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Abstract— Real-world systems are often characterized by
high-dimensional nonlinear dynamics, making them challenging
to control in real time. While reduced-order models (ROMs)
are frequently employed in model-based control schemes, di-
mensionality reduction introduces model uncertainty which can
potentially compromise the stability and safety of the original
high-dimensional system. In this work, we propose a novel
reduced-order model predictive control (ROMPC) scheme to
solve constrained optimal control problems for nonlinear, high-
dimensional systems. To address the challenges of using ROMs
in predictive control schemes, we derive an error bounding
system that dynamically accounts for model reduction error.
Using these bounds, we design a robust MPC scheme that
ensures robust constraint satisfaction, recursive feasibility, and
asymptotic stability. We demonstrate the effectiveness of our
proposed method in simulations on a high-dimensional soft
robot with nearly 10,000 states.

I. INTRODUCTION

High-dimensional dynamical systems, e.g., derived from
continuum mechanics, arise in various fields of science
and engineering, including robotics, aerospace, chemical
engineering, and neuroscience. In many of these applica-
tions, ensuring the safe operation of these systems is of
utmost importance. Unfortunately, the high dimensionality
of these models poses significant computational challenges
when used in online optimal control schemes that enforce
safety constraints, such as model predictive control (MPC)
[1]. Model reduction is an effective approach to mitigate
this computational bottleneck [2] and enable real-time con-
trol. The problem is that model uncertainty stemming from
dimensionality reduction can cause the controlled high-
dimensional system to violate critical constraints, ultimately
compromising stability and safety.

Statement of Contributions: In this work, we propose
a new method for real-time control of high-dimensional,
nonlinear systems that robustly satisfies constraints. We
leverage recent advancements in model reduction, namely
Spectral Submanifolds (SSMs) to extract low-dimensional
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Fig. 1. We characterize the model reduction error of ROMs on invariant
manifolds by decomposing the error into off-manifold (xn − V⊤

n w(xr))
and on-manifold components (xr − zr). We derive scalar error dynamics
s and δ, which upper-bound the off-manifold and on-manifold error,
respectively.

models suitable for real-time control. Our contributions are
three-fold:

(i) We quantify the modelling error due to SSM-based
model reduction as depicted in Figure 1. We derive an error
bounding dynamical system of the model reduction error for
reduced-order models (ROMs) that evolve on an invariant
manifold of the autonomous system.

(ii) We leverage these error bounds to design a robust, non-
linear reduced order model predictive control (RN-ROMPC)
scheme that guarantees stability and robust constraint satis-
faction.

(iii) Lastly, we validate our approach via simulation on a
9768-dimensional soft robot finite element model.

Related Work: Nonlinear model reduction provides a rig-
orous framework for constructing low-dimensional surrogate
models for control. While these techniques have been applied
successfully in various practical applications [3], [4], it is
generally difficult to guarantee that the control scheme will
be robust to model reduction error for generic classes of
dynamical systems. Although several efforts have derived
error bounds for ROMs [5]–[7], they are often restricted
to a limited range of applicable systems or require specific
system structures that are difficult to verify. Furthermore,
none of these approaches leverage their error bounds to
achieve robust performance under constraints.

Motivated by the successful application of SSMs to non-
linear model reduction and control [8], we derive predic-
tion error bounds for a general class of nonlinear systems.
Specifically, we leverage the invariance property of SSMs to
construct stable error bounds and design a control scheme
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that guarantees robust constraint satisfaction under model
reduction error. While robust reduced order model predictive
control (ROMPC) schemes have been established for linear
systems [9]–[11], we extend this line of work to develop a ro-
bust nonlinear ROMPC scheme. While there exist nonlinear
robust MPC schemes [12]–[14], to the best of our knowledge,
our effort constitutes the first line of work towards designing
robust MPC schemes for nonlinear ROMs.

II. PRELIMINARIES

Notation: We denote ∂f
∂x

:= f ′(x) as the Jacobian of
a function f with respect to x. The vector 2-norm and
its induced matrix norm are denoted by ∥·∥ while Re(z)
denotes the real part of a complex number z. For a Lipschitz
continuous function f : Rn → Rm, Lf > 0 denotes its
Lipschitz constant, i.e., ∥f(x)− f(z)∥ ≤ Lf ∥x− z∥. Lastly,
alg(λ) and geom(λ) denote the algebraic and geometric
multiplicity of an eigenvalue λ, respectively. For brevity, we
refer the reader to proofs of the lemmas and Proposition 2
in the Appendix of the extended version: https://arxiv.
org/abs/2309.05746

A. System Dynamics
We consider the following high-dimensional nonlinear

system with an equilibrium point at the origin
ẋ(t) = Ax(t) + fnl(x(t)) +Bu(t) + d(t), (1)

where nf ≫ 1 and m are the dimensions of the full state
and the input, respectively, A ∈ Rnf×nf and fnl : Rnf →
Rnf represent the linear and nonlinear parts of the dynamics,
respectively, while B ∈ Rnf×m represents the linear control
matrix. The disturbance term d(t) is assumed bounded i.e.,
∥d(t)∥ ≤ d̄ for all t ≥ 0. We require that A and fnl satisfy
the following assumptions.

