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Abstract— This work focuses on pose-following, a variant of
path-following in which the goal is to steer the system’s position
and attitude along a path with a moving frame attached to it.
Full body motion control, while accounting for the additional
freedom to self-regulate the progress along the path is an
appealing trade-off. Towards this end, we extend the well-
established dual quaternion based pose-tracking method into a
pose-following control law. Specifically, we derive the equations
of motion for the full pose error between the geometric
reference and the rigid body in the form of a dual quaternion
and dual twist, and subsequently, formulate an almost globally
asymptotically stable control law. The global attractivity of the
presented approach is validated in a spatial example, while its
benefits over pose-tracking are showcased through a planar
case-study.

I. INTRODUCTION
Simultaneous attitude and position – pose – control of a rigid
body in three-dimensional space is fundamental to many
applications, such as for autonomous vehicles, spacecrafts
or robotic manipulators.

The simplest approach to address the pose control problem
is decoupling it into two separate subproblems [1], [2].
On the one hand, a position controller drives the transla-
tional motions, and on the other hand, an attitude controller
regulates the rotational behavior. This separation relates to
the de facto representation of the rigid body dynamics, in
which the translational and angular motions are expressed
separately (as planar and spatial examples, see eq. 7 in
[3] and eq. 1 in [4]). However, such partitioning poses a
challenge to effectively control the interdependence between
the rotational and translational dynamics.

An alternative to this decoupling is representing the system
dynamics globally on the configuration manifold of the spe-
cial Euclidean group SE(3). Doing so allows for leveraging
the group structure to first avoid singularities and second
extend proportional derivative (PD) feedback controllers, for
the pose-tracking problem [5]. Control methods inspired by
these findings have shown very promising results within a
plethora of robotic platforms, such as quadrotors [6], robotic
manipulators [7], walking robots [8] and spacecrafts [9].

To represent a rigid body in SE(3), it is customary to com-
bine a three-dimensional vector of the Cartesian coordinates
with either a rotation matrix – resulting in a homogeneous
transformation matrix (HTM) – or a unit quaternion. A less
common choice are unit dual quaternions.

Unit quaternion parameterization can be summarized into
five advantages: First, when compared to HTMs, unit dual
quaternions offer a more compact representation of SE(3), as
it requires only eight parameters (against twelve) to describe
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the motions of a rigid body – rotations and translations –
in a singularity-free and global manner [10]. Second, dual
quaternion multiplications are computationally more efficient
than HTM multiplications [7]. Third, the utilization of unit
dual quaternions is comparatively simpler than the use of
Cartesian coordinates and unit quaternions. This can be
attributed to the fact that a series of rigid movements can be
expressed as a sequence of dual quaternion multiplications,
whereas in the other case, the computation of rotation and
position is performed independently (for further details, refer
to [7], [11]). Fourth, unit dual quaternions yield two closed-
loop equilibrium points associated to a quaternion’s double
coverage of SO(3), both of which represent the identity
rotation matrix, while rotation matrices generate a minimum
of four closed-loop equilibrium points, with only one of them
relating to the identity [9]. Fifth, in contrast to alternative
techniques within SE(3), such as [6], unit dual quaternions
exclusively rely on a single error function, rather than the
need for two separate functions addressing position and
attitude errors.

In light of these features, unit dual quaternions have been
applied across a wide range of disciplines, including but not
limited to inertial navigation [12], state estimation [13], in-
verse kinematics [14], computer graphics [15] and computer
vision [16].

In the context of pose control, akin to [5], the authors
in [17] and [18] broadened PD-alike feedback controllers
to encompass the Lie group of unit dual quaternions using
its logarithmic mapping. This resulted in a globally expo-
nentially stable kinematic control law for pose regulation
or tracking. These outcomes were subsequently expanded
in [19] to also account for rigid body dynamics. Since these
findings, the unit dual quaternion-based pose-tracking prob-
lem has received considerable attention in the literature. To
name a few, the need for linear and angular velocity feedback
was dropped in [11], a backstepping control technique to
account for robustness was proposed in [20], adaptive con-
trol allowed for simultaneous pose-tracking and parameter
identification in [9], formation flying was addressed in [21],
and optimal control variants in the form of linear quadratic
regulator (LQR) and Model Predictive Control (MPC) were
formulated in [22] and [23], respectively.

