
Navigation with shadow prices to optimize multi-commodity flow rates

Ignacio Boero1,2, Igor Spasojevic1, Mariana del Castillo2 George Pappas1, Vijay Kumar1, Alejandro Ribeiro1

Abstract— We propose a method for providing communica-
tion network infrastructure in autonomous multi-agent teams.
In particular, we consider a set of communication agents that
are placed alongside regular agents from the system in order
to improve the rate of information transfer between the latter.
In order to find the optimal positions to place such agents, we
define a flexible performance function that adapts to network
requirements for different systems. We provide an algorithm
based on shadow prices of a related convex optimization
problem in order to drive the configuration of the complete
system towards a local maximum. We apply our method to
three different performance functions associated with three
practical scenarios in which we show both the performance
of the algorithm and the flexibility it allows for optimizing
different network requirements.

I. INTRODUCTION

Autonomous multi-agent systems have lately found ap-
plications in numerous challenging tasks. Examples include
a team of robots mapping an unknown or disaster-stricken
environment, performing surveillance missions, and carrying
out search and rescue operations. A key hurdle lies in the fact
that individual agents have to make decisions with outdated
or even missing information from their teammates. This is
due to the inherent problem that communications cannot be
instant. To overcome this issue, a large body of research has
been done on developing algorithms to take optimal decisions
with the available information. A parallel line of works
seeks to improve the communication network infrastructure
formed by a multi agent system, with the aim of making
communications faster and more reliable.

This paper belongs to the second line of research. A
common approach to solving this problem involves deploy-
ing a second team of agents whose purpose is to provide
network infrastructure for the first team [1]–[5]. The problem
then amounts to positioning the newly deployed agents in
order to allow the greatest amount of communication flow.
Previous work has predominantly focused on maximizing the
connectivity of the graph defined by the spatial configuration
of agents [6]–[9]. This line of works relies heavily on
quantities from algebraic graph theory that capture a notion
of connectivity. Indeed, one common figure of merit for
the connectivity of a graph is the second eigenvalue of
its Laplacian. The latter can be computed efficiently, and
many approaches solve the problem by finding methods to
maximize the second eigenvalue. Although such a notion

This work was supported in part by NSF Grant CCR-2112665. 1Authors
are with the Department for Electrical and Systems Engineering,
University of Pennsylvania, USA; 2Authors with the Institute of
Electrical Engineering, Universidad de la República, Uruguay; iboero,
mdelcastillo@fing.edu.uy, igorspas, pappasg,
kumar, aribeiro@seas.upenn.edu

of connectivity is attractive in that it captures a complex
notion with a single number, we believe that resulting
solutions often suffer from lack of flexibility to adapt to
different communication requirements that a multi agent
system needs. In our work, we consider a solution that
captures a more complete notion than only of connectivity.
This has been previously done by [5], nonetheless we differ
in that we depart from the assumption that we know the
minimum desired communication rate for each agent, which
many times is not the case. This modifies the framework
from restricting agents movement to feasible configurations
to moving in directions that maximize an objective.

In particular, we define the figure of merit for a given con-
figuration of agents using the solution of a Multi-Commodity
Flow Problem. Multi-Commodity Flow Problems (MCFP)
are widely used in many areas [10], [11], including network
modeling [12], [13]. It consists of a graph and a set of
commodities, where a commodity can model the “supply” of
information from some nodes, usually named source nodes,
to other “demand” nodes, named sink nodes. The restrictions
on this problem are that there is a cost associated for a
commodity to flow from one node to another, and edges
between nodes have limitations on how much cost they
can withstand. Then, the problem is to maximize a utility
function that increases with the amount of commodities
that can be pushed from sources to sinks, while respecting
given edge capacities. This model bears a straightforward
translation to our problem. In our setting, the graph is defined
by the spatial configuration of the agents, the commodities
are information being transmitted between agents, and the
capacity constraints between nodes are the link capacities
between agents. Then, the performance of a configuration is
given by the value of the utility function for the solution of
that MCFP. The flexibility of this figure of merit lies in the
fact that different agents can be selected as source or sink
agents. Furthermore, the options for the utility function can
capture a range of different modelling aspects that are more
refined than mere graph connectivity.

