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Abstract—We consider a multi-agent dynamics for distributed
fact-checking that validates the truth of a statement based on
the labels of an ensemble of inexpert agents. Each agent in
the system is modeled as a Binary Symmetric Channel (BSC)
that incorrectly judges the veracity of each true/false statement
with some probability πi ∈ (0, 1) which we refer to as the
unreliability parameter of the agent. We introduce a class of
adaptive estimators for the unreliability parameters of the agents.
For the class of estimators, we provide the necessary conditions
for the adaptive estimator to converge to the true unreliability
parameters. We show that the estimators for ensembles of two
and three agents eventually adhere to a consistent (fixed) update
rule. Furthermore, we also show that, surprisingly, the estimator
for the unreliability parameters based on the hard-decoded
estimate of the statement truths fails to converge to the true
unreliability parameters for any number of agents.

I. INTRODUCTION

As online social networks become increasingly effective in
disseminating information, the task of distinguishing between
true and false information becomes increasingly challenging.
This growing efficiency of information dissemination has led
to a number of studies on how misinformation spreads through
networks [1]–[3], [15], [17]. Conversely, there is growing
interest in the development of automated fact-checkers that can
perform tasks such as document retrieval, evidence extraction,
and claim validation in an automated manner [11], [12], [19].

When there are multiple imperfect fact checkers, deter-
mining the validity of a source based on their responses
becomes a challenge. In such cases, it is important to know
the reliability statistics of the fact checkers in question. As a
result, a natural question arises: in the presence of multiple
imperfect fact checkers, how can we formulate and learn their
reliability over time? We provide a model for distributed fact-
checking using unreliable or imperfect agents. A key step
in our model is to model each imperfect agent as a BSC
channel. Given an estimate of the unreliability parameters, a
weighted thresholding estimator can be used to identify the
validity of the statement [16], [18], [21], where the weights
are the log-odds based on the agents’ unreliability estimates.
We focus on a class of learning rules to estimate the agents’
reliability parameters based on a set of desirable properties.
Our algorithm has the advantage of requiring minimal memory
and having a simplified update rule.

In our problem, we are working with a mixture of product
distributions. Determining the parameters of an identifiable
mixture has been widely researched [4], [6], [7], [9], [10].

This research is supported by AFOSR under the grant FA9550-23-1-0057.
A. Verma and B. Touri are with the ECE Department of University of Califor-
nia San Diego (email: {a1verma, btouri}@ucsd.edu), and S. Mohajer is with
the ECE Department of the University of Minnesota (email: soheil@umn.edu).

The parameter estimation problem typically involves finding a
hypothetical model that produces samples with a distribution
that closely resembles the true model. The problem of dis-
tributed fact-checking parallels the problem of crowdsourcing
labelling tasks popularly studied in the framework of Dawid-
Skene model, introduced through empirical studies in [5]. The
convergence of Dawid-Skene estimator, which is based on the
Expectation-Maximization algorithm, for the offline scenario,
that is when the sequence of statements to be verified are
available as a batch, has been studied in [8], [22].

This work is a continuation of our earlier efforts on laying
framework and studying distributed fake-news detection [20],
[21]. In [21], we presented a framework for the multi-agent
fact-checker system and identified the class of optimal linear-
thresholding estimators for assessing the validity of statements
assuming the full knowledge of agents unreliability. To learn
the agents’ unreliability parameters, in [20], we introduced
a specific online estimator (which in this paper is referred
to as ALL estimator) for the estimation of the unreliability
parameters of the agents and studied the convergence property
of it for two-agent fact-checker system.

The main contributions of this paper involve (i) moving
beyond ALL estimator and proposing a generalized class of
online estimators for the agents’ unreliability parameters. The
estimators are associated with a function, of the agents’ opin-
ions and unreliability estimate. The associated function can be
interpreted as an estimate for the validity of the statements. We
also propose a set of axioms that a natural estimator should
satisfy and hence, we call the class of functions satisfying the
desired properties as the natural functions; (ii) characterizing
natural functions for two and three-agent fact-checker systems;
(iii) proving that a ALL estimator belongs to the class of
natural functions for any n-agent fact-checker system and the
hard-estimator does not belong to this class for any n ≥ 2.
Notation: Let N denote the set of all natural numbers, N0 de-
note N ∪ {0}, and for any n ∈ N, define [n] := {1, 2, . . . , n}.
We denote the set of real numbers by R and the set of all real-
valued n-dimensional vectors by Rn. We use bold letters, such
as x, s, to denote vectors, and regular letters, such as x, s, to
denote scalars in R. We use 1 to denote the all ones vector.
For a scalar a ∈ [0, 1], we use ā to denote 1− a. Throughout
this work, all random variables are defined with respect to an
underlying probability space (Ω,F ,Pr).