Despite the achievements, all these methods exclusively
focus on pose-tracking, i.e., they track a time-varying po-
sition and attitude reference. However, not all problems fit
in such a description. For a more intuitive understanding
of this concept we use an illustrative example from [24]:
When aiming for precise steering of a robot tool along a
geometric reference, the primary concern is to minimize
the deviation between the reference and the tool, while
the velocity to move along the reference is of secondary
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interest and can be modified to enhance accuracy. In other
words, the problem is not centered on tracking a pre-
defined time-varying reference, but rather on leveraging the
velocity to traverse the reference as an additional degree
of freedom. Such control problems are denoted as path-
following. Its appealing properties for a wide range of
applications, accompanied by the fact that it is agnostic to the
fundamental limitations of reference-tracking [25], account
for the significant attention path-following has received in
literature. A detailed description of existing approaches can
be found in [24], [26]. Among those, most of the existing
path-following methods omit the rotational dynamics and
focus on path convergence of the translational dynamics.

To close this gap, we assume that the geometric refer-
ence consists of a desired path with a moving coordinate
frame associated to it, and we define pose-following as a
generalization of path-following in which the goal is to steer
the system’s position and attitude1 along the reference. This
begs the question of how to formulate such a pose-following
method.

To answer this question, in this paper we derive a unit dual
quaternion-based pose-following control approach for rigid
body dynamics. To do so, we take advantage of the previ-
ously mentioned benefits of unit dual quaternions, namely
singularity-free, compactness, computational efficiency and
the logarithmic mapping associated with the Lie group,
allowing us to extend the PD-alike feedback control from
pose-tracking to pose-following. As a result, the freedom
and versatility of path-following is augmented to full body
motions, i.e., translations, as well as rotations. To the best of
our knowledge, this is the first work that explicitly attempts
to follow upon both the longitudinal and angular coordinates.

More specifically, the presented scheme consists of the
following contributions:

1) We derive the equations of motion for the full pose
error between the geometric reference and the rigid
body in the form of a dual quaternion and dual twist.

2) We extend the original control law to account for
nonlinearities that arise from introducing auxiliary
states associated with pose-following. Besides that,
we design the additional degree of freedom either to
ensure convergence to a desired velocity profile or as
feedback. Therefore, the progress along the reference is
versatile in the sense that it either accepts any velocity
profile or can be utilized to incite a desired behavior
around the geometric reference.

3) We prove that the presented control law is almost
globally asymptotically stable2. When doing so, we
take special care of the two equilibria problem, by
introducing a switch that guarantees convergence to
the closest equilibrium point.

1In contrast to [26], [27], where the rotational convergence is reduced to
the heading ψ ∈ R and the remaining two euler angles are left unattended,
we seek true attitude convergence, i.e. q ∈ SO(3).

2”almost” globally asymptotically stability is the optimal performance
achievable by a continuous controller for rotational motion, owing to
the fact that the group of rotation matrices SO(3) constitutes a compact
manifold [28].

The remainder of this paper is structured as follows:
Section II introduces the pose-following problem. Section III
presents the solution proposed in this paper, by revisiting the
unit dual quaternion-based algebra, transforming the error
dynamics into dual quaternion and dual twist form, deriving
the control law and conducting a stability analysis. Exper-
imental results are shown in Section IV before Section V
presents the conclusions.

Notation: We will use ˙(·) = d(·)
dt for time derivatives and

(̊·) = d(·)
dθ for differentiating over pose-parameter θ. We

denote three-dimensional vectors in bold v, dual numbers
as a + ϵb and dual quaternions as q̂. We define Î as
[1, 0, 0, 0] + ϵ[0, 0, 0, 0].

II. THE POSE-FOLLOWING PROBLEM

Classical path-following approaches steer a system’s posi-
tion, while leaving the attitude unattended. In this work, we
tighten the original path-following problem by focusing on
full rigid body motions, i.e, position and attitude following.

A. Rigid body dynamics

The three-dimensional rigid body dynamics in the body
frame are given by

p̈b(t) = f b(t)m−1 , (1a)

ω̇b(t) = J−1
(
τ b(t)− ωb(t)× Jωb(t)

)
, (1b)

where {pb,ωb,f b, τ b} ∈ R3 refer to the rigid body’s
position, angular velocity, control forces and control torques,
while m ∈ R and J ∈ R3×3 are the mass and inertia matrix.
From now onward, since frame superscripts remain constant,
they will be dropped. By taking position p, longitudinal
velocity ṗ, attitude q ∈ SO(3) and angular velocity ω
as states x(t) = [p(t), ṗ(t), q(t),ω(t)] with forces f and
torques τ as inputs u(t) = [f(t), τ (t)], and introducing the
respective kinematic relationships, the dynamics in (1) can
be written in the standard form:

ẋ(t) = f(x(t),u(t)) . (2)

B. Geometric reference representation

Let Γ refer to a geometric reference and be defined as a path
with a moving frame attached to it. Its respective desired
position and attitude are given by two functions, pd : R 7→
R3 and qd : R 7→ SO(3), that depend on pose-parameter θ
and are at least C2:

Γ = {θ ∈ [θ0, θf ] ⊆ R 7→ pd(θ) ∈ R3, qd(θ) ∈ SO(3)} (3)

It should be noted that the C2 requirement for qd enables the
calculation of the desired angular velocity ωd(θ) : R 7→ R3

from its kinematic equations.

