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Abstract— The sparsity or compressibility of network spread
states in a graph-spectrum basis is examined, in the context
of a stochastic model for influence/spread known as the voter
model. In particular, the first- and second- moments are char-
acterized, for the graph-spectrum basis components contained
in the voter-model state. These formal characterizations, as
well as an asymptotic analysis of the voter model, are used to
relate compressibility with the network’s graph. An illustrative
example as well as a simulation of a larger-scale model are
included.

I. INTRODUCTION

During the last 15-20 years, there has been a vibrant effort
within the controls community on spread and influence pro-
cesses in networks [1]–[3]. This effort – which complements
a much wider body of work on spread modeling across
the sciences [4]– has yielded interesting characterizations of
the spatiotemporal dynamics of spread, as well as on the
allocation of resources to mitigate or shape spread processes.
Controls-engineering approaches hold promise to substan-
tially advance research and practice in the management of
spread processes, because they can enable policy design.
To date, however, controls-engineering efforts on spread
management largely have not been translated to practice (e.g.
used by policy organizations like the Center for Disease
Control to mitigate spreads), to the best of our knowledge.

One barrier to the practical application of network spread
control techniques, and indeed to the development of scien-
tific approaches to managing spread, lies in the inadequacy
of models and data for spread. Real-world spread processes
exhibit tremendously volatile behaviors at multiple scales,
which are governed both by the intrinsic stochastics of
the spread processes and complex environmental factors.
The simple differential-equation-type models that have been
used to design spread controls are ill-equipped to forecast
these dynamics (even if they incorporate some stochastics),
and data is rarely available at the resolution and scale
needed to recover and forecast the processes. As an example,
COVID-19 has repeatedly emerged in large-scale outbreaks,
with very little advanced forecasting, and inclarity about
the process dynamics even after emergence. Similarly, the
mechanisms underlying e.g. election/voting processes and
misinformation spread are tremendously volatile, and hard to
model and forecast. Motivated by this challenge, there has
recently been an exciting effort to learn or identify network-
theoretic models for spread from data [5]. As an alternative,
direct data-driven methods for designing spread controls have
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also been pursued, as have structural insights into effective
controls that are independent of detailed model knowledge
[1], [6]. Nevertheless, much remains to be done to develop
practical models and controller designs for highly volatile
spread processes.

In this study, we approach the modeling of volatile or
stochastic spread processes from a complementary perspec-
tive, which is grounded in the notion of sparsity or compress-
ibility of the network’s state. Specifically, rather than aiming
to learn a dynamical model for the spread, we view snapshots
of the state at particular times as scenes defined on top of the
network’s graph. Our main hypothesis is that these scenes –
although varying stochastically in time, and across different
spread events (different outbreaks, different diseases) – are
sparse in a graph-defined basis. That is, each scene can be
approximated well using a (possibly-different) small subset
of the basis vectors. Conceptually, sparsity represents the
recognition that spread state snapshots vary greatly with time,
but have patterns that are closely tied with the network’s
graph topology.

In a previous CDC paper, we undertook numerical anal-
yses of COVID-19 spread counts and also spread-model-
generated data, which suggest that spread snapshots can be
sparsified in graph spectrum bases [7]. Our main aim in
this study is to develop a formal analysis of spread scene
snapshots for data generated by a particular stochastic model
for spread – specifically, an influence or voter model [8]–
[10]. For this model, we statistically characterize the state
snapshot components in the graph spectrum basis, so as to
give insight into sparsification in this basis. Via the formal
analysis and also some examples/simulations, we argue that
spread scenes can be sparsifiable or compressible in the
graph-spectral basis.

The remainder of the article is organized as follows. The
sparsification analysis, and the voter/influence model which
is the focus of this study, are introduced in Section II. The
main analytical results are developed in Section III. Further
interpretations of the sparsity analysis are presented along
with simulations in Section IV.