II. PROBLEM FORMULATION

Here, we describe the model for our fact-checker setup as
set forth in our earlier works [20], [21] and the problem
of interest in this study. Consider a source that streams a
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sequence of statements. Each statement can be true or false.
We use a hidden variable S(t) ∈ {+1,−1} to denote the
label (true/false) of the statement of discrete-time instance
t ∈ N0. A fact-checker is interested in evaluating the validity
of the statements using imperfect (inexpert) agents. We assume
that the stream symbols are independently and identically
distributed according to the Rademacher distribution, i.e.,
Pr(S(t) = +1) = Pr(S(t) = −1) = 1

2 , for every t ∈ N.
Model for the fact-checker: A fact-checker is an overseer

of multiple agents, where each agent is responsible for testing
the validity of the statements provided to it. For n ∈ N, let [n]
be the set of agents verifying the validity of the statements.
At each time t ∈ N, the agents observe the shared statement
S(t) and output their evaluation regarding the validity of the
statement to the fact-checker, by returning their assessment
about the statement. In other words, if the agent considers the
statement correct it marks the statement as True, otherwise, it
marks it as False. However, due to their limited expertise, the
agents’ assessments may be different from the actual label of
the statements. Mathematically, we model agent i ∈ [n] as a
memoryless Binary Symmetric Channel (BSC) with the error
probability or crossover probability πi ∈ (0, 1), that takes the
input S(t) and outputs Ri(t), where for every s ∈ {+1,−1},
the distribution of the output is given as

Pr(Ri(t) =−s|S(t) = s) = πi = 1−Pr(Ri(t) = s|S(t) = s).

Therefore, agent i ∈ [n] observes the input S(t) at time
t and outputs the assessment Ri(t), which is independent of
the past. Here, πi represents the unreliability of agent i since
the agent misclassifies the statement with probability πi. We
represent the collection of crossover probabilities by π and
the sequence of all agents’ outputs at time t by R(t).

Properties of Output distribution: Let us discuss some
properties of the output distribution.
(1) Because of independency of the statement stream {S(t)},

and since each agent is viewed as a memoryless channel, the
random vector process {R(t)} is an independent process.

(2) At any time t ∈ N, given S(t), the outputs {Ri(t)}ni=1

are independent of each other. Moreover, for any t ∈ N and
for every i ∈ [n], Ri(t) has the Rademacher distribution.

(3) The joint distribution of the output R(t) is given as

Pr(R(t) = r) =
1

2

(
n∏

i=1

π
1+ri

2
i π̄

1−ri
2

i +

n∏
i=1

π
1−ri

2
i π̄

1+ri
2

i

)
,

where r ∈ {+1,−1}n, and x̄ := 1− x.
For brevity, for a given unreliability parameters (vector) of
the agents x ∈ (0, 1)n, we define gx : {+1,−1}n → (0, 1)
to be the distribution of the output vector r ∈ {−1,+1}n,
i.e., gx(r) = Pr(R = r;x). One goal is to obtain a reliable
estimate of the validity of each statement S(t) as a function of
R(t) as well as build an online estimate for the unreliability
parameters π as a function of observations R(0), . . . ,R(t).
In next section, we will introduce a class of online estimators
with properties that are either necessary or desirable for the
adaptive estimation of π.

III. NATURAL ESTIMATORS

First, let us discuss an online estimator for the unreliability
parameters of the agents comprising the fact-checker for any
number of agents n ≥ 2 as introduced in [20]. We have
provided convergence guarantees for this algorithm for n = 2
agents in [20].

Consider the stream of output observed by the fact-checker,
namely, {R(t)}. At any time t ∈ N0, based on earlier output
vectors, the fact-checker has an estimate P (t) of the true
unreliability parameters π and it updates this estimate after
observing the new output R(t+ 1).