C. Problem statement

To incorporate the additional freedom inherited from path-
following, we augment the rigid body dynamics in (2) by
adding the pose-parameter θ(t) and its first time derivative

5954



θ̇(t) as virtual states and assign the second time derivative
θ̈(t) as a virtual input. The resulting system is denoted as

ẋΓ(t) = fΓ(xΓ(t),uΓ(t)) . (4)

where xΓ(t) =
[
p(t), ṗ(t), q(t),ω(t), θ(t), θ̇(t)

]
and

uΓ(t) =
[
f(t), τ (t), θ̈(t)

]
. The augmented system fΓ

contains two additional equations of motion that relate to
the integration chain of the pose-parameter θ(t), implying
that the virtual input θ̈(t) is associated to its acceleration.
Consequently, the time evolution θ(t), and thereby the pose
reference {pd(θ(t)), qd(θ(t))}, are controlled via the virtual
input θ̈(t). This leads to the definition of the pose-following
error as

eΓ(t) = △ [{p(t), q(t)}, {pd(θ(t)), qd(θ(t))}] , (5)

where △ : {R3, SO(3)}× {R3, SO(3)} 7→ R is a function
that outputs the deviation between the rigid body’s pose and
reference pose, and will only be 0 if both are equal, i.e.,
△ [a, b] = 0 ⇐⇒ a = b. Due to the structure of SE(3), this
function is dependent on the control design approach, and
thus, will be defined in the upcoming Section III. For the
remainder of this work, we address the following problem:

Problem 1 (Pose-Following): Given the geometric reference
Γ in (3) and the augmented rigid body dynamics in (4), for-
mulate a controller uΓ(t) =

[
f(t), τ (t), θ̈(t)

]
that fulfills:

P1.1 Pose convergence: The pose-following error vanishes
asymptotically limt→∞ eΓ(t) = 0 .

P1.2 Convergence on pose-parameter: The system converges
to the end of the geometric reference limt→∞ θf −
θ(t) = 0.

For specific applications, it might be of interest to traverse the
reference according to a desired velocity profile θvd(θ(t)).
For example, inspection and manufacturing processes might
require a lower traverse velocity at critical sections of the
geometric reference. For this reason, in contrast to [24],
instead of directly depending on time, our velocity profile
θvd depends on the pose-parameter θ(t). Notice that this
problem differs from reference tracking, for further details
refer to Sec II. in [24]. Remaining consistent with the existing
literature, we denote this problem as pose-following with
velocity assignment.

Problem 2 (Pose-Following with velocity assignment):
Given the geometric reference Γ in (3) and the augmented
rigid body dynamics in (4), formulate a controller uΓ(t) =[
f(t), τ (t), θ̈(t)

]
that fulfills:

P2.1 Pose convergence: P1.1 from Problem 1.
P2.2 Velocity convergence: The velocity of the pose-

parameter converges to a desired velocity profile
limt→∞ θ̇(t)− θvd(θ(t)) = 0.

III. SOLUTION APPROACH

A. Mathematical preliminaries

For the sake of making this paper self-contained we briefly
recall the dual quaternion algebra. In doing so, we follow

the notation and content of [19], which pioneered the use
of unit dual quaternion-based pose-tracking for rigid body
dynamics. To begin, we define the foundational concepts of
the quaternion and the dual number, which serve as the build-
ing blocks of the dual quaternion. For more comprehensive
information on these concepts, we refer the reader to [10],
[18], [29].

1) Quaternions: Quaternions extend the notion of a com-
plex number to the four-dimensional space R4 and can be
expressed as q = a + b i + c j + d k = [s,v], where s is
the scalar part, v ∈ R3 is the vector part and {i, j, k} is the
standard R4 basis, i.e., i2 = j2 = k2 = −1 and ij = k, jk =
i, ki = j. When a three-dimensional vector is expressed
as a quaternion with a zero scalar component, the term
vector quaternion is used. Furthermore, quaternions fulfilling
a2+ b2+ c2+ d2 = 1 are named unit quaternions and allow
to describe rotations, i.e., a rotation around a unit axis n by
an angle of |ϕ| < 2π can be expressed as a unit quaternion
in the form of q = [cos(ϕ/2), sin(ϕ/2)n]. Additionally, unit
quaternions constitute a Lie group Qu over multiplication,
and its logarithmic map is ln q̂ = ϕ/2 with ϕ = [0, |ϕ|n].
Limiting to ϕ ∈ [0, 2π) and defining v as the Lie algebra
of Qu, i.e., all logarithmic mappings of unit quaternions, the
adjoint transformation is AdqV = q ◦ V ◦ q−1 = q ◦ V ◦ q∗,
where ’◦’ is the quaternion multiplication and V ∈ v.