Assumption 1 (Asymptotic Stability and Semi-Simplicity).
A is a Hurwitz matrix, i.e., each eigenvalue λi of A
has Re(λi) < 0. Also, A is semi-simple i.e., alg(λi) =
geom(λi).

Assumption 2 (Analytic Nonlinearities). The nonlinear
term, fnl ∈ C∞ satisfies fnl(0) = 0, f ′nl(0) = 0 and is
Lfnl

-Lipschitz.

Assumption 1 requires that the origin is open-loop sta-
ble1 while semi-simplicity implies that A can be uniquely
decomposed into a set of real, unique eigenspaces (cf. [15],
[16]). Assumption 2 requires that the system exhibit smooth
behavior2. These assumptions generally hold for many physi-
cal dissipative systems of interest, including soft robots, fluid
flow, and chemical reactions.

B. Problem Statement
In this work, we consider the control of system (1) subject

to constraints on its inputs, u, and performance variables,
y = Cx ∈ Rny , of the form

y(t) ∈ Y, u(t) ∈ U , t ≥ 0,

1More generally, this can be relaxed to stabilizability where a controller
can be designed to stabilize the origin.

2Recent work [17] relaxes this assumption for mild discontinuities such
as those due to dry friction, etc.

where Y and U are compact sets. The performance constraint
set Y is defined as

Y := {y ∈ Rny | hj(y) ≤ 0, j = 1, . . . , nh} (2)
where nh ∈ N represents the number of scalar constraints
and each hj is Lhj -Lipschitz. We consider the problem
of controlling System (1) to track dynamic trajectories
(ȳ(t), ū(t)) while satisfying the aforementioned constraints:

min
u(·),x(·)

∫ ∞

0

ℓ(y(τ),u(τ))dτ

s.t. System (1),
y = Cx,

y(t) ∈ Y, u(t) ∈ U .
where ℓ is a positive definite stage cost with respect to y
and u.

Unfortunately, the resulting optimal control problem
(OCP) is computationally intractable since nf ≫ 1. We
apply model reduction using SSMs to approximate Sys-
tem (1) with a low-dimensional surrogate model, then rea-
son about the resulting model reduction error to design a
computationally-tractable robust MPC scheme that ensures
the high-dimensional system satisfies constraints in closed-
loop. In the following, we summarize results on the existence
of SSMs for System (1) and define some of its properties.

C. SSM Basics
Consider the autonomous part of System (1), i.e., d ≡ 0,

u ≡ 0,
ẋ(t) = Ax(t) + fnl(x(t)), (3)

where each eigenvalue λj of A corresponds to an eigenspace
Ej ⊂ Rnf spanned by its associated (generalized) eigen-
vectors. These eigenspaces are invariant subspaces for the
linearized system.

Since A is semi-simple, it is diagonalizable, and we may
decompose it in block-diagonal form with real eigenvectors
[18]. Without loss of generality and for ease of exposition,
we make the following assumption:

Assumption 3 (Modal Coordinates). System (1) is in modal
coordinates such that A is in real block-diagonal form whose
blocks are ordered from slowest to fastest modes.

We emphasize that Assumption 3 is made to simplify the
exposition and, in practice, we do not need to diagonalize
the full system (1) as we will discuss in Section V-B.

We now define the matrix V =
[
Vr,Vn

]
∈ Rnf×nf where

Vr =
[
I⊤n×n,0

⊤
nf−n×n

]⊤
and Vn =

[
0⊤
n×n, I

⊤
nf−n×n

]⊤
.

Under Assumption 3, the columns of Vr represent the
eigenspace spanned by the n slowest modes, which we
denote as the spectral subspace, E, while the columns of Vn

represent its complement. The spectrum of E is denoted ΛE ,
while the outer remaining eigenvalues of A are collected in
the spectrum Λout. By Assumption 3, the linear matrix takes
the form A = diag(Ar,An), where Ar = V⊤

r AVr and
An = V⊤

n AVn. Thus, we always have that
V⊤

r Vr = I, V⊤
n Vr = 0,VrV

⊤
r +VnV

⊤
n = I, (4)

V⊤
r AVn = 0,V⊤

n AVr = 0. (5)
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Recent developments in nonlinear dynamics have shown
the existence and uniqueness of smooth invariant structures
for system (3). These structures, known as SSMs, are the
nonlinear extensions of the spectral subspaces of the lin-
earization of (3). The SSM corresponding to a spectral
subspace E can be defined as follows.

Definition 1. An autonomous SSM W(E) corresponding
to a spectral subspace E is an invariant manifold of the
autonomous part (3) of the nonlinear system (1), i.e., when
u ≡ 0, d ≡ 0,

x(0) ∈ W(E) =⇒ x(t) ∈ W(E), ∀t ∈ R,
such that,

1) W(E) is tangent to E at the origin and has the same
dimension as E,

2) W(E) is strictly smoother than any other invariant
manifold satisfying condition 1 above.