Having defined the figure of merit, we present an algo-
rithm that from random initial positions moves select agents
to positions that locally maximize the utility of the MCFP.
When moving an agent, we perturb the capacity constraints
of the MCFP, as we increase the link between the moved
agent and the agents to whom the distance decreased, and
vice-versa. Then, the dilemma is to choose which link to
increase in order to maximize the value of the MCFP. For
doing that we rely on perturbation theory, which establishes
that dual variables associated with a constraint are closely
related to the gain of relaxing that constraint [14]. We then

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 253

do numerical experiments which demonstrate the efficacy of
the algorithm, as it consistently increases the utility function
of the MCFP on all experiments. Ultimately, we show the
flexibility of this approach, illustrating how different practical
scenarios can lead to different definitions for the MCFP,
which in turn leads to different solutions of the algorithm.

Regarding the rest of the paper, in section II we give
the mathematical formulation for a general figure of merit
defined by a MCFP. In section III we explain the proposed
method, and provide a mathematical justification. In section
IV we apply the algorithm to different use cases involving
various practically-motivated static scenarios, and we finish
with a test of our approach on a dynamic scenario. Finally,
in section V we summarize our findings and propose future
work.

II. DYNAMIC MULTI-COMMODITY FLOW PROBLEM

We consider a maximum multi-commodity flow problem
on a dynamic graph G = (V,E), with vertex set V and edge
set E . Vertices in V correspond to agents in a robot team
whose configurations determine capacities of edges in E .
Letting |V|= N, we identify V with [N] = {1,2, ...,N}, and
denote the configuration of agent i ∈ [N] by xi ∈ R2. The
capacity function

c : R2×R2→ R++ (1)

constrains the maximum amount of cumulative flow along
any edge (i, j)∈ E ⊆ V×V by c(xi,x j). Here, c is a positive
differentiable function, with c(x,y) decreasing in ||x− y||2
for fixed x (or y) and fixed (x−y)/||x−y||2. Letting I ⊆ V
denote agents with controllable configurations, we solve:

max
(xi)i∈I

Φ(x1:N) (DMCF)

where Φ represents the value of the following generalized
multi-commodity flow problem

Φ(x1:N) = max
r∈[0,1]N×N×K , a∈RN×K

+

U
(
(ak

i) k∈A, i∈Sk

)
s.t.

ak
i ≤

N

∑
j=1

r(k)i, j −
N

∑
j=1

r(k)j,i ∀k ∈ A, ∀i ∈ Sk

N

∑
j=1

r(k)i, j −
N

∑
j=1

r(k)j,i = 0 ∀k ∈ A, i ∈ I

∑
k∈A

r(k)i, j ≤ c(xi,x j) ∀i, j ∈ V.

(P-MCF)
In the latter, A = V \I represents the subset of agents that
need to exchange information. We have one commodity for
each agent in A, indexed by k ∈A, and let K := |A| denote
the total number of commodities. We also let I := |I|, and
note that N = K+ I. For commodity k, agents in Sk ⊆A act
as source nodes while the rest of the agents in A act as sinks.
This is (implicitly) encoded by the first constraint of Problem
P-MCF. In any flow, agents in I are relay nodes. They

neither generate nor accumulate information, as described
by the second constraint of the problem. The edge capacity
between any two agents represents the maximum rate at
which they can send information between themselves across
all flows. The latter is captured by the third constraint of
Problem P-MCF. Ultimately, the objective of P-MCF is a
general one in that we only require concavity of the global
utility function U . Classical maximum multi-commodity flow
problems focus on cases where U is the sum of (ak

i)k∈A,i∈Sk .
The present formulation allows us to generalize this to other
measures of team performance, as we will see in section IV.

Our problem is dynamic due to edge capacities being a
function of the positions of the agents, which can be varied.
This differs from usual multi-commodity flow problems in
which the capacity constraints are fixed, and only the flows
can be optimized. The set of decision variables therefore
consists of positions of agents in I, denoted by (xi)i∈I ,
as well as (r(k)i, j)i, j∈V,k∈A, the flow for each commodity k
being transmitted between each pair of agents (i, j), and
(ak

i)k∈A,i∈Sk , the amount of commodity k generated by agent
i. We also introduce vector notation for the latter two
variables, where r ∈ [0,1]N×K×K collects r(k)i j in ascending
lexicographic order, first by source i, then by sink j, and fi-
nally by commodity k, while a∈RN×K

+ arranges ak
i similarly,

first by agent i and then by commodity k.

