥ 0 ∀p ∈ P

(Px⋆ )

And its dual problem

max
z,t

∑
i

zidi −
∑
e∈E

tex
⋆
e

s.t. zi −
∑
e∈p

te ≤ lp(x
⋆)

(Dx⋆ )

Let h⋆ and (z⋆, t⋆) be the primal and dual solutions,
respectively. The proof of theorem III.1 in [18] shows that
the vector t⋆ is an optimal toll vector that enforces the SO
assignment that induces x⋆.

B. Translating tolls into regret

In this section, we aim to derive a relationship between
tolls in the network and the worst-case regret. The goal is
to impose linear constraints on the toll vector to control for
regret. We present the following proposition that makes such
a relation.

Proposition III.1. Let t ∈ R|E| be a vector of tolls that
characterizes a game instance G(G,Lt,W,Z) and let heq

be a UE in that game that induces edge flows xeq. If the
vector t satisfies

δi(t) := max
p∈Pi

H⊤
p t− min

p∈Pi

H⊤
p t ≤ ϵ ∀i = 1, . . . ,K, (7)

then the UE assignment heq has a worst-case marginal regret

Rmax(xeq) ≤ ϵ (8)

with respect to the game instance G(G,L,W,Z).

Proof: Given a toll vector t ∈ R|E|, let us consider the
paths toll vector τ ∈ R|P| defined as

τ = H⊤t (9)

with entries τp for the total amount of tolls imposed on path
p. For any UE assignment heq and induced xeq in the tolled
game instance G(G,Lt,W,Z), and for any commodity i =
1, . . . ,K, define the set of minimal cost paths

P⋆
i = argmin

p∈Pi

lp(x
eq). (10)

From the UE conditions in the tolled game (see defini-
tion II.1), we have for any p⋆i ∈ P⋆

i :

lp(x
eq) + τp ≤ lp⋆

i
(xeq) + τp⋆

i
∀p ∈ Pi : h

eq
p > 0 (11)
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Thus

Rp(x
eq) =lp(x

eq)− lp⋆
i
(xeq)

≤ τp⋆
i
− τp ∀p ∈ Pi : h

eq
p > 0

(12)

Taking the maximum of both sides with respect to all p ∈ Pi

such that heq
p > 0 we get

max
p∈Pi:hp>0

Rp(x
eq) ≤ max

p∈Pi:hp>0

[
τp⋆

i
− τp

]
= τp⋆

i
− min

p∈Pi:hp>0
τp

≤ τp⋆
i
− min

p∈Pi

τp

≤ max
p∈Pi

τp − min
p∈Pi

τp.

(13)

By taking the maximum with respect to the commodities we
complete the proof.

Remark 2. The bound on the toll vector in proposition III.1
can be a conservative upper bound on the worst-case regret.
This is due to two inequalities that might not be tight at
the solution. The first inequality is in eq. (13), which results
from taking the minimum tolls over the set of all paths Pi

between an OD pair rather than the set of utilized paths
{p ∈ Pi|heq

p > 0}. The second inequality is in eq. (13),
which results from replacing the tolls of the minimal cost
path p⋆i with the maximum tolls over the set of all paths
Pi between the OD pair. These steps enable us to derive a
set of linear constraints on the tolls that guarantee bounded
regret without knowing the set of utilized paths or the set
of minimal cost paths P⋆

i . If these sets are known prior to
computing the tolls, a less stringent set of constraint of the
form

min
p∈P⋆

i

τp − min
p∈Pi:hp>0

τp ≤ ϵ ∀i = 1, . . . ,K

would suffice to guarantee an ϵ-bound on the worst-case
regret. These constraints will give a tight upper bound on
the regret if there exists p⋆i ∈ P⋆

i such that heq
p⋆ > 0 for

all commodities. We attempt to improve the constraints in
proposition III.1 by proposing a procedure that alternates
between: (1) finding optimal tolls for a given set of utilized
and minimal cost paths, and (2) updating these sets based
on the resulting UE assignment given the tolls.

C. Proposed algorithm

Proposition III.1 gives us a guide on how to use linear
constraints on tolls to control for the regret of the resulting
UE assignment. Based on this we propose the following
three-step algorithm as a heuristic to solving problem CSO.
This approach is similar to the one proposed in [34] for
solving second-best tolls with support constraints.
Step 1. Find the edge flow vector x⋆ that is induced by
an unconstrained SO assignment (as per Def II.2). This can
be done using Frank-Wolfe (FW) algorithm as described in
[38].
Step 2. Compute the toll vector t̃ as the solution to the

constrained dual linear program

max
z,t

∑
i

zidi −
∑
e∈E

tex
⋆
e

s.t. zi −
∑
e∈p

te ≤ lp(x
⋆)

δi(t) ≤ ϵ ∀i = 1, . . . ,K.