SSMs as described in Definition 1 are guaranteed to exist
and to be unique as long as an additional non-resonance
assumption holds.

Assumption 4 (Non-Resonance Condition). The spectrum,
ΛE , has no eigenvalue that is an integer combination of any
eigenvalues in the outer spectrum Λout (see [15], [19] for
details).

This assumption ensures that the nonlinear interactions
between the slow modes in ΛE and fast modes in Λout are
weak and that the ROM captures all strongly interacting
modes. In general, it is generically satisfied, and we could
also enlarge E to contain all resonant modes of A.

SSMs are effective for model reduction (for d ≡ 0, u ≡ 0)
because trajectories of the full system are exponentially
attracted to the manifold and synchronize with the slow
dynamics evolving on it [15].

D. Reduced Order Model
We now construct a ROM on the SSM, W(E), corre-

sponding to the n-slowest decaying modes.3 We parameterize
W(E) as a graph tangent to its spectral subspace, E, at the
origin. Following the graph-style approach of [19], our SSM
parametrization is

xr(t) = v(x(t)) := V⊤
r x(t),

x(t) = w(xr(t)) := Vrxr(t) +wnl(xr(t)),
(6)

where the mapping v projects the full state x onto the
reduced coordinates in E, while the parameterization w maps
the reduced state xr onto the SSM W(E) in the full state
space.

By Definition 1, the graph parametrization (6) satisfies
invertibility

x = w(v(x)) and xr = v(w(xr)), (7)
and invariance, as stated in Definition 1,

Aw(xr) + fnl(w(xr)) = w′(xr)ẋr, (8)
where ẋr is evaluated for the autonomous dynamics (d ≡ 0,
u ≡ 0) of the reduced system.

3We assume our constraint set Y is chosen non-restrictive enough such
that {Cx | x ∈ W(E)} ∩ Y ≠ ∅.

Using this, we now construct the reduced-order au-
tonomous dynamics on W(E). These reduced dynamics
approximate the behavior of the autonomous system (3)
using the slowest modes xr.

Lemma 1. The reduced-order autonomous dynamics of
System (3) on the SSM, W(E), are

ẋr(t) = r(xr(t)) := Arxr(t) + rnl(xr(t)). (9)

Remark 1. The fast modes denoted by xn on the manifold
reduce to xn = V⊤

n w(xr)
(4)
= V⊤

n wnl(xr).

We leverage the fact that System (1) is smooth (see As-
sumption 2) to pick an appropriate functional form for wnl

and rnl. In this work, we construct these mappings by Taylor
series expansion which naturally leads to the following
assumption on the form of wnl.

Assumption 5 (Smoothness of Parameterization). The non-
linear term in the parameterization, wnl is continuously
differentiable and Lwnl

-Lipschitz.

Note that from Assumptions 2 and 5 we get that rnl is
Lrnl -Lipschitz, with Lrnl ≤ Lfnl (1 + Lwnl

). Equipped with
these properties, we can now derive rigorous prediction error
bounds for the reduced-order dynamics.

III. PREDICTION ERROR BOUNDS

In this section, we derive prediction error bounds for the
ROM. Specifically, we introduce the effect of input and
disturbance and decompose the error dynamics into off-
manifold and on-manifold components as shown in Figure 1.
We then use this decomposition to construct scalar error
dynamics, which give bounds on the prediction error of the
ROM.

In the following lemmas, we derive properties of the SSM
parameterization (6) and reduced dynamics (9) that will be
useful to construct the form of the scalar error dynamics.

Lemma 2. For all xr ∈ Rn, it holds that:
VnV

⊤
n wnl(xr) = wnl(xr), (10a)

V⊤
n w

′
nl(xr)r(xr) = V⊤

n (Awnl(xr) + fnl(w(xr))) . (10b)

Lemma 2 allows us to derive the dynamics of the true sys-
tem (1) in the modal coordinates defined by V =

[
Vr,Vn

]
.

This is done in the following lemma, where we decompose
the dynamics into its slow and fast components.

Lemma 3. In modal coordinates, we can represent the
controlled true system dynamics (1) as follows

ẋr = r(xr) +V⊤
r (e(x) +Bu+ d)

ẋn = Anxn +V⊤
n (fnl(x) +Bu+ d)

(11)

where e(x) := fnl(x)− fnl(w(xr)).

Lemma 3 puts the dynamics of System (1) in a convenient
form for analysis as it reveals how the error and disturbances
contribute to dynamics on and off the manifold. For example,
notice that there is a form of residual error, e(x), in the
reduced dynamics. If the true system remains on the manifold
for all time i.e., x = w(xr), then e(x) is exactly zero.
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If the true system is ever off the manifold (as shown in
Figure 1), then the effect of the faster modes, xn, results
in a disturbance in the reduced coordinates. In this case,
the dynamics of the true system are no longer synchronized
with the reduced dynamics on the manifold. Additionally, the
effect of control acts as a disturbance that, in some directions,
pushes the true system off the manifold. Figure 1 depicts this
interplay between these reduced and orthogonal dynamics.