III. SHADOW PRICE ASCENT ALGORITHM

A. Proposed Algorithm

As c(x,y) cannot be a concave function, (DMCF) is in
general a non-convex problem. As a result, we develop an
algorithm for finding a first order stationary point. We use
an iterative method where at each step we solve the dual
problem of P-MCF, and update the positions of (xi)i∈I along
a direction of local increase. The dual of P-MCF is given by:

D∗(x1:N) = min
λ∈R|Sk |×K

+ ,

µ∈RK×I
+ ,

ν∈RN×N

D(λ,µ,ν,x1:N)

= min
λ∈R|Sk |×K

+ ,

µ∈RK×I
+ ,

ν∈RN×N

max
r∈[0,1]N×N×K

a∈RN×K
+

L(λ,µ,ν,a,r,x1:N),

(D-MCF)
where L is the Lagrangian of (P-MCF) defined as:

L(λ,µ,ν,a,r,x1:N) = U
(
(ak

i) ∀k∈A, i∈Sk

)
− ∑

i∈Sk,k∈A
λ

k
i [a

k
i − (

N

∑
j=1

rk
i, j−

N

∑
j=1

rk
j,i)]

− ∑
i∈I,k∈A

ν
k
i [

N

∑
j=1

r(k)i, j −
N

∑
j=1

r(k)j,i]

− ∑
i, j∈V

µi, j[(∑
k∈A

r(k)i, j)− c(xi,x j)].

(2)
The dual variables λ ∈ R|Sk|×K

+ , ν ∈ RN×N , µ ∈ RK×I
+ are

associated with constraints one, two, and three, respectively.

254

In light of the fact that c > 0, it is not difficult to show
that (P-MCF) is a convex program for which Slater’s
condition holds. In particular, it has zero duality gap.
Solving the dual problem D-MCF is therefore equivalent to
solving the primal. Nevertheless, for our purposes it is more
convenient as it allows us to readily extract the sensitivity
of the objective of the team problem DMCF with respect to
configurations of controllable agents.

Proposition 1. Let {µ∗i j(x1:N)}i, j∈V be the solution to
(D-MCF) for a given set of positions x1:N . Then ∂Φ/∂X ∈
(R2)I given by(

∂Φ

∂X

)
i

∣∣∣∣
x1:N

= ∑
j∈V

(µ∗i j(x1:N)+µ
∗
ji(x1:N))∇xic(xi,x j)|x1:N

(3)
with i ∈ I is a direction of local increase for DMCF.

Algorithm 1: Shadow Price Ascent

Input: XV\I , X0
I , α , tol

1 XI ← X0
I

2 Φ0←−∞, ∆Φ←+∞

3 (C)i j← c(xi,x j) ∀xi,x j ∈ XV
4 (∂C)i j← ∇xic(xi,x j) ∀xi,x j ∈ XV
5 t← 0
6 while |∆Φ| ≥ tol do
7 (µ∗,Φt+1)← Solve-DMCF(C)
8 for i ∈ I do
9

(
∂Φ

∂X

)
i
← ∑ j∈V(µ

∗
i j +µ∗ji)(∂C)i j

10 XI ← XI +α ∗
(

∂Φ

∂X

)
I

11 (C)i j← c(xi,x j) ∀xi,x j ∈ XV
12 (∂C)i j← ∇xic(xi,x j) ∀xi,x j ∈ XV
13 t← t +1
14 ∆Φ←Φt+1−Φt

Our approach is summarized in Algorithm 1. From a high
level, it is a gradient ascent method. Lines 1−5 initialize all
variables. Thereafter, until the change in the team objective
function Φ drops below the specified tolerance value tol,
the algorithm calculates a local direction of ascent by using
the dual variables in an optimal solution to problem D-MCF
obtained by the interior point solver MOSEK [15]. We refer
to the latter sub-procedure by the method “Solve-DMCF”; it
takes as input a graph with fixed edge capacities, and outputs
the optimal flows along every edge, the team value function,
as well as the optimal dual (Lagrangian) variables for every
constraint. Lines 10−12 then leverage the dual variables to
perform the gradient ascent step using a stepsize α that is
tuned for the family of problems at hand.