Note that if the vector π was known, the fact-checker
could evaluate the likelihood ratio of source being −1 or +1
observing R(t+ 1) as

L∗(t)=
Pr(R(t+ 1)|S(t+ 1) = −1)

Pr(R(t+ 1)|S(t+ 1) = +1)
=

n∏
i=1

(
πi

1− πi

)Ri(t+1)

to decode S(t+ 1) by simply announcing

Ŝ(t+ 1) = 21{L∗(t)<1} − 1,

where 1{·} represents the indicator function. Without the full
knowledge of π however, a natural approach would be to use
its estimate P (t), to compute an approximate likelihood ratio
L(t) of S(t+ 1) = −1 to S(t+ 1) = +1 based on R(t+ 1).
For the received vector R(t + 1) and an estimate P (t) of
agents’ unreliability parameters, we define the likelihood ratio
estimate L(t) by

L(t) :=

n∏
i=1

(
Pi(t)

1− Pi(t)

)Ri(t+1)

. (1)

Using L(t), we can estimate S(t+ 1) by setting

Ŝ(t+ 1) := 21{L(t)<1} − 1 =

{
−1 if L(t) ≥ 1
+1 if L(t) < 1

. (2)

We are ready to discuss the update rule for the unreliabil-
ity parameters’ estimates, given the source symbol estimate
Ŝ(t + 1) and the output vector R(t + 1). The proposed
algorithm/dynamics updates the unreliability parameters as

Pi(t+1)= (1−ηt)Pi(t)+
1

2
ηt

(
L(t)−1

L(t)+1
Ri(t+1)+1

)
, (3)

for all t ∈ N0 and i ∈ [n], with some initial condition
(guess) P (0) ∈ (0, 1)n, where {ηt} is a pre-decided step-size
sequence, and L(t) is given in (1).

One popular choice for the step-size sequence is the har-
monic sequence ηt =

1
t+1 for all t ∈ N0. To grasp the moti-

vation behind the estimator using such a step-size sequence,
examine the scenario when the fact-checker knows the source
sequence symbols {S(t)}.

Since, at any time t ∈ N, the output distribution of the
agents given S(t) is independent of each other, the problem
of estimating the unreliability parameters of the agents is
equivalent to n uncoupled problems of estimating the param-
eter of Bernoulli distribution from its samples. Estimation of
parameters for a Bernoulli distribution from its sample is a
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well-studied problem and a class of estimators effective to
solve it is the add-constant estimator [13]. For the current
setting, for any i ∈ [n], the add-β estimator, where β ≥ 0 for
parameter πi at time t ∈ N is given by

Qi(t) =
β +

∑t
k=1 1{Ri(k) ̸=S(k)}

t+ 2β
. (4)

The estimator makes use of the empirical frequency of agent i
misclassifying the source symbol received and can be ex-
pressed recursively as

Qi(t+ 1) = (1− γt)Qi(t) + γt1{Ri(t+1) ̸=S(t+1)}.

Here, γt := 1
t+1+2β and Qi(0) = 1/2. The convergence

properties of estimator Q(t) for different values of β and
various loss functions are studied in [13]. Different values
of β lead to well-known estimators, including the empirical
estimator (β = 0), the Krichevsky–Trofimov (KT) estimator
(β = 1

2 ), and Laplace estimator (β = 1).
To see the connection to our setting, where the source

symbol is unknown, consider an extreme case where L(t) ≫ 1
(which suggests Ŝ(t + 1) = −1 high confidence). For
Ri(t+ 1) = +1, we get

1

2

(
L(t)− 1

L(t) + 1
Ri(t+ 1) + 1

)
=

L(t)

L(t) + 1
≈ 1,

whereas for Ri(t+ 1) = −1 we have 1
L(t)+1 ≈ 0. Thus,

1

2

(
L(t)− 1

L(t) + 1
Ri(t+ 1) + 1

)
≈ 1{Ri(t+1) ̸=Ŝ(t+1)}.

A similar situation holds when L(t) ≈ 0. Therefore, the update
rule (3) with ηt = 1

t+1 can be viewed as an imperfect and
adaptive version of the add-β estimator (with β = 0).

Note that a central idea in describing the estimator
for the unreliability parameter is to implicitly or explic-
itly define an estimator for the validity of the statements.
Let us define a class of estimators based on functions
B : {−1,+1}n × (0, 1)n → [−1, 1]. The function B(·; ·) rep-
resents a soft estimate of the statement truth S. Using the
function B(·; ·) we can define the adaptive estimator for π as

P (t+ 1)=(1− ηt)P (t)

+ηt
1

2

(
1− B(R(t+ 1);P (t))R(t+ 1)

)
.(5)

Let us look at three examples of the function B(·; ·) repre-
senting different potential estimators.
(1) Approximate Log-Likelihood (ALL) Estimator: If we
use the approximate log-likelihood ratio (1) to get an estimate
of the statement validity we get the ALL estimator resulting
in the online estimator defined through (3). It can be shown
that the B-function for this estimator is given as

BALL(R;x):= tanh

(
n∑

i=1

Ri

2
log

1−xi

xi

)
=

1−L(R;x)

1+L(R;x)
, (6)

where L(R;x) :=
∏n

i=1

(
xi

1−xi

)Ri

is the approximation of
the likelihood ratio.