(D̃x⋆ )

Step 3. Compute the resulting assignment h̃ as a UE of the
game instance G(G,Lt̃,W,Z).

a) Refining the toll constraints: As discussed in re-
mark 2, the bound on the worst-case regret guaranteed by
the algorithm can be conservative. For this, we propose
an extension to the three-step algorithm described above to
refine the constraints on the toll vector in problem D̃x⋆ to
achieve a tighter bound on the worst-case regret. Precisely,
we define a set of active paths P̄i for each commodity
i = 1, . . . ,K, which is the set of paths on which the toll
constraints are imposed. Initially, we follow the three-step
algorithm which results in assignment h̃ and edge flows x̃.
We then initialize P̄i for each commodity i = 1, . . . ,K as

P̄i = {p ∈ Pi : h̃p > 0} ∪ argmin
p∈Pi

lp(x̃).

Then in every iteration n = 1, 2, . . . we perform the
following steps to update P̄i for all i = 1, . . . ,K :

1) Solve for the toll vector

t̃
(n)

= argmax
z,t

∑
i

zidi −
∑
e∈E

tex
⋆
e

s.t. zi −
∑
e∈p

te ≤ lp(x
⋆)

max
p∈P̄i

H⊤
p t− min

p∈P̄i

H⊤
p t ≤ ϵ ∀i

2) Compute the resulting equilibrium assignment h̃
(n)

and x̃(n) in the game instance G(G,Lt̃
(n)

,W,Z)
3) Identify the set of utilized paths Pn

i = {p ∈ Pi :

h̃
(n)
p > 0} and the set of minimal travel cost paths

P⋆(n) = argminp∈Pi
lp(x̃)

4) Terminate and output h̃
(n)

and x̃(n) if Pn
i ∪ P⋆(n) ⊆

P̄i. Otherwise, set P̄i = P̄i ∪ Pn
i ∪ P⋆(n) and repeat.

Note that this procedure has to converge since the set of
paths is finite. In our numerical experiments, we show that
it actually converges in a few steps. We also note that the
output of this procedure is guaranteed to have an ϵ-bound on
the worst-case regret since in the last iteration the constraints
were imposed on all utilized paths and minimal travel cost
paths. This refinement offers significant improvement in the
regret bound and the social cost as illustrated in the numerical
experiments in section IV.

b) Computational Complexity: The proposed algorithm
involves solving two convex optimization problems and one
LP. The first convex problem in Step 1 can be solved
using the edge-based FW algorithm. The linear program D̃x⋆

in Step 2, however, imposes constraints on the path tolls
so it can have an exponential-size. We note here that the
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(a) Braess’s network with a single commodity with de-
mand d = 4. The users’ cost functions (blue) are affine
and the planner’s cost functions (green) are quadratic.

(b) Results for Braess’s network showing the decay
in the POA (top) and values of the of worst-case and
average regret (bottom) as ϵ increases.

Fig. 1: Braess’s network.

original dual problem Dx⋆ can be written in polynomial-
size using the node-edge formulation as discussed in [18],
[33]. Furthermore, path-based algorithms [38] can be used
to compute the resulting UE assignment in Step 3. Such
algorithms do not require the enumeration of all paths, and
work only with the set of utilized paths for each commodity.
Using the resulting assignment, along with a shortest path
algorithm, one can identify the sets of active paths P̄i for
each commodity and apply the proposed refinement which
only imposes toll constraints on paths in the sets P̄i ∀i =
1, . . . ,K.

IV. NUMERICAL EXPERIMENTS

To illustrate the performance of the proposed algorithm,
we perform a set of numerical experiments on benchmark
networks. In these experiments, we vary the regret bound ϵ
and study the trade-off between the regret and the efficiency
of the resulting assignment.

a) Evaluation metrics: For assignment h̃ (and induced
edge flows x̃) that is the outcome of the proposed algorithm,
we measure the unfairness using the two notions of regret
introduced in definitions II.3 and II.4. We measure the
efficiency of the assignment using the price of anarchy
defined as

POA =
C(x̃)

C(x⋆)
. (14)

In this definition, the numerator is the social cost of the
equilibrium assignment in the tolled network. The social cost
function C(·) is evaluated with respect to the planner’s cost
functions, which can be different from the costs that define
the equilibrium. The theoretical bounds on the POA known
in the literature [9] do not extend to this definition.

b) Networks: We perform experiments on two bench-
mark networks with varying complexities. We start with
the well-studied Braess’s network structure with a single
commodity. In this network, the users’ cost functions are
affine in the flow while the planner’s cost functions are
quadratic as shown in fig. 1a.