B. Intuition behind the direction of local increase

Any algorithm that seeks to maximize the cumulative
capacity of the network connecting the agents faces a trade-
off. In order to maximize the rate of information transfer

between agent i and j, it needs to update the position of
agent i in the direction of the gradient of c(xi,x j) w.r.t
xi. Nonetheless, it is easy to see that this heuristic can be
problematic, as maximizing the quality of the connection
between one pair of agents could easily diminish the quality
between another. A simplistic approach would be to move
agent i along the average of the gradients of c(xi,x j) w.r.t xi
across all j. However, this approach would miss important
information regarding the complexity of how information
flows through the network. In particular, if a link is a
bottleneck in the network, it would be desirable to increase
its capacity before that of others. Our algorithm attacks this
problem via leveraging a well known concept on constrained
optimization - the sensitivity of the perturbation function. In
a constrained optimization problem in which strong duality
holds, the dual variable associated with a constraint can be
seen as the sensitivity of the primal function to perturbations
of the value of the bound in that constraint. Bottlenecks
manifest as the edges to which the primal function displays
maximal sensitivity, thereby emerging as most influential
during the update of agent positions.

IV. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments to show
the performance of our algorithm. First, we set several
parameters that will be used throughout all experiments. We
use the capacity function

c(x,y) = exp

(
−
(
||x−y||2

d0

)D
)

(4)

Intuitively, D captures the shape of the fading of the capacity
of the link between a pair of agents as function of their
distance, whereas d0 captures the characteristic length scale
of the decay. In all experiments, the density of agents ρ is the
same; the size of the area in which agents are spawned will
depend on the number of agents. We set ρ = 1 agents/km2,
D = 2, and d0 = 1km. A plot of the rate function is shown
in Figure 1. We used the step size α = 0.4, scaling it by

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Distance (km)

0.0

0.2

0.4

0.6

0.8

1.0

L
in

k

Link as a function of time

Fig. 1: Function c(x,x) from equation (4) with D = 2 and d0
= 1km

the value of 0.97 after every iteration. For all experiments
we restrict the utility function of the P-MCF to a linear
combination of the minimum ak

i of each commodity k.

255

Therefore it is defined as

U
(
(ak

i) k∈A, i∈Sk

)
= ∑

k∈A
ωk min

i∈Sk
ak

i

We present three distinct study cases where the merit
function above can be used to model different network
requirements.

1) Ad-Hoc Networking: The agents represent a mobile
Ad-Hoc Network; they navigate together and need to remain
connected with as much network capacity as possible. In this
case, we set ω = 1, weighing all commodities equally.

2) Routing to infrastructure AP: A set of agents is per-
forming a task where they need to maintain communication
with an access point (AP). This setting can arise in scenarios
where agents carry out a search and rescue mission in a
remote area, and need to relay local information to an AP.
There is only one sink, and so only one commodity is
required. Therefore, ω is set to be all zero except for the
j-th entry, corresponding to the AP, which is set to 1.

3) Distributed Algorithm: Agents are running a dis-
tributed algorithm that periodically needs to update informa-
tion from surrounding agents. We set ω to be a time-varying
vector, whose entries associated with agents that need to
update their information for a given instant are set to one,
with remaining entries set to zero.

In the remaining part of this section, we use the previous
three study cases to show multiple properties of our method.

A. Performance

We start by showing results for several scenarios with
a small number of agents, in which the form of optimal
solutions can be gauged by inspection. In all such setups, we
use the first study case, setting ω = 1. We reserve the term
“network agents” for agents in the controllable subset I ⊆V ,
and the term “task agents” for those in subset V \ I ≡ A.
First, we consider a problem with two task agents and one
network agent. The expected result is for the network agent
to be placed in the middle of the segment formed by its
teammates. The next scenario is composed of four task
agents forming a square shape, and two network agents.
Here, the intuitive solution is to place the latter pair close to
the middle of the square. The last scenario also involves four
task agents; now, however, three of them are close together,
while the fourth one is far away. The last example serves
to illustrate an important aspect of the utility function. We
defined it to be the sum of ak, where ak is the minimum ak

i
across all i∈ Sk (in this case Sk =A\{k}) for commodity k.
Therefore, if one agent is disconnected from the rest, it will
lead to ak = 0. For this reason, we expect the algorithm will
connect this agent to its teammates, in order to increase ak.
Figure 2 illustrates outputs of the algorithm running in these
three scenarios. In all cases, expected behaviour emerges.
Furthermore, the team utility function increases with the
number of iterations, thus providing reassuring evidence of
the soundness of the algorithm.