(2) Hard-Thresholding (HT) Estimator: Instead of using
the approximate likelihood ratio for statement validity we
can use the hard estimator which uses the hard estimate
of statement validity to compute the empirical frequency of
misclassifying the source symbol. In other words, the HT
estimator compares the output of each agent with the estimated
value for S(t + 1) given in (2), if the two values agree, HT
Estimator decreases the agent’s unreliability parameter down,
otherwise, the unreliability parameter will be increased. The
B-function for the HT estimator can be expressed as

BHT(R;x) = sign

(
n∑

i=1

Ri log
1− xi

xi

)
, (7)

where sign(a) := −1{a≤0} + 1{a≥0} for any a ∈ R.
To corroborate the idea that B(·; ·) is an estimate of the

statement validity S, let us introduce the Oracle Estimator

Boracle(R, S;x) = S1. (8)

Using the Boracle-function results in the add-β estimator de-
fined through (4). Note that the function Boracle does not fit in
our class of functions B(·; ·) of interest since it takes the truth
of the statement S as an argument.

IV. RESULTS

In this section, we state the main results of this paper. Let us
start with stating the desirable properties of the function B(·; ·)
that must be satisfied in order to have a feasible estimator of
unreliability parameters that converges to π.

A. Natural Estimators: Axioms and Necessary Conditions

First, let us introduce some conditions/axioms that one
would expect from a reasonable estimator. Later, we will
discuss why such axioms are expected from such an estimator.

Definition 1. For any n ∈ N let us define Cnat
n as the set of

all functions B : {−1,+1}n × (0, 1)n → [−1, 1] that satisfy
Assumption (i) Anti-Symmetry of reliability:

B(R;x) = −B(R;1− x). (9)

Assumption (ii) Anti-Symmetry of Opinions:

B(−R;x) = −B(R;x). (10)

Assumption (iii) Consistency of Estimators:

ER∼gx [R · B(R;x)] = 1− 2x. (11)

We refer to Cnat
n as the set of natural functions for an n-agent

fact-checker system.

Assumption (i) ensures that the estimates of the statement
validity for fact-checker systems with unreliability parameters
π and 1− π take the same absolute value but have different
signs. The assumption is justified as the output of the fact-
checker system with unreliability parameter vector 1 − π
can be seen as the flipped output of a fact-checker system
with unreliability parameter π. Similarly given a fact-checker
system Assumption (ii) ensures that the flipping the output
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of all the agents’ opinion flips the sign of the estimate of
the statement validity. Finally, regarding Assumption (iii),
note that the consistency condition (11) is equivalent to
x = 1

2 (1− ER∼gx [RB(R;x)]), which is what is expected
from the mean-field dynamics of (5), i.e., to have x as
its equilibrium point, given that the agents true reliability
parameter vector is x.

Now we are ready to present our main results. The first
result shows that interestingly the only natural estimator for
two-agent fact-checker system is the ALL estimator (6).

Proposition 1 (Elements of Cnat
2 ). For a two-agent fact-checker

system the class of functions B(·; ·) satisfying Assumption (i)-
Assumption (iii) contains exclusively the function BALL(R;x)
as defined in (6), i.e., Cnat

2 = {BALL(R;x)}.

Remark 1. In [20] we studied the ALL estimator for a two-
agent fact-checker system whose unreliability parameter is π
and we have shown that the estimates {P (t)} converge to the
solution set E of the equation

ER∼gπ [RBALL(R;x)] = 1− 2x. (12)

Note the difference in (11) and (12) lies in the distribution
over which the expectation is taken. Since BALL(·; ·) satisfies
Assumption (iii) we know that π ∈ E . However the set E is
a continuum of points x for which gx(R) = gπ(R) for all
R ∈ {−1,+1}2.

In the following proposition, we identify the functions that
satisfy the properties required by a natural estimator for a
three-agent fact-checker system.

Proposition 2 (Elements of Cnat
3 ). For a three-agent fact-

checker system, the set of natural estimators Cnat
3 consists of

functions B(·; ·) satisfying

B(R;x) = BALL(R;x) +
cxR1R2R3

2gx(R)
, (13)

where BALL(R;x) is the ALL estimator defined in (6) and cx
is any function of the vector x such that cx = −c1−x.

Next, we show that for n ≥ 2 there exists x for which
BHT(·; ·) does not satisfy Assumption (iii).