Using this insight, we now introduce a linear input to
Equation (9) and seek to characterize the error dynamics
of the controlled prediction model. We define the nominal
dynamics by ignoring the disturbance d and assuming that
x = w(xr), resulting in the prediction model

żr :=Arzr + rnl(zr) +Bru, (12)
where zr is the prediction of xr used in MPC, while xr

denotes the (unknown) true reduced state, as shown in
Figure 1. The matrix Br := V⊤

r B is the projection of
the linear control matrix onto the reduced coordinates while
Bn := V⊤

n B is the projection of the control onto the
orthogonal space.

To construct tubes around the nominal dynamics, we must
upper bound the error e(x).

Lemma 4. The residual term in the orthogonal direction
e(x) defined in (11) is upper bounded by the distance
between the orthogonal component of the full state and its
corresponding orthogonal component on the manifold,

∥e(x)∥ ≤ Lfnl

∥∥xn −V⊤
n wnl(xr)

∥∥ , (13)
where Lfnl

is the Lipschitz constant of fnl(x) introduced in
assumption 2.

The off-manifold error dynamics between our control
prediction model (12) and the true system (1) is given by
the following lemma.

Lemma 5. Denote the difference between the orthogonal
component of the full state x and its corresponding fast state
on the manifold as

x̃n := xn −V⊤
n wnl(xr). (14)

The off-manifold error dynamics then take the form
˙̃xn = Anx̃n +V⊤

n

(
I−w′

nl(xr)V
⊤
r

)
(Bu+ e(x) + d) .

(15)

Notice that the combined effect of error, input, and distur-
bance, i.e., Bu+e(x)+d, dictate how much the true system
deviates from the manifold. In the linear case (w′

nl(xr) = 0)
the error term only affects the system in the direction V⊤

n ,
orthogonal to the spectral subspace. The nonlinear case is
similar but with an added term (−w′

nl(xr)V
⊤
r ) that accounts

for the curvature of the manifold.
We can now derive scalar error dynamics, which bound

both off and on-manifold errors. This construction allows
us to dynamically change the size of the uncertainty tube
around our predictions commensurate with the magnitudes
of the input, error, and disturbance.

Proposition 1. Consider any initial condition x(0) ∈ Rnf ,
zr(0) ∈ Rn, s(0), δ(0) ≥ 0, such that ∥x̃n(0)∥ ≤ s(0) and

∥xr(0)− zr(0)∥ ≤ δ(0). Then, for any input signal u(t) and
any disturbance d(t), ∥d(t)∥ ≤ d, it holds that

∥x̃n(t)∥ ≤ s(t), t ≥ 0, (16a)
∥xr(t)− zr(t)∥ ≤ δ(t), t ≥ 0, (16b)

for trajectories xr(t), zr(t), x̃n(t) satisfying (11), (12), and
(15) respectively, and s(t), δ(t) satisfying

ṡ =λAns+ (1 + Lwnl
)(Lfnls+ d̄) (17a)

+ ∥Bnu∥+ Lwnl
∥Bru∥

δ̇ =(λAr
+ Lrnl)δ + Lfnls+ d̄. (17b)

Proof. First, notice that x̃⊤
n Anx̃n = 1

2 x̃
⊤
n (An + A⊤

n )x̃n ≤
λAn

∥x̃n∥2, where λAn
is the real part of the slowest eigen-

value of An. Similarly, we have (xr − zr)
⊤Ar(xr − zr) ≤

λAr ∥xr − zr∥2, where λAr is the real part of the largest
eigenvalue of Ar.

Assume for simplicity that x̃n ̸= 0, then we have that
d

dt

∥∥xn −V⊤
n wnl(xr)

∥∥ =
x̃⊤
n
˙̃xn

∥x̃n∥
(15)
=

x̃⊤
n

∥x̃n∥
(
Anx̃n +V⊤

n

(
I−w′

nl(xr)V
⊤
r

)
(Bu+ e(x) + d)

)
≤λAn ∥x̃n∥+

∥∥V⊤
n

(
I−w′

nl(xr)V
⊤
r

)
(e(x) + d)

∥∥
+

∥∥V⊤
n

(
I−w′

nl(xr)V
⊤
r

)
Bu

∥∥
≤λAn ∥x̃n∥+

∥∥I−w′
nl(xr)V

⊤
r

∥∥ ∥e(x) + d∥
+ ∥Bnu∥+ ∥w′

nl(xr)∥ ∥Bru∥
(13)
≤ λAn ∥x̃n∥+ (1 + ∥w′

nl(xr)∥) (Lfnl ∥x̃n∥+ ∥d∥)
+ ∥Bnu∥+ ∥w′

nl(xr)∥ ∥Bru∥
≤λAn

∥x̃n∥+ (1 + Lwnl
)(Lfnl ∥x̃n∥+ d̄)

+ ∥Bnu∥+ Lwnl
∥Bru∥

where the third line is due to Cauchy-Schwarz. The fourth
line uses the fact that V is orthonormal, so

∥∥V⊤
n

∥∥ = 1 and∥∥V⊤
r

∥∥ = 1, while the last inequality is due to Assumption 5.
Let s(t) be the solution of (17a) with s(0) ≥ ∥x̃n(0)∥. By

the comparison lemma [20, Lemma 3.4],
∥x̃n(t)∥ ≤ s(t), t ≥ 0.