0.0 0.5 1.0 1.5

X position (km)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y
p

os
it

io
n

(k
m

)

Initial positions
TA

NA

0.0 0.5 1.0 1.5

X position (km)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Y
p

os
it

io
n

(k
m

)

Final positions
TA

NA

0 25 50 75 100

Iteration

1.00

1.25

1.50

1.75

2.00

2.25

2.50

P
er

fo
rm

an
ce

Performance function

0.0 0.5 1.0 1.5 2.0

X position (km)

0.0

0.5

1.0

1.5

2.0

Y
p

os
it

io
n

(k
m

)

Initial positions
TA

NA

0.0 0.5 1.0 1.5 2.0

X position (km)

0.0

0.5

1.0

1.5

2.0

Y
p

os
it

io
n

(k
m

)

Final positions
TA

NA

0 25 50 75 100

Iteration

2.0

2.5

3.0

3.5

P
er

fo
rm

an
ce

Performance function

0.0 0.5 1.0 1.5 2.0

X position (km)

0.0

0.5

1.0

1.5

2.0

Y
p

os
it

io
n

(k
m

)

Initial positions
TA

NA

0.0 0.5 1.0 1.5 2.0

X position (km)

0.0

0.5

1.0

1.5

2.0

Y
p

os
it

io
n

(k
m

)

Final positions
TA

NA

0 25 50 75 100

Iteration

0.50

0.75

1.00

1.25

1.50

1.75

P
er

fo
rm

an
ce

Performance function

Fig. 2: Test with small teams of task and network agents in
various configurations. The first row involves two task agents
and one network agent. The second row has four task agents
arranged in a square and two network agents. The third row
corresponds to a scenario with four task agents, where one
is separated from the other three, and two network agents.
In all cases, the first column depicts initial positions of all
agents, the second column the positions of networks agents
adjusted by the algorithm, and the third column the evolution
of the team utility function with the number of iterations.

B. Flexibility

We consider two scenarios, in each of which we run the
algorithm three times, using the same task agent configu-
ration, but varying the utility function. In the first run of
the algorithm, we use the all-ones weight vector, simulating
the first study case. For the next two runs, simulating the
second study case, we choose a different task agent to play
the role of the AP. In the first scenario, we use 5 task agents
and 4 network agents, and in the second scenario we use
25 task agents and 10 network agents. The positions of
network agents computed by our algorithm are shown in
Figure 3. We can observe a marked difference in solutions
for each case. While using ω = 1, the solution exhibits higher
spatial dispersion, in line with the intuitive goal to connect
all agents. However, when there is only one commodity in
the objective, the communication agents are placed closer to
the agent playing the role of the AP.

We also repeat the latter experiment, this time comparing
the first case study with the third. Figure 4 shows how,
once again, different solutions are reached, where in cases
where commodities are restricted to a few task agents, the
communication agents end up placed close to them.

256

0 1 2 3

X position (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Y

p
os

it
io

n
(k

m
)

TA

NA

0 1 2 3

X position (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y
p

os
it

io
n

(k
m

)

TA

NA

AP

0 1 2 3

X position (km)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Y
p

os
it

io
n

(k
m

)

TA

NA

AP

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)
TA

NA

AP

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

AP

Fig. 3: Test with one commodity in the objective. The first
row corresponds to 5 task agents and 4 network agents. The
second row involves 25 task agents and 10 network agents.
In both cases, the first column is the solution with all weights
equal to one. In the second and third column, the weight of
the commodity of one randomly selected task agent was set
to one, while the rest were set to zero.

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

Sinks

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

Sinks

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

Sinks

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

TA

NA

Sinks

Fig. 4: Test comparing different utility functions. Both rows
illustrate examples with 25 task agents and 10 communica-
tion agents. In the first column all 25 commodities are active,
whereas in the second and third 5 out of the 25 commodities
are active.