II. PROBLEM FORMULATION

The goal of our analysis is to understand whether snap-
shots of network spread processes can be sparsified or
compressed in an appropriate basis. Broadly, we consider
spread among a network of N nodes, labeled i = 1, . . . , n.
Each node i has a spread state xi[k] ∈ R associated with it,
which evolves along a clocked time axis (k ∈ Z). In general,
the nodes and their states may represent different constructs
related to a spread process, such as daily infection counts
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in different geographic regions, or binary spread/opinion
statuses of individuals. The states are assumed to evolve with
time via interactions among the nodes defined by a graph
Γ, which may be weighted or unweighted, and directed or
undirected.

The network spread state x[k] =

x1[k]
...

xn[k]

 at particular

snapshot times k is considered. The hypothesis underlying
our work is that these snapshots of the network state,
although highly variable, exhibit patterns that are closely
tied to the network’s graph Γ. In particular, we consider
whether the spread state x[k] is sparse or compressible in a
basis, which is defined from the spectrum of a matrix which
captures the graph structure Γ. To formalize this notion, an
n × n matrix A = [aij ] is defined, which is commensurate
with the graph Γ in the following sense: aij ̸= 0 for i ̸= j
if and only if there is an edge from vertex j to vertex i
in Γ. The matrix A, for instance, may be the Laplacian
matrix associated with the (undirected or directed) graph Γ,
or a nonnegative matrix that encapsulates interactions. Then,
the graph spectrum matrix V is defined to contain the full
spectrum of A, i.e. V is an n×n matrix whose columns are
the eigenvectors and generalized eigenvectors of A.

We are interested in whether network state snapshots
x = x[k] are (approximately) sparse in the graph spectrum
basis [11]. Specifically, the spread state is said to be K-sparse
if a vector s with at most K nonzero entries can be found
(i.e. ||s||0 ≤ K), such that ||x − V s||2 ≤ ϵ for an accuracy
threshold ϵ > 0. It is noted that regularized optimization or
regression algorithms, such as the least absolute shrinkage
and selection operator (LASSO) may be used to compute
the sparse solution [12]. Our primary interest here is in
understanding whether spread process snapshots are in fact
sparsifiable or compressible in graph spectrum bases.

In a prior article, we experimentally assessed compress-
ibility/ sparsifiability of network spread data, including real
COVID-19 infection count data and various model-generated
data, and found that the data was often compressible [7].
In this study, our focus is on developing a formal analysis
of compressibility, in the context of a canonical stochastic
model for spread or influence known as the voter model.

The voter model is a discrete-valued Markov stochastic
automaton, which tracks binary spread/opinion statuses of
individuals or nodes in a network. Formally, within our
framework, the voter model’s network state x[k] evolves as
follows. At an initial time k = 0, the state xi[k] of each node
may be arbitrarily set as either 0 or 1. At each subsequent
time k = 1, 2, 3, . . ., the state of node i is updated via the
following rule:

• A determining or influencing node j = 1, . . . , n is
selected with probability aij , where aij ≥ 0 and∑n

j=1 aij = 1, independently of all other selections. We
note that the influencing node may include the node i
itself.

• The time-k state of node i is set of the time-(k − 1)

state of the influencing node j, i.e. xi[k] = xj [k − 1].
For the voter model, the influence probabilities can be

used to define a weighted digraph that captures the pairwise
interactions among nodes. Specifically, the graph Γ is defined
to have n vertices corresponding to the n nodes; an edge
is drawn from vertex j to i (i ̸= j) if aij > 0, and is
assigned a weight of aij . For the voter model, the influence
matrix A = [aij ] is commensurate with the graph structure;
we primarily consider compressibility/sparsity with respect
to the graph spectrum matrix V for A. We primarily focus
on two broad classes of graphs. First, we consider the case
that the graph is strongly connected and aperiodic, which
we refer to as a strongly-connected voter model. Second,
we consider the case that two nodes are stubborn (i.e. are
not influenced by other nodes) but have paths to all other
vertices in the network graph. We refer to this case as the
stubborn-agents voter model.