Again, assume for simplicity that xr(t)− zr(t) ̸= 0, then,
the scalar error dynamics on the manifold can be derived as

d

dt
∥xr − zr∥ =

(xr − zr)
⊤(ẋr − żr)

∥xr − zr∥
(11), (12)
=

(xr − zr)
⊤

∥xr − zr∥
(Ar(xr − zr)

+rnl(xr)− rnl(zr) +V⊤
r (e(x) + d)

)
≤λAr

∥xr − zr∥+ Lrnl ∥xr − zr∥+
∥∥V⊤

r

∥∥ ∥e(x) + d∥
(13)
≤ (λAr

+ Lrnl) ∥xr − zr∥+ Lfnl ∥x̃n∥+ ∥d∥
(16a)
≤ (λAr

+ Lrnl) ∥xr − zr∥+ Lfnls+ d̄.

Similarly, let δ(t) be a solution of (17b) with δ(0) ≥
∥xr(0)− zr(0)∥. By the comparison lemma,

∥xr(t)− zr(t)∥ ≤ δ(t), t ≥ 0.

These dynamic uncertainty tubes allow us to design MPC

4801



schemes that are less conservative than robust schemes which
rely on worse-case analysis, such as rigid-tube MPC.

In the following sections, we will use s and δ as constraint
tightening tubes to ensure constraint satisfaction. The tube
dynamics (17a) and (17b) can be made stable by constraining
the system sufficiently close to the origin until the Lipschitz
constants satisfy λAn

+ Lfnl
(1 + Lwnl

) ≤ 0 and λAr
+

Lrnl
≤ 0. In deriving (17a), we separated the input into its

Bnu and Bru components to exploit the known directional
information and get a tighter bound.

IV. ROBUST MPC

In the following, we use the tube dynamics (Prop. 1) to
derive a robust MPC formulation. To this end, the following
proposition shows we can ensure constraint satisfaction by
posing more restrictive tightened constraints on the predic-
tion state zr.

Proposition 2. Suppose ∥x̃n∥ ≤ s, ∥xr − zr∥ ≤ δ, and
hj(Cw(zr)) + LhjLCwδ + Lhj ∥C∥ s ≤ 0 (18)

∀j = 1, . . . , nh, where LCw, Lhj
are the Lipschitz constants

of Cw and hj , respectively. Then, y = Cx satisfies the
constraints (2).

Using these tightened constraints, we now formulate our
proposed RN-ROMPC as follows:

min
u(·),zr(·)

∫ Tf

0

ℓ(zr(τ),u(τ))dτ + ℓf(zr(Tf))

s.t. δ(0) = ∥xr(t)− zr(0)∥ , (19a)
s(0) = s0, (19b)
żr = r(zr) +Bru, (19c)
ṡ = λAn

s+ (1 + Lwnl
)(Lfnl

s+ d̄) (19d)
+ ∥Bnu∥+ Lwnl

∥Bru∥ ,
δ̇ = (λAr + Lrnl

)δ + Lfnl
s+ d̄, (19e)

hj(Cw(zr)) + Lhj
LCwδ + Lhj

∥C∥ s ≤ 0, (19f)
u(τ) ∈ U (19g)
(zr(Tf), δ(Tf), s(Tf)) ∈ Xf (19h)
τ ∈ [0, Tf ], j = 1, . . . , nh.

Here, Tf > 0 represents the prediction horizon. The trajec-
tories of δ, s, zr are obtained through the tube propagation
outlined in Proposition 1 and are subject to the tightened
constraints in Proposition 2. The measured reduced-order
state xr and a variable s0 ≥ ∥x̃n∥ provide the initial
conditions. We denote the optimal solution to Problem (19)
with a star (⋆).

The following algorithms summarize the overall design
and closed-loop operation.

Algorithm 1 Offline design
Determine ROM in (6) and (12) from known model [21] or
from data [8].
Compute Lipschitz constants in (17) and (18).
Design terminal cost/set ℓf , Xf (Assumption 6).

Algorithm 2 Online operation
At t = 0: Initialize s0 ≥ ∥x̃n∥

for each sampling time tk = k∆, k ∈ N do
Measure reduced state xr(tk)
Solve Problem (19)
Apply input u⋆(τ), τ ∈ [0,∆)
Set initial value s0 = s⋆(∆).

end for

In the following, we consider for simplicity a quadratic
stage cost ℓ(zr,u) := ∥zr − z̄r∥2Q + ∥u− ū∥2R with positive
definite matrices Q,R and some nominal steady-state r(z̄r)+
Brū = 0. To ensure closed-loop guarantees, we also require
suitable conditions on the terminal cost ℓf and the terminal
set Xf , as standard in MPC (cf. [22]).