Proposition 3 (Convergence for Hard-Thresholding Estima-
tor). The function BHT(·; ·) as defined through (7), based on the
hard-thresholding estimator, does not satisfy Assumption (iii).
In other words, BHT(·; ·) ̸∈ Cnat

n for any n ≥ 2.

Recall that the system of equations in Assumption (iii) is
a necessary condition for the estimates {P (t)} to converge
to π. However, for a fact-checker system with unreliability
parameter π, it is also important to identify the solution set
E to the system of equation ER∼gπ [RBALL(R;x)] = 1− 2x.
The solution set E represents the points x ∈ (0, 1)n that could
be the points of convergence for the estimates {P (t)}. In the
following theorem, we identify the set E for a three-agent fact-
checker system to be the set containing the true estimate π,
the ‘symmetric’ estimate 1− π and the degenerate point 1

21.

Theorem 1 (Fixed points of ALL-estimator for three-agent
fact-checker). For a three-agent fact-checker system where
the agents have unreliability parameters πi ∈ (0, 1) \ { 1

2} for
i ∈ [3], the set of solutions of the fixed-point equation
x = 1

2 (1− ER∼gπ [RBALL(R;x)]) is S := {π,1− π, 1
21}.

Note that the set E also represents the set of convergence
for the Dawid-Skene estimator [5] and the Theorem 1 is the
first result to identify the exact set E . The theorem signifies
that for a three-agent system, the only points the Dawid-Skene
and its variants would converge to are the relevant points π,
1− π or the degenerate point 1

21.
In the following theorem, we show that for any n-agent

fact-checker system the adaptive estimator associated with the
ALL estimator satisfies all the desired properties.

Theorem 2. For n ≥ 2, BALL(·; ·), as defined in (6), satisfies
Assumption (i)-Assumption (iii). In other words, BALL ∈ Cnat

n .

V. PROOF OF MAIN RESULTS

In this section, we present the proof of the results discussed
in Section IV. First, we establish a notation to impose an
ordering on the 2n distinct possibilities of the output vector R.

Definition 2 (Notation). Consider the binary representation
(b1, b2, . . . , bn) of N ∈ {0}∪ [2n − 1]. Here b1 represents the
most significant bit and bn the least significant bit. Define the
output vector RN associated with N as

RN :=
(
−1b1 −1b2 . . . −1bn

)⊤
.

Now we provide the proof for the characterization of
elements in Cnat

2 .
Proof of Proposition 1: We show that for any fixed

x ∈ (0, 1)2, if B(·; ·) ∈ Cnat
2 , the values B(R;x) takes for

any vector R ∈ {−1, 1}2 coincides with that of BALL(R;x)
given in (6). To do this, we utilize Assumption (iii).

So, consider an arbitrary point x ∈ (0, 1)2. To
compute E[R1B(R;x)], note that gx(R0) = gx(R3) and
gx(R1) = gx(R2). Therefore,

E[R1B(R;x)] = gx(R0)B(R0;x) + gx(R1)B(R1;x)

− gx(R2)B(R3;x)− gx(R3)B(R2;x)

= gx(R0)B(R0;x) + gx(R1)B(R1;x)

− gx(R0)B(R3;x)− gx(R1)B(R2;x)

= 2gx(R0)B(R0;x) + 2gx(R1)B(R1;x),

where the last step follows from the Assumption (i),
B(−R;x) = −B(R;x). Similarly we have

E[R2B(R;x)] = 2gx(R0)B(R0;x)− 2gx(R1)B(R1;x).

Therefore in order for B(·; ·) to satisfy (11), we need to have(
2gx(R0) 2gx(R1)
2gx(R0) −2gx(R1)

)(
B0

B1

)
=

(
1− 2x1

1− 2x2

)
,
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where Bi = B(Ri;x) for i ∈ {0, 1}. Note that for non-
degenerate x, i.e., if xi ̸∈ {0, 1}, the above matrix is invertible.
Solving the system of linear equations in B0, B1 we get(
B0

B1

)
=

(
1

4gx(R0)
1

4gx(R0)
1

4gx(R1)
− 1

4gx(R1)

)(
1−2x1

1−2x2

)
=

(
1−x1−x2

2gx(R0)
x2−x1

2gx(R1)

)
.

We can simplify B0 as follow

B0 =
1−x1−x2

2gx(R0)
=

(1−x1)(1−x2)−x1x2

(1−x1)(1−x2)+x1x2
=BALL(R0;x).