C. Scalability

Our final goal was to determine how the computational
performance of our method scales with the number of
agents/size of the graph. To this end, we ran 100 simulations
for different numbers of task agents, and computed the
average time it took to solve an MCFP of that size. In all
cases, the number of communication agents was half the
number of task agents, and the weight vector was set to
one. The results are shown in Table I. We show examples
for 30, 35 and 45 agents in Figure 5. Furthermore, we can
see how the algorithm places network agents in positions that
increase the utility function with the number of iterations of
the algorithm.

Task Agents Time to solve MCFP
A=2 (0.0005 ± 0.0001) s
A=5 (0.0014 ± 0.0002) s
A=10 (0.0173 ± 0.0006) s
A=20 (0.20 ± 0.02) s
A=25 (0.42 ± 0.05) s
A=30 (1.0 ± 0.1) s

TABLE I: The presented values are the average times calcu-
lated for solving a MCFP for different sizes. For each number
of task agents we run 50 different scenarios, and solved 10
MCFP for each. In all cases the number of communication
agents is half the number of task agents, rounded down
on even cases. Experiments were run on an AMD Ryzen
Threadripper PRO 3995WX 64-Cores.

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

Initial positions
TA

NA

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

Final positions
TA

NA

0 25 50 75 100

Iteration

0.1

0.2

0.3

0.4

0.5

P
er

fo
rm

an
ce

Performance function

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

Initial positions
TA

NA

0 2 4

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

Final positions
TA

NA

0 25 50 75 100

Iteration

0.05

0.10

0.15

0.20

P
er

fo
rm

an
ce

Performance function

0 2 4 6

X position (km)

0

1

2

3

4

5

6

Y
p

os
it

io
n

(k
m

)

Initial positions
TA

NA

0 2 4 6

X position (km)

0

1

2

3

4

5

6

Y
p

os
it

io
n

(k
m

)

Final positions
TA

NA

0 25 50 75 100

Iteration

0.1

0.2

0.3

0.4

P
er

fo
rm

an
ce

Performance function

Fig. 5: Test with weight vector equal to one. The first row
involves 20 task agents and 10 network agents, and the
second involves 25 task agents and 10 network agents. The
third row corresponds to 30 task agents and 15 network
agents. In all cases the first column depicts initial positions of
all agents, the second column the output of the algorithm, and
the third column the evolution of the performance function.

D. Mobility

We lastly show how the algorithm may be used in a
dynamic scenario. For these simulations, we run two parallel
threads. The first thread updates the positions of all agents
every ∆T seconds. The positions to which task agents are
updated follow a trajectory given by a random acceleration
model. The equations of this model for agent i ∈ A are

vi(t +∆T) = vi(t)+ai(t)∆T (5)

xi(t +∆T) = xi(t)+vi(t)∆T +
1
2

ai(t)∆T 2 (6)

257

where ai(t)∼N (0,aI2). To maintain the density ρ constant,
we limit the area in which task agents can navigate. In case
they hit one of the walls, we change the sign of their velocity
to generate a “bouncing” effect. The directions along which
positions of network agents are updated are determined by
the second thread. Letting d be that direction, the positions
are updated as a step in that direction with norm bounded
by vmax. Here vmax is a bound on the speed of the agents.
The equation for updating the position of agent i ∈ I is

xi(t +∆T) = xi(t)+min(||d||,vmax)
d
||d||

∆T. (7)

Initial positions for task agents X0
A are randomly sampled,

while initial positions for network agents X0
I are obtained by

finding optimal positions for X0
A before the simulation starts.

The second thread involves iteratively sampling agent posi-
tions for a given instant, solving the MCFP and outputting
the directions of local increase for the network agents. These
directions are the directions d previously mentioned.

We run the scenario simulating case study two. The agent
that plays the role of the AP is fixed in space. We use
∆T = 0.2s, a = 0.01km/s2 and vmax = 90m/s. We simulate
for 20 seconds. Snapshots of the simulations are shown in
Figure 6. We observe how the performance drops in between
second 8 and 12 of the simulation. That can be attributed to
two task agents that separate from the swarm towards the
upper right and lower left corner, as can be seen on Figure
6. Nonetheless, the network agents close to them move in
direction of those distant agents so as to connect them back
to the sink, thus recovering the performance function.