2) Dual numbers and vectors: Dual numbers are defined
as â = a + ϵb with ϵ2 = 0, ϵ ̸= 0 – ϵ is nilpotent –, and
{a, b} ∈ R. In this case a and b are denoted as the real part
and dual part, respectively. Dual vectors are a generalization
of dual numbers, where both the real and dual part are three-
dimensional vectors such that â = a + ϵb, where {a, b} ∈
R3.

3) Dual quaternions: A dual quaternion features dual
components instead of its regular ones, i.e., q̂ = [ŝ, v̂],
where ŝ is a dual number and v̂ is a dual vector. Following
the introduced notation, a dual quaternion with a vanishing
scalar part is named as a dual vector quaternion. We define
the dot product of two dual vector quaternions v̂ =

[
0̂, v̂

]
with v̂ = vr + ϵvd and k̂ = [0̂, k̂] with k̂ = kr + ϵkd =
[kr1, kr2, kr3] + ϵ [kd1, kd2, kd3] as

k̂ ⊙ v̂ =
[
0̂,Krvr

]
+ ϵ

[
0̂,Kdvd

]
with Kr = diag(kr1, kr2, kr3) and Kd = diag(kd1, kd2, kd3).
Alternatively, a dual quaternion can also be expressed as
q̂ = qd + ϵqr, where qd and qr are quaternions. To operate
with dual quaternions, we introduce the following operations:

q̂1 + q̂2 = [ŝ1 + ŝ2, v̂1 + v̂2] = (qr1 + qr2) + ϵ (qd1 + qd2) ,

λq̂ = [λŝ, λv̂] = λqr + ϵλqd ,

q̂1 ◦ q̂2 =
[
ŝ1ŝ2 − v̂T

1 ⊙ v̂2, ŝ1v̂2 + ŝ2v̂1 + v̂1 × v̂2

]
=

= qr1 ◦ qr2 + ϵ (qr1 ◦ qd2 + qd1 ◦ qr2) ,

where q̂1 and q̂2 are dual quaternions, λ ∈ R and the
operator ’◦’ is the (dual) quaternion multiplication, which
is associative and distributive but not commutative. Other
relevant properties of the dual quaternion are the conju-
gate q̂∗ = [ŝ,−v̂] and the multiplicative inverse q̂−1 =
(1/q̂ ◦ q̂∗) ◦ q̂∗. It follows that dual quaternions that meet
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the condition q̂ ◦ q̂∗ = Î also satisfy q̂−1 = q̂∗. In such
instances, the dual quaternion in question is referred to as a
unit dual quaternion.

Just as unit quaternions permit the representation of
rotations, unit dual quaternions provide a means of de-
scribing three-dimensional transformations that encompass
both translation and rotation. Specifically, a transformation
consisting of a translation vector p and a rotation quaternion
q corresponds to a screw motion, which entails a translation
along axis n by a distance d, and a rotation of angle |ϕ|.
Such a transformation is expressed as a dual quaternion in
the following form:

q̂ =
[
cos

(
ϕ̂/2

)
, sin

(
ϕ̂/2

)
n̂
]
= q + ϵ/2 p ◦ q , (6)

where n̂ is the dual screw axis and ϕ̂ = |ϕ| + ϵd is the
dual screw angle. Similar to unit quaternions, unit dual
quaternions form a Lie group DQu with respect to the dual
quaternion multiplication and its logarithmic map is also a
dual quaternion given by

ln q̂ = 1/2 (ϕ+ ϵ p) , (7)

where ϕ = [0, |ϕ|n]. In a similar way to unit quaternions,
naming v̂ as the Lie algebra for DQu, the adjoint transfor-
mation for the dual quaternions is Adq̂V̂ = q̂ ◦ V̂ ◦ q̂−1 =
q̂◦V̂ ◦ q̂∗, where V̂ ∈ v̂. For additional information regarding
the Lie group of unit dual quaternions, please refer to [18].