The voter model has been used to represent an array
of influence and spread processes in networks, including
decision-making processes within a group, influences of
stubborn/malicious agents on elections, evolution of failure
statuses within interconnected systems, and infection pro-
cesses. In these various contexts, the highly stochastic yet
patterned nature of the state has been observed. Our aim
here is to give a formal analysis for the pattern.

Our primary goal in this paper is to understand whether,
and under what conditions on the influence matrix A, state
snapshots of the voter model are compressible in the graph
spectral basis. Toward this goal, we undertake a statistical
analysis of the state of the influence model in a transformed
coordinate, and use this to gain some insight into the
sparsity/compressibility of voter model states.

III. MAIN RESULTS

A statistical analysis of the voter model is undertaken, to
characterize the compressibility of state snapshots x[k] in the
graph spectrum basis V . As introduced above, compressibil-
ity is concerned with whether the state snapshot x[k] can
be accurately expressed in the form V s, where s has only a
small number of non-zero entries. Noting that the matrix V
is invertible, it is instructive to consider the transformed state
s[k] = V −1x[k] = Wx[k], where W is the left-eigenvector
matrix of A. To understand why, consider the case that the
vector s[k] contains many entries that are near 0. In this case,
the state snapshot x[k] is compressible, since x[k] can then
be approximated well as x[k] = V ŝ[k], where ŝ[k] is formed
by setting the small entries in s[k] to 0. Thus, to understand
compressibility, it is sufficient to evaluate whether or not
s[k] = V −1x[k] contains many nonzero entries.

The vector s[k] = V −1x[k] is stochastic, and hence
characterizing its entries requires a statistical analysis of
s[k]. Here, several statistical analyses are pursued. First,
for the strongly-connected network, the state snapshot x[k]
in the asymptote of large k is shown to be perfectly 1-
compressible, in the sense that only one entry of s[k] is
non-zero almost surely. Then, a two-moment analysis of s[k]
is undertaken, to characterize the expected sizes (norms) of
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the entries in s[k] vs time, for both the strongly-connected
and stubborn-agent networks. Specifically, the mean E(s[k])
is first characterized, to develop conditions under which
state snapshots are necessarily not compressible. Then,
the correlation matrix E(s[k]s′[k]) and covariance matrix
E(s[k]s′[k]) − E(s[k])E(s′[k]) are analyzed. The second-
moment analysis provides insight into compressibility in
two ways. First, small values on the diagonal entries of the
correlation matrix are indicative of compressibility, as they
guarantee that the corresponding entries in s[k] are small
with high probability. Second, uncorrelation of the entries in
s[k] (i.e. small off-diagonal entries in the covariance matrix)
is indicative that the basis V is effective for compression of
x[k], as prior work has shown that whitening bases achieve
optimal or high compressibility [13].

First, we develop a simple result on the compressibility
of state snapshots in the asymptote, when the network graph
is strongly connected. The result depends on the recognition
that the voter model’s node states reach a consensus in the
asymptote; this immediately implies that the transformed
state vector s[k] has at most one non-zero entry. Here is
the result:

Lemma 1: Consider a voter model with a strongly con-
nected network graph. For this model, the transformed state
vector s[k] has at most 1 non-zero entry in the asymptote
k → ∞, in an almost sure sense.

Proof: For a voter model with a strongly connected and
aperiodic network graph, state snapshots x[k] are equal to
either x[k] = 0 or x[k] = 1 almost surely, in the asymptote
of large k; this can be readily argued by considering the
”master” Markov chain description for the state configuration
of the voter model [8]. Next, notice that A has a right
eigenvector equal to 1, and hence V has one column equal to
1. It therefore follows that all rows of W = V −1 except one
row is orthogonal to the vector 1. Therefore, s[k] = V −1x[k]
has at most one entry equal to 1, in an almost-sure sense.