Assumption 6. There exists a terminal control law κ :
Rn → U , such that for any (zr(0), δ(0), s(0)) ∈ Xf , the
trajectories zr(τ), δ(τ), s(τ) according to (12), (17) with
u(τ) = κ(zr(t)) satisfy:

i. positive invariance: (zr(∆), δ(∆), s(∆)) ∈ Xf

ii. constraint satisfaction: zr(τ), δ(τ), s(τ) satisfy (18) for
all τ ∈ [0,∆]

iii. control Lyapunov function:
ℓf(zr(∆))− ℓf(zr(0)) ≤

∫∆

0
ℓ(zr(τ),u(τ))dτ .

where ∆ ≥ 0 represents the sampling period.

The simplest way to construct such a terminal set is
Xf = {(zr, δ, s)| zr = z̄r, (δ, s) ∈ A}, ℓf = 0, κ = ū ∈ U
where A ⊆ R2

≥0 is a positive invariant set for the linear
dynamics (17), in the linear constraint set (18), with constant
zr = z̄r.4 The following theorem summarizes the theoretical
properties of the proposed MPC scheme.

Theorem 1. Suppose that the initialization at t = 0 satisfies
s0 ≥ ∥x̃n(0)∥ and that Problem (19) is feasible at time t = 0.
Then, Problem (19) is feasible for all sampling times tk,
k ∈ N, and the closed loop system resulting from Algorithm 2
satisfies the constraints (2) for all t ≥ 0. Furthermore, as
limk→∞, the nominal trajectory converges to the desired
steady-state, i.e., z⋆r = z̄r, u⋆ = ū.

Proof. The following proof utilizes standard MPC arguments
(cf. [22]) and the derived bounds in Propositions 1 and 2.
Part I. Recursive feasibility: Assume Problem (19) is
feasible at time tk, k ∈ N, and let s⋆(τ), δ⋆(τ), z⋆r (τ), u

⋆(τ)
for τ ∈ [0, Tf ] denote its solution. At time tk+1, we consider
the following shifted candidate solution

s(0) =s⋆(∆) (20a)
zr(0) =z⋆r (∆) (20b)

u(τ) =

{
u⋆(τ +∆), τ ∈ [0, Tf −∆]

κ(zr(τ)), τ ∈ [Tf −∆, Tf ]
(20c)

with trajectories zr(τ), s(τ), τ ∈ [0, Tf ] according to the
dynamics (19c), (19d). This implies zr(τ) = z⋆r (τ + ∆),
s(τ) = s⋆(τ +∆) for τ ∈ [0, Tf −∆].

4A corresponding (e.g. polytopic) set always exists, if ū ∈ U , GCz̄r < g
and d̄, Lfnl , Lrnl > 0 are sufficiently small.
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By Proposition 1, δ(0) = ∥xr(0)− zr(0)∥ ≤ δ⋆(∆). Since
the trajectories δ(τ) and δ⋆(τ +∆) are subject to the same
(continuous) dynamics (19e) with the same s, it follows from
the comparison lemma [20, Lemma 3.4] that δ(τ) ≤ δ⋆(τ +
∆) for τ ∈ [0, Tf−∆]. Thus, for τ ∈ [0, Tf−∆] the candidate
solution satisfies the constraints (19f) with

hj(Cw(zr(τ))) + Lhj
LCwδ(τ) + Lhj

∥C∥ s(τ)
≤hj(Cw(zr(τ +∆)))

+ Lhj
LCwδ(τ +∆) + Lhj

∥C∥ s(τ +∆)
(19f)
≤ 0.

By Assumption 6(ii), we also have that (19f) holds for
τ ∈ [Tf−∆, Tf ], i.e., the constraints (19f) hold for τ ∈ [0, Tf ].
Lastly, by Assumption 6(i), we also have that (19h) holds.
Thus, the MPC resulting from Algorithm 2 is recursively
feasible.
Part II. Constraint satisfaction: First, due to the fixed
initial condition of s in Algorithm 2 and (19b), s0 satisfies
the dynamics (17a) also across optimization steps. Hence, the
initialization s0 ≥ ∥x̃n(0)∥ and Proposition 1 ensures that at
each sampling time tk: s0 ≥ ∥x̃n(tk)∥ holds recursively. Fur-
thermore, applying Proposition 1 in the interval τ ∈ [0,∆)
yields ∥xr(tk + τ)− z⋆r (τ)∥ ≤ δ⋆(τ), ∥x̃n(τ + tk)∥ ≤ s(τ).
Finally, Proposition 2 and the tightened constraints (19f)
for τ ∈ [0,∆) yield hj(Cx(t)) ≤ 0, ∀j = 1, . . . , nh,
t ∈ [tk, tk+1), i.e., the constraints (2) hold for all t ≥ 0.
Part III. Convergence/stability: The cost function in (19),
candidate solution (20), and terminal cost condition in As-
sumption 6(iii) are equivalent to nominal MPC with state
zr [22]. Hence, following standard arguments, it holds that

∞∑
k=0

∫ τ

0

ℓ(zr(τ),u(τ)) < ∞,

and Barbalat’s Lemma [20] ensures convergence, see, e.g.,
[13, Thm. 12] for details.