B. Unit dual quaternion dynamics

In this subsection we aim to transform the rigid body dynam-
ics in (2) to a unit dual quaternions representation. For this
purpose, in a similar way to [19], we start by derivating (6)
in time, which results in the following kinematic equations:

˙̂q(t) =
1

2
ω̂(t) ◦ q̂(t) , (8a)

ω̂(t) = [0,ω(t)] + ϵ [0, ṗ(t) + p(t)× ω(t)] (8b)

where ω̂(t) is the dual twist. Taking its time derivative, we
get

˙̂ω(t) = ω̇(t)+ϵ (p̈(t) + ṗ(t)× ω(t) + p(t)× ω̇(t)) , (8c)

and combining it with the rigid body dynamics in (1), leads
to

˙̂ω(t) =
(
a+ J−1τ

)
+ ϵ

(
f/m+ ṗ× ω + p×

(
a+ J−1τ

))
= a+ ϵ (p× a+ ṗ× ω)︸ ︷︷ ︸

F̂

+ J−1τ + ϵ
(
f/m+ p× J−1τ

)︸ ︷︷ ︸
Û

= F̂ (t) + Û(t) (8d)

with a = J−1ω × Jω . For readability, in the first two
lines of (8d) dependencies on time (·)(t) have been omitted.
Notice that F̂ (t) is fully defined by the rigid body’s state
x(t), while the force and torque control inputs u(t) only
appear in Û(t).

Model 1 (Unit dual quaternion-based dynamics): Letting
eq. (6) describe a screw motion for translation p(t) and
rotation q(t), and defining the linear and angular velocity

as in eq. (2), then the unit dual quaternion-based rigid body
dynamics are

˙̂q(t) =
1

2
ω̂(t) ◦ q̂(t) , (9a)

ω̂(t) = ω(t) + ϵ (ṗ(t) + p(t)× ω(t)) , (9b)
˙̂ω(t) = F̂ (t) + Û(t) (9c)

where F̂ (t) and Û(t) are given in (8d).

C. Unit dual quaternion error dynamics

Drawing upon the dynamics obtained in the previous sub-
section, we proceed to derive the unit dual quaternion-based
error dynamics for the pose-following problem. By applying
the dual quaternion and twist definitions in eqs. (6) and (8b),
it is possible to transform the geometric reference Γ in (3)
into a desired dual quaternion and a desired dual twist:

q̂d(θ) = qd(θ) + ϵ/2 pd(θ) ◦ qd(θ) , (10a)
ω̂d(θ) = [0,ωd(θ)] + ϵ [0, p̊d(θ) + pd(θ)× ωd(θ)] , (10b)

where θ ∈ [θ0, θf ]. Combining (10) with the kinematics
in (8), the equations of motion for the desired pose are
obtained:

˚̂qd(θ) =
1

2
ω̂d(θ) ◦ q̂d(θ) , (11a)

˚̂ωd(θ) = [0, ω̊d(θ)] +

ϵ [0, ˚̊pd(θ) + p̊d(θ)× ωd(θ) + pd(θ)× ω̊d(θ)] ,
(11b)

From (11) it is apparent that in contrast to the pose-tracking
case [19], the desired pose in (10) does not evolve according
to time t, but with respect to the pose-parameter θ. The error
between the geometric reference and the rigid body’s pose
can be expressed in the form of a unit dual quaternion:

q̂e(t) = q̂(t) ◦ q̂∗d(θ(t)) , (12)

Derivating the dual quaternion error (12) in time3 leads to

˙̂qe(t) = ˙̂q(t) ◦ q̂∗d(θ(t)) + θ̇(t)q̂(t) ◦ ˚̂q∗d(t) .

Combining it with (8a), (11a), (12) and the property (q̂1 ◦
q̂2)

∗ = q̂∗2 ◦ q̂∗1 results in

˙̂qe(t) =
1

2

(
ω̂(t) ◦ q̂e(t) + θ̇(t)q̂e(t) ◦ ω̂∗

d(θ(t))
)
.

Noticing that q̂e◦ω̂∗
d = (q̂e ◦ ω̂∗

d ◦ q̂∗e)◦q̂e, the equation above
can be rearranged to

˙̂qe(t) =
1

2

(
ω̂(t) + θ̇(t)q̂e(t) ◦ ω̂∗

d(θ(t)) ◦ q̂∗e(t)
)
◦ q̂e(t) ,

which takes the same form as (8a):

˙̂qe(t) =
1

2
ω̂e(t) ◦ q̂e(t) , (13a)

ω̂e(t) = ω̂(t) + θ̇(t)Adq̂e(t)ω̂
∗
d(θ(t)) . (13b)

When compared to the pose-tracking case, the first time
derivative of the pose-parameter θ̇(t) appears to be mul-
tiplying the second term of the dual twist error. Similar

3Time derivations over pose-parameter θ dependent variables, such as the
q̂d(θ(t)) requires using the chain rule, i.e., d(·)

dt
=

d(·)
dθ

dθ
dt

= (̊·)θ̇(t)
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derivations result in pe(t) = p(t) + Adqe(t)p
∗
d(θ(t)) and

we(t) = w(t) + θ̇(t)Adqe(t)ω
∗
d(θ(t)). These expressions

allow to ensure that the right-hand side of (13b) is equivalent
to

ω̂e(t) = [0,ωe(t)] + ϵ [0, ṗe(t) + pe(t)× ωe(t)] . (14)