Similarly we have B1 = BALL(R1;x).
Next, we provide the characterization of elements in Cnat

3 .
Proof of Proposition 2: As in the proof of Proposition 1

we show that for any fixed x ∈ (0, 1)3, B(·; ·) ∈ Cnat
3 iff

the value B(R;x) takes for any vector R ∈ {−1, 1}2
satisfies (13). Consider an arbitrary point x ∈ (0, 1)3. To
compute ER∼gx [RiB(R;x)] note that gx(Ri) = gR7−i for
any i ∈ {0, 1, 2, 3}. Similar to the proof of Proposition 1,
we can express the equations in terms of the values of the
functions at Ri for i ∈ {0, 1, 2, 3} through the equation
HB = 1− 2x, where

H =

2gx(R0) 2gx(R1) 2gx(R2) 2gx(R3)
2gx(R0) 2gx(R1) −2gx(R2) −2gx(R3)
2gx(R0) −2gx(R1) 2gx(R2) −2gx(R3)


and B =

(
B0 B1 B2 B3

)⊤
. Here Bi = B(Ri;x) for

i ∈ {0, 1, 2, 3}. The matrix H in one of its row echelon form
can be expressed as2gx(R0) 2gx(R1) 2gx(R2) 2gx(R3)

0 −2gx(R1) 0 −2gx(R3)
0 0 −2gx(R2) −2gx(R3)

 .

Therefore, we know that H is a matrix with rank 3 if
gx(Ri) ̸= 0 for i ∈ {0, 1, 2, 3}. By the rank-nullity theorem
[14, eq.(4.4.15)] the dimension of the null-space of H is 1.
Therefore, the nullspace of H is given by span(z), where

z =
(

1
2gx(R0)

− 1
2gx(R1)

− 1
2gx(R2)

1
2gx(R3)

)⊤
.

Therefore, the solution set for HB = 1 − 2x is given by
{b ∈ R4 : b = B∗ + cz}, where B∗ is one solution to the
system of linear equation HB = 1− 2x. We can choose

B∗ =


(1−x1)(1−x2)(1−x3)−x1x2x3

2gx(R0)
(1−x1)(1−x2)x3−x1x2(1−x3)

2gx(R1)
(1−x1)x2(1−x3)−x1(1−x2)x3

2gx(R2)
(1−x1)x2x3−x1(1−x2)(1−x3)

2gx(R3)

 , (14)

whose i-th element is in fact (B∗)i = BALL(Ri−1;x).
Therefore the functions satisfying Definition 1 take the form

B(R;x) = BALL(R;x) +
cxR1R2R3

2gx(R)
,

where cx is an arbitrary function of x. Furthermore, to ensure
B(R;x) = −B(R; 1− x), we need to have

BALL(R;x)+
cxR1R2R3

2gx(R)
= −BALL(R; 1− x)− c1−xR1R2R3

2g1−x(R)
.

As gx(R) = g1−x(R) and BALL(R;x) = −BALL(R; 1− x),
the above equality holds iff cx = −c1−x.

Proof of Proposition 3: From Proposition 1, it readily
follows that BHT(·; ·) ̸∈ Cnat

2 for a two-agents fact-checker
system. For any n ≥ 2, we show that there exists x ∈ (0, 1)n

such that BHT(·; ·) does not satisfy Assumption (iii).
Consider x∗ ∈ (0, 1)n such that

log
1− x∗

1

x∗
1

>

n∑
i=2

∣∣∣∣log 1− x∗
i

x∗
i

∣∣∣∣ . (15)

Then, for any R ∈ {−1,+1}n, we have BHT(R;x∗) = R1.
Therefore E[R1BHT(R;x)] = E[R2

1] = 1. However
1− 2x∗

1 < 1. So, BHT(R;x∗) does not satisfy (11), at least
for vectors x satisfying (15).

In order to prove Theorem 1 for a, b, c ∈ (0, 1), we define
a function h(a, b, c) = abc + āb̄c̄. For convenience, with an
abuse of notation, we also define h(a, b) = ab+ āb̄.

Proof of Theorem 1: Using the fact that xi ̸∈ {0, 1} for
i ∈ [3], we can perform algebraic manipulations and express
the fixed-point equation x = 1

2 (1− ER∼gπ [RBALL(R;x)])
as Xu = 0, where

X =

x2+x3−1 1−x2−x3 x3−x2 x2−x3

x3+x1−1 x3−x1 1−x1−x3 x1−x3

x1+x2−1 x2−x1 x1−x3 1−x1−x2


and u = (u0, u1, u2, u3)

⊤
, with u0 = gπ(R0)

gx(R0)
, u1 = gπ(R3)

gx(R3)
,

u2 = gπ(R2)
gx(R2)

, and u3 = gπ(R1)
gx(R1)

.
Summing equations in Xu = 0 and multiplying by 1

2 , we get(
3

2
− (x1 + x2 + x3)

)
u0 =

(
1

2
− x1

)
u1 (16)

+

(
1

2
− x2

)
u2 +

(
1

2
− x3

)
u3.