Next, the mean of the transformed state vector s[k]
is characterized, and used to gain some insight into the
compressibility of the network state. The following lemma
presents a formula for the mean of the transformed state
vector:

Lemma 2: For the voter model, the mean of the trans-
formed state vector s[k] is given by

E(s[k]) = JkE(s[0]), (1)

where J = WAV is the Jordan matrix of A.
Proof: The mean of the voter model’s network state

E(x[k]) has been characterized in prior work. Briefly, the
mean can be characterized via a computation of the node
state probabilities P (xi[k] = 1). By conditioning on the
influencing node and using the law of total probability, one
immediately finds that P (xi[k] = 1) =

∑n
j=1 aijP (xj [k −

1] = 1). Noting the E(xi[k]) = P (xi[k] = 1), it follows
that E(xi[k]) =

∑n
j=1 aijE(xj [k − 1]). Assembling these

equations for i = 1, . . . , n into a matrix form, we recover
E(x[k]) = AE(x[k − 1]). Finally, substituting for x[k] in

terms of s[k] yields E(s[k]) = WAV E(x[k−1]). The result
in the lemma follows.

The analysis of the transformed state vector’s mean gives
insight into compressibility, in the sense that it identifies en-
tries that are necessarily large and hence cannot be eliminated
in a compressed approximation. Specifically, if E(si[k]) is
large (i.e. it is not near zero, or has substantial absolute
value), then the random variable si[k] is necessarily nonzero
with substantial probability. On the other hand, if E(si[k])
is near zero, then si[k] may or may not be nonzero with
substantial probability. Hence, large entries in the mean iden-
tify state-snapshot components that are incompressible with
substantial probability, while small entries are indeterminate
with regard to compressibility.

Lemma 2 shows that the entries in the transformed state’s
mean are directly tied to the eigenvalues of the influence
matrix A, and hence the eigenvalues constrain compressibil-
ity of the network spread state. It is helpful to characterize
the eigenvalues, and hence interpret the compressibility of
the network state, for strongly-connected and stubborn-agent
networks:

1). For a strongly connected and aperiodic network, A has
an eigenvalue λ1 = 1 with algebraic multiplicity 1, while the
remaining eigenvalues λ2, . . . , λn are strictly within the unit
circle. Assuming that the initial spread state x[0] and hence
initial transformed state s[0] can be arbitrary, compressibility
is modulated by powers |λ1|k, . . . , |λn|k of the eigenvalues.
Since λk

1 = λ1 = 1, state snapshots have at least one
incompressible component. If in addition all or most of
the terms |λ2|k, . . . , |λn|k are large, then each eigenvector
component in a state snapshot may not be compressible with
substantial probability.

2). For a stubborn-agent network, A has an eigenvalue at
1 with algebraic multiplicity 2 and geometric multiplicity
2; we denote these unity eigenvalues as λ1 and λ2. The
remaining eigenvalues of A are strictly within the unit
circle. Thus, we see that state snapshots have at least two
incompressible components. If in addition all or most of
the terms |λ3|k, . . . , |λn|k are large, then each eigenvector
component in a state snapshot may not be compressible with
substantial probability.

A consequence of the preceding analysis is that compres-
sion of state snapshots is difficult for small time horizons k,
if all or most eigenvalues of A are all close to the unit circle.
This brings forth the question of what conditions on the voter
model yield eigenvalues that are close to the unit circle. The
following are two types of voter models for which A has
eigenvalues near the unit circle, and hence compression in
the graph spectrum basis is limited for small k:

1). Voter models where every node is stubborn, in the
sense that it has a self-influence probability of at least 1− ϵ
for some small ϵ. In this case, it is easy to check that all
eigenvalues λi of A are order O(ϵ) away from the unit circle,
which implies that |λi|k is small only if k > O( 1ϵ ).