As is common in robust MPC, a linear tube-feedback u =
Kxr + c can be used to reduce conservatism [1], but in this
work, we solely focus on open-loop prediction for simplicity.

V. DISCUSSION

In the following, we discuss the qualitative properties of
the proposed RN-ROMPC scheme and practical implemen-
tation aspects for data-driven models.

A. Properties of Robust RN-ROMPC Scheme
We now discuss several properties of our proposed robust

RN-ROMPC scheme. First, for a full order system n = nf ,
the proposed RN-ROMPC scheme is comparable to a robust
MPC scheme using a homothetic tube, where δ ≥ 0 is
the corresponding scaling (cf. [13], [14]). The difference
is that we account for errors due to the SSM-based reduc-
tion scheme by exploiting the invariance properties of the
manifold. These properties allow us to decompose the error
dynamics into an off-manifold error component x̃n and an
on-manifold component xr − zr.

Second, for small enough Lipschitz constants Lfnl , Lwnl
,

and Lrnl
, i.e., |(1 + Lwnl

)Lfnl
| < |λAn

| and |Lrnl
| < |λAr

|,
the tube dynamics are stable. At least locally, we expect the

Fig. 2. Trajectory of fitted dynamics δ(t) in (17b) (top) and s(t) in (21)
(bottom). At zero input, the predicted s and δ settle to non-zero steady
state due to the bounding disturbances d̄, d̂ > 0. We only plot predicted s
because, in practice, we do not have access to the fast modes, xn.

off-manifold error dynamics to be stable due to the expected
time-scale separation between λAr and λAn , i.e., |λAr | ≫
|λAn

| along with the fact that the Lipschitz constants are
arbitrarily small for analytic functions (in a small enough
neighborhood of the origin). To reduce conservativeness in
the δ predictions, we could use an additional linear feedback
u = Kxr + c to ensure that |λAr

| ≫ Lrnl .
Lastly, according to the tube dynamics (17), as ∥u(t)∥

increases, the orthogonal error increases. The addition of
control input leads to the excitement of the fast modes; thus,
the SSM is no longer invariant. Applying large inputs results
in large values of s and, in turn, large on-manifold error,
δ. This causes the model’s uncertainty to grow, increasing
the constraint tightening in (18). Hence, if we wish to
operate close to the constraints, the proposed MPC policy
will implicitly act cautiously to reduce the excitation of the
fast modes.

B. Data-Driven Reduced-Order Model
In the previous sections, we extract ROMs directly from

a known model f . This may be difficult even in a simulation
environment since extracting the full-order model from finite
element code is a cumbersome and code-intrusive process.
Furthermore, for real-world experiments, we may want to
extract reduced models directly from observation data.

To alleviate these challenges, we use the data-driven
approach described in [19] to extract ROMs on SSMs. With
this approach, we can estimate the reduced-order state xr

online using past output measurements y. We refer the
interested reader to [8] for more details. In this case, d̄ in
(17a) does not only account for the disturbances d(t) but also
for induced regression and truncation error in the estimation
of the SSM from limited and noisy data. Furthermore, we
conduct a coordinate transformation such that Ar is in real
block-diagonal form whose entries are in decreasing order
of the real parts of its eigenvalues. Note that since we do
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Fig. 3. Simulation results comparing SSM-based MPC with soft constraints (left), an ad-hoc constraint buffer scheme (center), and our proposed RN-
ROMPC scheme (right) for a square periodic trajectory and setpoint. The trajectory has a period of 1 second and the prediction horizon for the MPC
schemes is Tf = 0.06 seconds.

not observe the fast modes, we never need to diagonalize
System (1).

Since we construct ROMs directly from output data,
we do not have access to B, Vn, and w as required in
(17a). To overcome this practical challenge, one can derive
the following alternative off-manifold scalar bounding error
dynamics:

ṡ = (λAn
+ L̄)s+ B̄ ∥u∥+ d̂, (21)

with the new constants L̄ ≥
∥∥(I−w′

nl(xr)V
⊤
r

)∥∥Lfnl ,
B̄ ≥

∥∥(I−w′
nl(xr)V

⊤
r

)
B
∥∥, and d̂ ≥ (1 + Lwnl

)d̄ (see
Proposition 1).

Since we do not know these constants, we fit the tube
dynamics of δ in (17b) and the new dynamics of s in (21)
from data by applying a sequence of open-loop control inputs
u(t) and estimating xr(t) where t ∈ [0, tf ]. We then integrate
the reduced dynamics in (12) using the control inputs u(t)
to get the sequence zr(t). The constants are fitted by solving
the following optimization problem for a fixed d̂ and d̄.

minimize
Lfnl

,Lrnl
,B̄

∫ tf

0

(∥Gj∥LCwδ + ∥GjC∥ s)dt

subject to System (17b),
System (21),
δ(t) ≥ ∥xr(t)− zr(t)∥ ,
δ(0) = s(0) = 0, Lfnl

, Lrnl
, B̄ ≥ 0,

(22)

where G and g are the matrix and vector representing poly-
topic constraints, respectively, and Gj represents the j-th
row such that the j-th constraint is hj(y) = Gjy−gj . This
optimization problem solves for the appropriate constants
that minimize the constraint tightening and are consistent
with the generated data.