Case 1: Consider the case where x1 + x2 + x3 ̸= 3
2 .

For i ∈ [3] define wi =
1
2−xi∑3

j=1
1
2−xj

. Then we have

u0 = w1u1 + w2u2 + w3u3, (17)

where
∑3

i=1wi=1. Replacing u0 from (17) in Xu=0, we get∑3

j=1
wjuj − ui =

wi⊕2 − wi⊕1

wi⊕2 + wi⊕1
(ui⊕2 − ui⊕1), (18)

for i ∈ [3]. Note that, here, ⊕ represents summation modulo 3.
We can rewrite the above system as

ui = γiui⊕1 + (1− γi)ui⊕2, i ∈ [3], (19)

where coefficients γi are given by

γi =
wi⊕1(wi⊕1 + wi⊕2) + (wi⊕2 − wi⊕1)

(1− wi)2
, i ∈ [3]. (20)

The system of equation (19) is equivalent to

(1− γi(1− γi⊕1))(ui − ui⊕2) = 0, i ∈ [3]. (21)

We note that, for any i ∈ [3], (1−γi(1−γi⊕1)) = 1 holds iff
w1w2w3 =0. Thus, the system of equations in (21) holds only
if either w1w2w3 =0 (Case 1-1) or u1 = u2 = u3 (Case 1-2) .
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Case 1-1: Note that w1w2w3 = 0 implies that xi = 1
2

for some i ∈ [3]. Let us consider the case with w1 = 0, or
equivalently x1 = 1

2 . The system of equations Xu = 0 can
then be simplified to

(x2 + x3−1)
h(π1,π2,π3)−h(π̄1,π2,π3)

h(π1,π2,π̄3)−h(π1,π̄2,π3)
=

h(x2,x3)

h(x2,x̄3)
(x3−x2),(

x3 −
1

2

)
(u0 + u1 − u2 − u3) = 0, (22)(

x2 −
1

2

)
(u0 + u1 − u2 − u3) = 0.

It is clear that x = 1
21 is a feasible solution for (22). In the

following, we prove that (22) has no other solution.
Let x ̸= 1

21, and without loss of generality, x2 ̸= 1
2 . Hence,

we should have u0 + u1 = u2 + u3. However, we have
u0 + u1 = 2h(π2,π3)

h(x2,x3)
and u2 + u3 = 2h(π2,π̄3)

h(x2,x̄3)
. Therefore,

u0 + u1 = u2 + u3 holds if and only if

h(π2, π3) = h(x2, x3). (23)

Plugging (23) in (22), we arrive at (x2+x3−1) = c̃(x3−x2),
or equivalently,

x2 =
x3(c̃− 1) + 1

1 + c̃
, (24)

where

c̃ =
h(π2, π3)

h(π2, π̄3)

(h(π1, π2, π̄3)− h(π1, π̄2, π3))

h(π1, π2, π3)− h(π̄1, π2, π3)

=
h(π2, π3)

h(π2, π̄3)

(
π2 − π3

π2 + π3 − 1

)
=

h(π2, π3)

h(π2, π̄3)

(
π2 − π3

π2 − π̄3

)
.

Plugging (24) into (23), we get

0= h(x2, x3)−h(π2, π3) = 2x2x3−x2 − x3 + 1− h(π2, π3)

=
c̃− 1

2(c̃+ 1)
(2x3 − 1)2+

1

2
−h(π2, π3). (25)

We know h(π2, π3) =
1
2 (2π2−1)(2π3−1)+ 1

2 = 2π̃2π̃3+
1
2 ,

where π̃i =
1
2 − πi ∈ (− 1

2 ,
1
2 ) for i ∈ [3]. Moreover, we have

c̃− 1

c̃+ 1
=

h(π2, π3)(π2 − π3)− (1− h(π2, π3))(π2 + π3 − 1)

h(π2, π3)(π2 − π3) + (1− h(π2, π3))(π2 + π3 − 1)

=
−4π̃2

2 π̃3 + π̃3

4π̃2π̃2
3 − π̃2

= − π̃3(4π̃
2
2 − 1)

π̃2(4π̃2
3 − 1)

. (26)

Using this in (25), we arrive at

0 = −1

2

π̃3(4π̃
2
2 − 1)

π̃2(4π̃2
3 − 1)

(2x3 − 1)2 − 2π̃2π̃3

= − π̃3

2π̃2

(
4π̃2

2 − 1

4π̃2
3 − 1

(2x3 − 1)2 + 4π̃2
2

)
.