2). Voter models whose graphs Γ are small perturbations
of cycle graphs. If Γ is a cycle graph, all eigenvalues of
the influence matrix A lie on the unit circle; thus, upon
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perturbation, the eigenvalues are necessarily near the unit
circle, and again compression may not be possible for
any small k. These slow-settling voter models can have
state snapshots that are difficult to compress for small
time horizons. We note that this analysis holds for both
strongly-connected voter models and stubborn-agent models.

Importantly, the first-moment analysis helps to identify
voter models whose state snapshots are difficult to compress,
but it does not allow characterization of voter models whose
snapshots are easy to compress – even if the mean value of
si[k] is small, it is still possible that state snapshots have a
substantial component in this basis direction at each time.

Next, the second moments of the transformed state vector
are characterized, as a means to develop a more complete
treatment of compressibility. Before presenting the main
results on the second moments, we find it convenient to
define the notion of a second-order state matrix, so as to
simplify the formal presentation.

Definition 1: Consider a voter model with n nodes and
corresponding state matrix A. An n2 ×n2 matrix Â = [âij ],
called the second-order state matrix, is defined as follows:

1). For rows s = t(n+1)−n, t = 1, 2, · · · , the entries at
columns q = c(n+1)−n, c = 1, 2, · · · are set as âsq = atc,
while the remaining entries on these rows are set to 0. 2).
Any other row i of Â is set equal to the ith row of A⊗A,
i.e. Âi = (A⊗A)i where the index i refers to the ith row.

The following main theorem gives the second-moment
statistical analysis of the transformed state s[k]. To sim-
plify the development and presentation of the result, the
second moment matrix E(s[k]s[k]′) is reshaped into a vector
form using a Kronecker product. Specifically, the vector
E(s[k]⊗ s[k]) is considered as an alternative to the second-
moment matrix. The vector contains all second moments (or
correlations) of the transformed state. Therefore, we refer to
the vector as the second moment vector, and use the notation
E(sv[k]) where sv[k] = s[k] ⊗ s[k] for the second-moment
vector. Similarly, a second-moment vector for the original
state is defined as E(xv[k]), where xv[k] = x[k]⊗ x[k]

Here is the main theorem:
Theorem 1: For the voter model, the second moment

vector of the transformed state vector s[k] is given by:

E(sv[k]) = HE(sv[0]) (2)

where H = (V −1 ⊗ V −1)Âk(V ⊗ V ).
The theorem depends on a lemma, given next, which

specifies the second-moment vector of the original voter
model network state x[k].

Lemma 3: For the voter model, the second moment vector
of the voter model state x[k] is given by:

E(xv[k]) = ÂkE(xv[0]) (3)

The proof of the lemma is given first, followed by the
proof of the theorem.

Proof: (Proof of the Lemma). A recursion is developed
for the second-moment vector E(xv[k]). To develop the

recursion, we develop an expression for each expectation in
the time-k second-moment vector in terms of those at time
k. A similar analysis has been done in the thesis [8], so we
give a brief treatment here.

First, let us consider expectations of the form
E(xi[k]xi[k]). Since xi[k] is binary, E(xi[k]xi[k]) =
E(xi[k]). Hence, the expectation is simply the first
moment of node state at time k, which can be expressed
in terms of time-(k − 1) node state expectations as
E(xi[k]) =

∑n
j=1 aijE(xj [k − 1]). Therefore, we find that

E(xi[k]xi[k]) =
∑n

j=1 aijE(xj [k − 1]xj [k − 1]).
Next, let us consider expectations of the form

E(xi[k]xj [k]), which are equal to the probability
P (xi[k] = 1, xj [k] = 1). By conditioning on the
influencing nodes for nodes i and j, we obtain that
P (xi[k] = 1, xj [k] = 1) =

∑n
p=1

∑n
m=1 aipajmP (xp[k −

1] = 1, xm[k − 1] = 1), which therefore yields that
E(xi[k]xj [k]) =

∑n
p

∑n
m aipajmE(xp[k − 1]xm[k − 1]).