The fitting data is generated by applying zero inputs,
followed by a sequence of alternating moderate and large
inputs, and at last, zero inputs again for five seconds each.
The data is generated with noisy inputs with 2-norm of 400
Newtons sampled from a Gaussian distribution. Figure 2
shows the fitted tube dynamics under an open-loop control
sequence u(t). For d̄ = d̂ = 3 mm, the optimized constants

are Lfnl = 120.897, Lrnl = 2.019, L̄ = 0.001, and B̄ =
0.012. Note that the tube dynamics are stable, and our upper
bound closely tracks the true error of the system.

VI. SIMULATION RESULTS

In this section, we highlight the robustness properties of
the proposed RN-ROMPC scheme in simulation.

A. Setup
We consider the control of an elastomer “Diamond” soft

robot. We conduct simulations using the SOFA framework
based on the finite element method [23]. The robot mesh
used for simulation is available in the SoftRobots plugin
[24], and the parameters of the Diamond robot match those
described in [8]: the Diamond robot has a mass of 0.45
kg, Poisson ratio of 0.45, and Young’s modulus of 175
MPa. The finite element model has 1628 nodes, leading to a
nf = 9768 dimensional state space. The damping is modeled
with Rayleigh (proportional) damping.

We implement the proposed MPC scheme in the open-
source soft robot control library1 and learn a 6-dimensional
ROM of the Diamond robot using the Spectral Submanifold
Reduction for control library2 according to the procedure in
[8]. We consider a receding horizon of 3 time steps with a
control sampling time of dt = 0.02 seconds. Problem (19)
is solved using sequential convex programming [25].

B. Results
To demonstrate the efficacy of our proposed robust RN-

ROMPC scheme, we consider a trajectory tracking problem
where the robot tip is meant to follow a reference trajectory.
The reference first corresponds to a periodic square reference
with a 1-second period, which touches the constraints on the
right and then converges to a setpoint on the top left corner
of the constraints. Figure 3 depicts a comparison of our
proposed approach against a nominal MPC scheme (left) and
an ad-hoc constraint buffer MPC scheme (right). The ad-hoc
buffer is implemented by artificially tightening the original
constraint bounds and the tightening is chosen to minimize

1https://github.com/StanfordASL/soft-robot-control
2https://github.com/StanfordASL/SSMR-for-control
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conservativeness while remaining within the constraints. In
both the nominal and ad-hoc buffer schemes, the constraints
on y are treated as soft constraints. Additionally, we consider
the noise d(t) = Bud(t) where ∥ud∥ = 400 and 0 ≤ ui ≤
2500, i = 1, . . . ,m.

The nominal MPC significantly violates the right border
constraint and leaves the constraint set when attempting to
track the setpoint. This is due to the fact that as the robot
moves closer to the right border and further from its equi-
librium point, the accuracy of the SSM ROM deteriorates,
leading to inaccurate prediction in the MPC scheme. To
account for this, we considered an ad-hoc constraint buffer
scheme where we tightened the right constraint by 3 mm, the
bottom by 2 mm, the left by 0.6 mm, and the top constraint
by 0.5 mm to ensure constraint satisfaction. On the other
hand, our approach also renders the system safe during its
entire operation without any ad-hoc tuning.

A qualitative comparison of the ad-hoc scheme and RN-
ROMPC in Figure 3 reveals that our approach is not much
more conservative. Furthermore, we found that further tight-
ening or loosening of the constraints resulted in more con-
servative behavior (compared to RN-ROMPC) or constraint
violations, respectively. In contrast, our approach maintains
the flexibility of being able to tighten the constraints dynam-
ically and thus, handle arbitrary trajectories.

Note that in Figure 3, the uncertainty tubes surrounding
the predictions vary in size depending on the robot’s position
from its equilibrium point. In particular, larger inputs are
required as the robot moves further away from its fixed
equilibrium point. Thus, as the robot moves towards (and
away from) the bottom right corner, the required inputs are
largest, resulting in the largest uncertainty tubes. In contrast,
the tubes are smaller in parts of the workspace closer to the
equilibrium point, e.g., the top left corner. This is expected
since our tube dynamics depend directly on the magnitude of
the control inputs (see Equation (17)). Since the uncertainty
tubes shrink as the robot moves towards the origin, the
controller becomes less conservative and gets nearer to the
constraint to more closely track the desired trajectory.

VII. CONCLUSION

In this work, we considered the problem of robust online
optimal control for high-dimensional systems. We derived
error bounds on our prediction model using properties of
SSMs, formulated a novel robust MPC scheme based on
these error bounds, proved that our scheme robustly satisfies
constraints, and demonstrated the efficacy of our approach on
a challenging, high-dimensional soft robot example in finite
element simulation.
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