This last equation holds if and only if π̃3 = 0. Plugging this
in (26) implies c̃ = 1, which together with (24) leads to
x2 = 1

2 , which is a contradiction. Hence, the only solution
for Case 1-1 is x ̸= 1

21.
Case 1-2: Next, we study the case of u1 = u2 = u3,

which together with (16) leads to u0 = u1 = u2 = u3 = K
for some K ∈ R. Equivalently, we get gπ(Ri) = Kgx(Ri)

for i ∈ [3] ∪ {0}. Summing up the equations over i, we get
K = 1, since gπ and gx are probability mass functions.
Therefore we get gπ(Ri) = gx(Ri) for i ∈ [3] ∪ {0}.

From the definition of the function h we have

h(x1, x2, x3)−h(x1, x2, x̄3) = (1−2x3)(1−x1−x2),

h(x1, x2, x3)−h(x1, x̄2, x3) = (1−2x2)(1−x3−x1), (27)
h(x1, x2, x3)−h(x̄1, x2, x3) = (1−2x1)(1−x2−x3).

Using (27) and gx(R0) − gx(Ri) = gπ(R0) − gπ(Ri) for
i ∈ [3] we get

π̃1(π̃2 + π̃3)

x̃1(x̃2 + x̃3)
=

π̃2(π̃3 + π̃1)

x̃2(x̃3 + x̃1)
=

π̃3(π̃1 + π̃2)

x̃3(x̃1 + x̃2)
, (28)

where x̃i = 1
2 − xi and π̃i = 1

2 − πi for i ∈ [3]. Further
simplifying we get the following set of equations

x̃1x̃2 = π̃1π̃2, x̃2x̃3 = π̃2π̃3, x̃3x̃1 = π̃3π̃1,

whose solution is (x̃1, x̃2, x̃3) = ±(π̃1, π̃2, π̃3). Equivalently,
the solution for u0 = u1 = u2 = u3 is x = π or 1− π.
Case 2: x1+x2+x3 = 3

2 . Then, with x̃i =
1
2 −xi for i ∈ [3],

the case condition is equivalent to x̃1 + x̃2 + x̃3 = 0. Using
this fact in (16), we get x̃1u1 + x̃2u2 + x̃3u3 = 0. Thus, the
equations in Xu = 0 can be simplified to

x̃i

(
4ui −

∑3

j=0
uj

)
= 0, i ∈ [3]. (29)

The system in (29) can be satisfied only if one of the following
two scenarios holds: (i) if x̃i = 0 or equivalently, xi =

1
2 for

some i ∈ [3]. This case has been discussed under Case 1-1, and
it is shown that x = 1

21 is the only solution; (ii) alternatively,
if x̃1x̃2x̃3 ̸= 0, then for every i ∈ [3], we should have

ui =

∑3
j=0 uj

4
. (30)

This set of equations leads to u0 = u1 = u2 = u3, which is
studied under Case 1-2. It is shown that x = π and 1−π are
the only solutions for Case 1-2. This concludes the proof.

Proof of Theorem 2: For any m ∈ N, for x ∈ (0, 1)m

and R ∈ {−1,+1}m define Π(R;x) as

Π(R;x) :=

m∏
i=1

(
xi1{Ri=1} + (1− xi)1{Ri=−1}

)
.

Note that summing over all possible realizations of R we get∑
R∈{−1,+1}m

Π(R;x) =

m∏
i=1

(xi + (1− xi)) = 1.

For any x ∈ (0, 1)n and any R ∈ {−1,+1}n we know that

Rigx(R)BALL(R;x) =
1

2
(Π(−RiR;x)−Π(RiR;x))

=
1

2
((1− xi)Π(−R−i;x−i)− xiΠ(R−i;x−i)) ,

where x−i ∈ (0, 1)n−1 and R−i ∈ {−1,+1}n−1 are obtained
by removing the ith element in x and R, respectively.

6049



Therefore, for any i ∈ [n] we have

E[RiBALL(R;x)] =
∑

R∈{−1,+1}n

gx(R)RiBALL(R;x)

=
1

2

∑
R∈{−1,+1}n

(1− xi)Π(−R−i;x−i)− xiΠ(R−i;x−i)

= (1− xi)− xi = 1− 2xi,

which concludes the proof.
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