By assembling the expectations on the right side of the
equation into a vector, the equation can be rewritten as
E(xi[k]xj [k]) = Ai ⊗AjE(xv[k − 1]).

Finally, stacking the expressions for each second moment,
we readily obtain that E(xv[k]) = ÂE(xv[k − 1]). The
lemma result follows.

Proof: (Theorem Proof). Substituting s[k] = V −1x[k]
into E(sv[k]) produces E(sv[k]) = (V −1 ⊗ V −1)E(xv[k]).
Applying E(xv[k]) = ÂkE(xv[0]) yields E[xv[k]] =
(V −1 ⊗ V −1)ÂkE(xv[0]). With a further substitution
xv[0] = (V ⊗ V )sv[k], the theorem is verified.

The second moment analysis is of central importance in
understanding sparsity or compressibility of network state
snapshots x[k] in the graph spectrum basis. In particular, the
second moments are relevant in two senses.

First, the second moments of each transformed state vari-
able (E(si[k]

2)) are an indication of the expected two-norm
of each entry in the transformed state vector, or equivalently
the energy of the component of x[k] in the corresponding
basis direction. Therefore, if many of these entries in the
second-moment vector or second-moment matrix are small,
it follows that network state snapshots x[k] are compressible.
Alternately, if most entries are large, then x[k] is not easily
compressible in this basis. Therefore, the second-moment
analysis gives a direct indication of compressibility of the
state snapshots. The result in Theorem 1 gives a method
for computing the second moments, and hence gauging
compressibility/sparsity; we demonstrate this in an example
later in the section. The expression also holds promise to
give characterizations for compressibility in terms of the
network graph, although we have not yet been able to
develop a full characterization. Roughly, Theorem 1 suggests
that the eigenvalues of A should have a bearing on com-
pressibility, since H = (V −1 ⊗ V −1)Âk(V ⊗ V ) may be
approximately viewed as a diagonalizing the matrix A⊗A;
this is however a crude approximation, as Â differs from
A ⊗ A. In the asymptote of large k, the second-moment
analysis simplifies further. In particular, let us consider the
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asymptotic second-moment analysis for the stubborn-agents
voter model (since the asymptotics of the strongly connected
model have already been characterized). It can be shown
that Â has two eigenvalues at 1 in this case (see [10],
whose corresponding eigenvectors determine the steady-state
second moment vectors. This simple calculation therefore
can be used to gain insight into the compressibility of state
snapshots in the asymptote – further details are omitted.

Additionally, the second-moment analysis gives insight
into compressibility, with respect to the appropriateness of
the graph spectrum basis for compression. Prior work has
shown that basis transformations that whiten stochastic vec-
tors, i.e. make the components uncorrelated, tend to optimize
compressibility or sparsity [13]. Thus, in our setting, if the
matrix H is diagonal or diagonally dominant, the entries
in the transformed state vector would be uncorrelated under
broad conditions on the initial state. Thus, if this is the case,
the transformation is serving to decorrelate the node states,
and hence should be well suited for sparsification. Toward
understanding whether the transformation is whitening or
decorrelating the data, it is also helpful to consider the
autocovariance rather than the autocorrelation. The autoco-
variance can be readily computed based on the first- and
second- moment analysis.

Example 1: A stubborn-agents voter model with 4 nodes
is analyzed to assess and illustrate the sparsity of the second
moment of s[k]. The corresponding state matrix is considered
shown: 

1 0 0 0
0.5 0.2 0 0.3
0.4 0 0 0.6
0 0 0 1

 (4)

The initial state is selected as x[0] =
[
0 0 0 1

]
, Figure

1 illustrates the amplitudes of the entries in E(s[k]s[k]′) at
time k = 1000. Each block is colored based on the numerical
values of the entries located in the corresponding position in
the second-moment matrix.