0 1 2 3 4 5

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

t = 0 s
TA

NA

AP

0 1 2 3 4 5

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

t = 4 s
TA

NA

AP

0 1 2 3 4 5

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

t = 8 s
TA

NA

AP

0 1 2 3 4 5

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

t = 12 s
TA

NA

AP

0 1 2 3 4 5

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

t = 16 s
TA

NA

AP

0 1 2 3 4 5

X position (km)

0

1

2

3

4

5

Y
p

os
it

io
n

(k
m

)

t = 20 s
TA

NA

AP

Fig. 6: Test for the dynamic scenario simulation. Each frame
corresponds to a snap shot of agents configuration for given
instants.

V. CONCLUSION

We presented a novel method for tackling the problem of
providing dynamic communication infrastructure for a team
of agents. Our approached leveraged the fact that we can
extract directions of local increase of the objective function
using the dual solution of a closely related convex optimiza-
tion problem. We showed the efficacy of our algorithm on a

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (s)

0.14

0.16

0.18

0.20

0.22

0.24

P
er

fo
rm

an
ce

F
u

n
ct

io
n

Fig. 7: Utility as a function of time for the dynamic scenario
simulation.

range of different scenarios in simulation, demonstrating the
scalability of the method to large teams of agents. Future
work will include using learning techniques to decrease
the running time of computing the solution to the Multi-
Commodity Flow Problem, as well as using different utility
functions to model a wider range of practical scenarios.

REFERENCES

[1] D. Mox, M. Calvo-Fullana, M. Gerasimenko, J. Fink, V. Kumar, and
A. Ribeiro, “Mobile wireless network infrastructure on demand,” in
2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020, pp. 7726–7732.

[2] E. Stump, A. Jadbabaie, and V. Kumar, “Connectivity management
in mobile robot teams,” in 2008 IEEE International Conference on
Robotics and Automation, 2008, pp. 1525–1530.

[3] J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Concurrent control of
mobility and communication in multirobot systems,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1248–1254, 2017.

[4] J. Fink, A. Ribeiro, and V. Kumar, “Robust control of mobility and
communications in autonomous robot teams,” IEEE Access, vol. 1, pp.
290–309, 2013.

[5] M. M. Zavlanos, A. Ribeiro, and G. J. Pappas, “Network integrity in
mobile robotic networks,” IEEE Transactions on Automatic Control,
vol. 58, no. 1, pp. 3–18, 2013.

[6] M. M. Zavlanos, M. B. Egerstedt, and G. J. Pappas, “Graph-theoretic
connectivity control of mobile robot networks,” Proceedings of the
IEEE, vol. 99, no. 9, pp. 1525–1540, 2011.

[7] Y. Kim and M. Mesbahi, “On maximizing the second smallest eigen-
value of a state-dependent graph laplacian,” in Proceedings of the
2005, American Control Conference, 2005. IEEE, 2005, pp. 99–103.

[8] M. M. Zavlanos and G. J. Pappas, “Controlling connectivity of
dynamic graphs,” in Proceedings of the 44th IEEE Conference on
Decision and Control. IEEE, 2005, pp. 6388–6393.

[9] D. Mox, V. Kumar, and A. Ribeiro, “Learning connectivity-
maximizing network configurations,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5552–5559, 2022.

[10] T. A. Feo and J. F. Bard, “Flight scheduling and maintenance base
planning,” Management Science, vol. 35, no. 12, pp. 1415–1432, 1989.

[11] L. Foulds, “A multi-commodity flow network design problem,” Trans-
portation Research Part B: Methodological, vol. 15, no. 4, pp. 273–
283, 1981.

[12] A. A. Assad, “Multicommodity network flows—a survey,” Networks,
vol. 8, no. 1, pp. 37–91, 1978.

[13] I. Ali, D. Barnett, K. Farhangian, J. Kennington, B. Patty, B. Shetty,
B. McCarl, and P. Wong, “Multicommodity network problems: Ap-
plications and computations,” IIE Transactions, vol. 16, no. 2, pp.
127–134, 1984.

[14] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[15] M. ApS, The MOSEK optimization toolbox for C++ manual. Version
9.0., 2022. [Online]. Available: http://docs.mosek.com/10.0/toolbox/
index.html

258