For brevity, the present manuscript excludes these deriva-
tions; however, they are provided in the Appendix of the
supplementary material4. Other than that, to fully define the
error dynamics, we still need to compute the time derivative
of the dual twist error. Towards this end, we take the time
derivative of (13b) and we obtain

˙̂ωe(t) = ˙̂ω(t) + θ̈(t)Adq̂e(t)ω̂
∗
d(θ(t))+

θ̇(t)
[
˙̂qe(t) ◦ ω̂∗

d(θ(t)) ◦ q̂e(t)+

q̂e(t) ◦ θ̇(t)˚̂ω∗
d(θ(t)) ◦ q̂e(t)+

q̂e(t) ◦ ω̂∗
d(θ(t)) ◦ ˙̂qe(t)

]
.

Model 2 (Unit dual quaternion-based error dynamics):
For a given dual quaternion state q̂(t) and a desired config-
uration q̂d(θ(t)) – associated to pose-parameter θ(t) –, the
dynamics of the dual quaternion error in (12) are

˙̂qe(t) =
1

2
ω̂e(t) ◦ q̂e(t) , (15a)

ω̂e(t) = [0,ωe(t)] + ϵ [0, ṗe(t) + pe(t)× ωe(t)] , (15b)
˙̂ωe(t) = F̂ (t) + Û(t) + θ̈(t)Adq̂e(t)ω̂

∗
d(θ(t))+ (15c)

θ̇(t)
[
˙̂qe(t) ◦ ω̂∗

d(θ(t)) ◦ q̂e(t)+

q̂e(t) ◦ θ̇(t)˚̂ω∗
d(θ(t)) ◦ q̂e(t)+

q̂e(t) ◦ ω̂∗
d(θ(t)) ◦ ˙̂qe(t)

]
,

(15d)

where q̂e(t) = q̂ ◦ q̂∗d(θ(t)), pe(t) = p(t) + Adqe(t)p
∗
d(θ(t)),

we(t) = w(t)+ θ̇(t)Adqe(t)ω
∗
d(θ(t)), and F̂ (t) and Û(t) are

given in (8d).

The first two equations, i.e., the time derivative of the dual
quaternion error and the dual twist error, show the same
structure as in pose-tracking. However, differences arise in
the time derivative of the dual twist error, as it involves
additional terms multiplied by the first and second time
derivatives of the pose-parameter θ(t).

D. Control law

Considering the error dynamics in (15), the pose-convergence
definition in P1.1 can be reformulated as limt→∞ q̂e(t) =
±Î and limt→∞ ω̂e(t) = 0̂ . To accomplish this, in this
subsection we derive a control law for the term Û in
equation (15d). Its design is significantly influenced by
the forthcoming stability analysis. Once the control law is
determined, we will be able calculate the command forces f
and torques τ from eq. (8d). In a similar way to [5] and [19],
we decouple it into a feedforward (FF) and a feedback term
(FB). The former eliminates nonlinearities in (15d) and the
latter ensures stability.

Û = ÛFF + ÛFB (16)

From (15d) it is apparent that the first and the last term can
readily be cancelled out by the feedforward compensation.
However, this does not hold true for the second adjoint term,
which is multiplied by the virtual input θ̈(t). To account for
this, we choose θ̈(t) = Uθ(xΓ(t)), where Uθ(·) is the – yet
to be defined – pose-parameter control law dependent on the
augmented state vector xΓ(t) in (4). This choice allows us
to also include the adjoint term into the feedforward5:

ÛFF(t, Uθ) = −F̂ (t)− Uθ(xΓ(t))Adq̂e(t)ω̂
∗
d(θ(t))−

θ̇(t)
[
˙̂qe(t) ◦ ω̂∗

d(θ(t)) ◦ q̂e(t)+ (17)

q̂e(t) ◦ θ̇(t)˚̂ω∗
d(θ(t)) ◦ q̂e(t) + q̂e(t) ◦ ω̂∗

d(θ(t)) ◦ ˙̂qe(t)
]
.

Regarding the feedback term, following the pose-tracking
formulation in [19], we leverage the logarithmic mapping
associated to the Lie group of unit dual quaternions DQu to
design a proportional derivative feedback as

ÛFB(t) = −2k̂p ⊙ lnλq̂e(t)− k̂v ⊙ ω̂e(t) , (18)

where k̂p and k̂v are vector dual quaternion control gains
and λ ∈ {−1, 1} is a switching parameter to account for
both equilibrium points ±Î . This is defined as λ = 1, if
q̂e1(t) >= 0 and −1 otherwise, where q̂e1 refers to the first
component of q̂e(t).

E. Stability analysis

In the present subsection, we establish the necessary condi-
tions for control laws Û and Uθ to almost global asymptotic
stability6.