Fig. 1. Visualization of compressibility of a state snapshot at time 1000.
The correlation matrix of s[k] only 3 non-zero entries: E[s[k]s′[k]]11 =
0.24, E[s[k]s′[k]]22 = 0.2344, and E[s[k]s′[k]]44 = 1.5006.

As expected, the correlation matrix provided by reshaping
the second-moment vector of s[k] presents a high sparsity

display. Specifically, zero entries on the off-diagonals nu-
merically support the efficiency of the graph spectrum bases.
Also, only one diagonal entry is large, with two others small
and one vanishingly so. This structure indicates the sparsity
or compressibility of the state in this basis.

Figure 2 visualizes the sparsity of the matrix H . As
discussed above, the structure of H is of interest in assessing
compressibility/sparsity, as it decides how the initial corre-
lation vector of s[0] is scaled to determine the time k trans-
formed state. As shown in the figure, the matrix indicates
the sparsity and diagonal dominance of the H matrix, which
also reflects the possibility for sparsity/compressibility.

Fig. 2. Visualization of the sparsity of the H matrix. Four diagonal entries
with fixed value 1 hold on any snapshot time.

IV. SIMULATIONS

Compression of state snapshots in the graph spectrum
basis is demonstrated for a stubborn-agents voter model
with 200 nodes, whose graph is a line. Specifically, nodes
1 and 200 are stubborn and maintain the states of 0 and
1 respectively, i.e. their self-influencing probabilities are
always set to 1. Other nodes will either copy neighbors’ states
with a probability of 0.4 or maintain the previous state with
a probability of 0.2, as shown in Figure 3.

Fig. 3. Visualization of 200 nodes line case graph.

Sparsification of state snapshots is undertaken for this
example, and the accuracy of the sparse approximations is
illustrated. Specifically, a state snapshot of the 200-node net-
work state at a specific time k = 500 (blue line) is compared
with a 35-sparse approximation (red line), obtained via the
LASSO algorithm (Figure 4). The sparse approximation is
seen to effectively approximate the voter model state.

Also, a family of sparse approximations with different
sparsity levels is generated using LASSO. The mean-square
errors of the approximations are shown as a function of the
sparsity level (number of non-zero entries) in Figure 5. As
the number of non-zero entries increases, the approximation
becomes rapidly more accurate.

The analyses are repeated for a state snapshot at time
k = 1000. Again, a small number of basis vectors is able
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Fig. 4. A state snapshot at a time k=500 and a 35-sparse approximation
(35 non-zero entries).

to approximate the state snapshot, although different basis
vectors arise in the approximation.

Fig. 5. The mean square error of a sparse approximation is shown as a
function of the sparsity level (number of nonzero entries).

Fig. 6. A state snapshot at a time k=1000 and a 33-sparse approximation
(33 non-zero entries).

V. CONCLUSION

The compressibility of spread processes, modeled using
a voter model, is studied using statistical characterizations
of the model statistics characterizations. Specifically, the
compressibility of the voter model’s state snapshot is exam-
ined via a first- and second- moment analysis of the state,
and also via numerical simulation of the voter model. The
analysis suggests that there is a connection between the graph

.

Fig. 7. The mean square error of a sparse approximation at k=1000.

topology and compressibility; formalizing this connection is
an important direction of future work.

One practical benefit of compressibility lies in the possibil-
ity to estimate or recover spread state snapshots from sparse
observations, which would then allow situational awareness
about the spread from limited measurements. The sparse re-
covery of state snapshots, given compressibility, derives from
the classical work on compressive sensing [11]. We leave it to
future work to formalize the benefits of compressibility from
a sparse recovery standpoint, as well as other applications of
the compressibility analysis.
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