The second network is a synthetic simplification of the
Bay Area’s road network with 13 commodities as shown in
fig. 2a. For the users’ cost functions we use the Bureau of
Public Road (BPR) travel time function

le(xe) = te

(
1 + α

(
xe

ce

)β
)
, (15)

where te, ce are the edge’s free-flow travel time (in hours)
and capacity (in veh/hour), respectively, and α = 0.15 and
β = 4 are model parameters. The capacity is set to ce =
1000 for all edges and the values of te are shown in fig. 2a.
The total demand in the network is set to 12000 vehicles
distributed among the 13 commodities. We first consider the
case where the planner has the same cost functions as the
users (i.e. we(xe) = le(xe) for all e ∈ E). We then consider
the case where the planner has affine cost functions that take
the same form as the users’ cost with β = 1.

c) Results: In fig. 1b, we show the POA (top) and the
regret (bottom) in Braess’s network at different values of the
bound ϵ. In this network, the unconstrained SO assignment
has a worst-case regret of 22.0 (which is 0.44 times the travel
cost of the shortest path in the network). The price of anarchy
of the UE assignment (with zero regret) is POA = 2.95 and
it drops rapidly to 1 as epsilon increases. Using the proposed
algorithm, we reduce the POA by more than 50% (to 1.44)
while maintaining a worst-case regret of 13 (which is 0.19
times the travel time of the shortest path).

In this network, the worst-case regret bound is consistently
tight until the optimal assignment is reached. This is because
all the paths are utilized in the resulting assignments. Con-
sequently, it is not necessary to use the proposed constraints
refinement. This, however, is seldom the case in more
realistic networks where the set of utilized paths is typically
a small subset of all paths.

In fig. 2, we show the results for the synthetic Bay Area
network. We note that the worst-case regret is computed
based on paths that carry at least 1% of the demand of
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(a) Synthetic Bay Area network with 10 nodes, 14
edges, and 13 commodities.

(b) Results for the synthetic Bay Area network with the
same cost functions for the users and planner.

(c) Results for the synthetic Bay Area network with
different cost functions for the users and planner.

Fig. 2: Synthetic Bay Area network. In (b) and (c) we report the results of the proposed algorithm with and without the
constraint refinement (CR) procedure. The dashed line associated with each POA plot indicates the outcomes with the lowest
POA achieved up to the current value of ϵ.

the corresponding commodity. This is done to avoid large
regret values experienced by a negligible fraction of the
population (on paths with very small flows). In the first
case where the cost functions are aligned (fig. 2b), the
unconstrained SO assignment has a worst-case regret of 0.6
hours (which is 1.17 times the travel cost of the shortest
path for the commodity that suffers the worst-case regret).
Using our algorithm, we reduce the worst-case regret by 50%
while increasing the social cost by only 2.1% relative to the
unconstrained SO assignment. With a 75% reduction in the
worst-case regret, the social cost increases by 4.3%.

In the second case where the cost functions are different
(fig. 2c), the unconstrained SO assignment has a worst-case
regret of 3.8 hours (which is 2.85 times the travel cost of
the shortest path for the commodity that suffers the worst-
case regret). This is an example of severe unfairness induced
by the SO assignment due to the misalignment between the
users’ and planner’s objectives. While reducing the worst-
case regret by 50% results in a minor increase in the social
cost (< 0.5%), this level of regret remains relatively high.

In fig. 2, we also compare the performance of the proposed
algorithm with and without constraints refinement (CR). For
both cases, the constraints refinement makes the worst-case
regret bounds tighter and achieves more efficient assignments
(with lower POA) for most values of ϵ. In all experiments, the
procedure runs for at most 3 iterations before it converges.

In fig. 2, we observe that the algorithm’s outputs do not
always exhibit a monotonically decreasing POA as the value
of ϵ increases, although a general trend is present. This is
an artifact of the heuristic used to compute the toll vector
at a given regret bound ϵ. To address this, one approach is
to explore a neighborhood around the desired ϵ and identify
the most efficient assignment that respects the regret bound.
In fig. 2, the dashed lines represent the lowest POA values
achieved up to each ϵ, indicating the most efficient outcomes
observed so far while respecting the current regret bound
ϵ. Finally, we note from fig. 2 that the average regret in
the network is significantly lower than the worst-case regret,
especially near the SO assignment.
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V. CONCLUSION

In this work, we formulated the problem of optimal route
recommendations as a constrained system optimum problem.
We present an algorithm for finding toll schemes to improve
an arbitrary social cost function while maintaining an upper
bound on the users’ regret. The proposed approach can be
straightforwardly extended to the setting of heterogeneous
users using the results in [18]. It also allows for defining
different regret tolerances for different commodities in the
network.

Our numerical results show a large gap between worst-
case and average regrets. This motivates us to move beyond
worst-case criteria for user compliance, and extend this work
to study SO assignments with constraints on the average
unfairness, which is not well-studied in the literature.

To gain a better understanding of the problem and to
further investigate the performance of the algorithm there
is a need for a more extensive numerical study with a larger
variety of network structures and cost functions. We also
aim to compare the performance of our proposed algorithm
against other approaches [14], [20].
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