Theorem 1 (Stability of pose-following): Consider the ge-
ometric reference (3), the augmented system (4), the control
law Û in (16) with the feedforward and feedback terms
in (17) and (18), and suppose that the following conditions
are satisfied:

i The dual quaternion control gains are chosen as k̂p > 0̂
with kpd1 = kpd2 = kpd3, i.e., equivalent terms in the
dual part of k̂p, and k̂v > 0̂.

ii The pose-parameter control law ensures that the
velocity of the pose-parameter is positive, i.e.,
Uθ(xΓ(t)) =⇒ θ̇(t) > 0, ∀ θ ∈ [θ0, θf ].

Then, the closed-loop control scheme defined by system (2)
and control law (16) solves the pose-following Problem 1.

Proof. Starting with pose convergence in P1.1, since the
feedforward term (17) was designed to eliminate all the
nonlinearities in (15d), substituting (16) in (15d) results in
˙̂ωe = ÛFB. In addition, considering that (14) also remains
true for pose-following, the stability analysis in [19] holds.

4See Appendix in https://arxiv.org/pdf/2308.09507.pdf.
5Model 1 in (9) and Model 2 in (15) enable the conversion of xΓ(t) into

a dual quaternion error and a dual twist error, as well as the conversion of
these errors back into xΓ(t).

6We assume perfect and instantaneous state measurements, and thus, the
presented global attractivity might be jeopardized by noises and delays that
arise in practical applications. This can formally be addressed by combining
the proposed method with robust control.
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Fig. 1: Rigid body motions obtained from applying control law (16) – with Ûθ defined as in Theorem 2 – to the dynamics in (2). The left column (a.1 -
a.4) shows the almost global asymptotic stability of the presented pose-following control law by starting from different initial poses (purple, orange, yellow,
cyan) from different perspectives. Each starting point is evaluated according to two different constant velocity profiles. The motions associated to the fast
profiles are depicted by a continuous line, as well as their orientations, while the motions related to the slow profiles are given by dashed lines. The plots
at the top right (b.1), together with the gray dashed line in (b.2), showcase the consequences of deactivating the λ switch. The figure (b.3) shows that the
pose-parameter’s velocity (continuous line) converges to the desired velocity profile (dashed line) by evaluating three different cases (fast in purple, slow
in green and sinusoidal in orange).

This implies that Model 2 converges to the closest equilib-
rium point {±Î , 0̂} asymptotically, which directly translates
to the fulfillment of pose convergence.

Regarding convergence on pose-parameter in P1.2, com-
bining the Lyapunov function V = ||θ(t) − θf ||2 with
θ̇(t) > 0 – from (ii) – shows that θf is an asymptotically
stable equilibrium point.

Theorem 2 (Stability of pose-following with velocity
assignment): Consider the geometric reference (3), the aug-
mented system (4), the control law Û in (16) with the feed-
forward and feedback terms in (17) and (18), and suppose
that the following conditions are satisfied:

i The dual quaternion control gains are chosen as k̂p > 0̂
with kpd1 = kpd2 = kpd3 and k̂v > 0̂.

ii The pose-parameter control law is given by
Uθ(xΓ(t)) = −kθ

(
θ̇(t)− θvd(θ(t))

)
+ θ̇(t)θ̊vd(θ(t)),

where kθ ∈ R>0.
Then, the closed-loop control scheme defined by system (2)
and control law (16) solves the pose-following with velocity
assignment Problem 2.

Proof. The proof for pose convergence in P2.1 remains the
same as P1.1 in Theorem 1. When it comes to velocity
convergence in P2.2, the utilization of the Lyapunov function
V = ||θ̇(t) − θvd(θ(t))||2 in conjunction with Uθ(xΓ(t)) as
given in (iii), and the recognition that θ̈(t) = Uθ(xΓ(t)), in-
dicates that the velocity of the pose-parameter asymptotically
converges to the desired velocity profile.

IV. NUMERICAL EXPERIMENTS

In order to assess the effectiveness of our methodology, we
focus on two case studies. The first one focuses on the key
properties of the derived control law, including its almost
global asymptotic stability and its capability to converge
to a predetermined velocity profile. In the second case-
study, we demonstrate the advantages of the proposed pose-
following control law in comparison to its predecessor, the
pose-tracking control law.
Numerical implementation: For all evaluations, the pa-
rameters are kept constant as m = 1kg, J =
diag(0.01, 0.01, 0.01)Kg/m−2, k̂p = k̂v = 3̂ and kθ = 1.

A. Almost global asymptotic stability on pose-following with
velocity assignment

The primary focus of this study is to validate the outcome
of Theorem 2: almost global asymptotic stability for pose-
following with velocity assignment. When doing so, we
intend to verify that, regardless of the initial state, the pose
of the rigid body converges to the geometric reference. To
this end, we initialize the system at four distinct poses. In
addition, we also want to show that this convergence is
upheld irrespective of the velocity assignment. To achieve
this goal, we evaluate each starting condition according to
two distinct profiles, namely a slow one with θvd,slow = 0.019
and a fast one with θvd,fast = 0.075. As an exemplary
geometric reference, we select the same three-dimensional
curve as in [30] and to conform to the requirements of (3),
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we assign a moving frame to it. For this purpose, akin to [31],
[32], we rely on Pythagorean Hodograph curves, allowing
us to overcome the singularities and discontinuities of the
well-known Frenet-Serret frame.

The motions resulting from applying the control law (16)
– with the pose-parameter control Ûθ defined as in Theorem
2 – to the rigid body dynamics in (2) are depicted in the
left side of Fig. 1. The motions respective to the runs with
the faster velocity profiles are shown by a continuous line
and their respective orientations, while the ones related to
the slow profiles are represented by dashed lines.

These motions manifest two noteworthy characteristics.
The first one being that all of them demonstrate asymptotic
convergence towards the geometric reference. The second
characteristic, which aligns with common intuition, is that
motions corresponding to the slower velocity profiles attain
convergence at an earlier stage.

For a more comprehensive analysis, we direct attention
to the purple case-study, which refers to the motion located
at the top-left corner of Fig. 1(a.1). A magnified view of
this case is presented on the right-hand side of Fig. 1(b.2).
We hereby validate that the velocity of the pose-parameter,
θ̇(t), achieves convergence with the desired velocity profile,
θvd. To accomplish this, as demonstrated in Fig. 1(b.3), we
examined the convergence in not only slow (green) and fast
(purple) constant velocity profiles but also in a sinusoidal
profile (orange).

Lastly, we showcase the importance of taking care of
the existence of two equilibrium points ±Î , which in our
approach is handled by the switching term λ (18). Within
the same case-study as in the previous paragraph, we show
that if this switching term is deactivated, the control law only

converges to Î resulting in unnecessarily lengthy and large
motion. This can be visualized in the position and quaternion
errors, as well as in the resultant motions colored in light
gray in Fig.1(b.1-2).

B. Comparison to pose-tracking

Having analyzed the most relevant properties of the pre-
sented control law, in this second case-study we compare
the performance of the proposed pose-following approach
against pose-tracking [19]. For this purpose, we pick a planar
sinusoidal curve with a moving frame attached to it as a
geometric reference. The task at hand consists of traversing
the geometric reference from a zero-velocity pose. However,
at the middle of the navigation a longitudinal and angular
disturbance is introduced. To ensure a fair comparison, both
the pose-tracking and pose-following have been tuned to
ensure that the navigation time is the same if no disturbance
occurs.

In this experiment the desired velocity profile function is
chosen to be dependent on the distance to the geometric
reference: Uθ(xΓ(t)) = −kθ

(
θ̇(t)− θvd(de⊥(xΓ(t))

)
7 In-

tuitively, if the system is far away from the reference, it
slows down until it is close enough to increase the speed.
This mapping is regarded as a tuning parameter that the
user can tailor based on system properties and task at
hand. In a illustrative manner, we design three variants:
progressive (red), medium (orange) and conservative (blue).
These velocity profiles alongside their associated motions
can be visualized in Fig. 2.

7de,⊥(xΓ(t)) is the transverse distance to the geometric reference.
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When compared to pose-tracking (in magenta), two differ-
ences can be spotted. First, at the very beginning of the tra-
jectory, the tracking method shows a small deviation from the
reference. This is due to the fact that the rigid body initially
is standing still and needs to catch up with the moving time-
reference. In contrast the presented pose-following is aware
of its initial state and progressively increases its velocity
along the reference. Second, as soon as the disturbance
is over, the additional degree of freedom inherited from
augmenting the system allows all three variants to slow
down and converge back to the geometric reference. This
can clearly be visualized in the evolution of θ̇. As expected,
the convergence rate directly correlates to how conservative
the desired velocity profile mapping is. On the other hand,
pose-tracking lacks this additional degree of freedom and
has no choice but to catch up with the time-based reference,
causing a large deviation error.

V. CONCLUSIONS

In this paper we have formulated a unit dual quaternion-
based pose-following control approach for rigid body dy-
namics. Initially, we have derived the equations of motion for
the full pose error between the rigid body and the geometric
reference in the form of a dual quaternion and dual twist.
Subsequently, we have extended the original control law
to account for nonlinearities arising from the introduction
of auxiliary states associated with pose-following and de-
signed the additional degree of freedom either to achieve
convergence to a desired velocity profile or as a feedback
mechanism. When doing so, we have also established almost
global asymptotic stability. Lastly, we have numerically
validated our findings with two illustrative simulations.
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