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Abstract— This article explores different methods of con-
straining the terminal state of nonlinear stochastic systems
and presents the results of the Distributionally Constrained
Convex Duality Optimal Control (DC-CDOC) for each case.
Specifically, we consider: (a) almost surely equality constraints
on the terminal state, (b) constraints on the expected value
of the terminal state, and (c) constraints on the probability
distributions of the terminal state, both (i) under the total
probability measure and (ii) under all conditional probability
measures. For each case, the associated optimal control problem
is formulated as a convex linear program on the space of Radon
measures, and by exploiting the duality relations between
the space of measures and that of continuous functions, we
derive the optimality conditions in the form of an optimization
problem over the space of differentiable functions constrained
to a Hamilton-Jacobi (HJ) inequality and, in some of these
cases, a terminal value inequality. An iterative algorithm is
also proposed for identifying the value function in the studied
cases.

I. INTRODUCTION

This paper addresses finite-horizon optimal control prob-
lems for continuous time nonlinear stochastic systems, where
the control objective is to steer the state from an initial
condition to a desired terminal probability distribution with
known statistics. In the literature, problems of this type
have only appeared for special subclasses of systems. More
precisely, the majority of studies assume linearity of the
dynamics and a quadratic form for the cost, and Gaussian
forms for the desired distribution. The associated results are
presented for both infinite time horizon problems [1]–[4]
and finite time horizon problems in both continuous time
and discrete time settings [5]–[13]. The accommodation of
input constraints is considered in [9], and convex relaxations
for linear systems subject to chance constraints are studied
in [11], [12]. Nonlinear extensions of the probability dis-
tribution assignment have been presented only for special
subclasses, including feedback-linearizable systems [14], and
gradient flow systems [15], [16], or through approximating
methods such as sequences of iterative linearizations [17]
and differential dynamic programming approximations [18].

In past work of the author [19]–[22], two distinct novel
viewpoints are presented which apply to a wide range of
nonlinear stochastic systems. The first approach [19]–[21] is
a perpetual renewal of a constraint on the expected value
of the terminal state whose associated optimality conditions
are established in the form of the Terminally Constrained
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Stochastic Minimum Principle (TC-SMP). While the TC-
SMP applies to both linear and nonlinear systems, a major
limitation of the theory is that it can only impose constraints
on the first moment (expected value) of the terminal state. By
reimposing this constraint under conditional expectations at
all filtrations at future times, the TC-SMP is very successful
in steering the state towards the desired location for almost
all sample paths, however, this is achieved at the expense
of increased control effort close to the final time. The
second approach [21], [22] is an extension of the covari-
ance control problems for general nonlinear systems with
nonlinear costs and general desired probability distributions
(i.e., non-necessarily Gaussian desired distributions). This,
in particular, calls for a change of viewpoint from the study
of sample paths (where the terminal state distribution is a
statistical byproduct of the investigation) to the study of the
so-called occupation measures in which the description of
the terminal distribution constraint is inherently natural to the
representation. Accordingly, the assignment of probability
distributions to the terminal state is reformulated as a convex
linear program over the space of measures and the associated
optimality conditions are established by invoking the duality
relationships between the space of measures and that of
continuous functions.

The convex duality method for optimal control problems
was initiated by Vinter and Lewis [23], [24] for deterministic
control systems and, later, by Fleming and Vermes for
piecewise deterministic [25] and stochastic [26] processes.
The fundamental idea of this approach is the introduction of
a weak formulation that embeds the original (strong) problem
into a convex linear program over the space of Radon
measures. Upon establishing the equivalence of the two
problems, new necessary and sufficient optimality conditions
are obtained by invoking the Fenchel-Rockafellar duality the-
orem. This approach is particularly useful in characterization
of optimal policies in certain desirable classes of controls by
investigating the extreme points of the set of Hamilton-Jacobi
problems (see e.g. [27]–[30]). For convex duality based
numerical algorithms for deterministic continuous systems,
one can refer, e.g., to [31]–[33].

In this paper, we elaborate on the Distributionally Con-
strained Convex Duality Optimal Control (DC-CDOC) of
[21], [22] to accommodate various other forms of constraints
on the terminal state of nonlinear stochastic systems. To be
specific, we consider (a) almost surely equality constraints
on the terminal state, (b) constraints on the expected value
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of the terminal state, and (c) constraints on the probability
distributions of the terminal state, both (i) under the total
probability measure, and (ii) under all conditional probability
measures, and we present the optimal conditions of DC-
CDOC associated with each of these cases.

The organization of the paper is as follows. Section II
presents the underlying dynamics and costs for class of
stochastic optimal control problems, which are subject to
constraints on their terminal state in the forms of the con-
straints presented in Section III. The associated measure
theoretic formulation of the constrained optimal control
problems are presented in Section IV and the associated
optimality conditions of DC-CDOC are presented. Section V
provides a conceptual algorithm to establish the value func-
tion of the studied cases. Concluding remarks and future
research directions are presented in Section VI.

II. THE UNDERLYING DYNAMICS AND COSTS

Let
(
Ω,F , {Ft}

tf
t0 ,P

)
be a filtered probability space with

{Ft}
tf
t0 an increasing family of sub σ-algebras of F such

that Ft0 contains all the P-null sets, and Ftf = F for the
fixed terminal time tf < ∞. Consider a nonlinear stochastic
systems governed by the controlled Itô differential equation

dxs = f (s, xs, us) ds+ g (s, xs) dws, (1)

where xs ∈ Rn, us ∈ U ⊂ Rm, and ws ∈ Rd are, respec-
tively, the values of the state, the input, and the realization
of a standard Wiener process at time s ∈ [t0, tf ]. The input
value set U is assumed to be convex and compact and the
functions f and g are considered to be Lipschitz functions
over, respectively, [t0, tf ] × Rn × U and [t0, tf ]× Rn with
linearly bounded growth rates.

Let u[t
0
,t
f
] := {us : t0 ≤ s ≤ tf} denote a nonanticipative,

U -valued, input process such that us ∈ U is progressively
measurable with respect to Fs for all s ∈ [t0, tf ]. We denote
by U[t0,tf ] the set of all such inputs.

For a given initial condition x0 ∈ Rn at t = t0, we
associate to each u[t

0
,t
f
] ∈ U[t0,tf ] a total cost

J
(
t0, x0, u[t

0
,t
f
]

)
= E

u[t0,tf
]

Ft0

[ ∫ tf

t0

ℓ
(
xs, us

)
ds+ L

(
xtf

)]
(2)

where ℓ and L are continuous functions with polynomial
growth and E

u[t
0
,t
f
]

Ft0
[•] := E[ • |Ft0 ;u[t0,tf]

] denotes the
conditional expectation under the filtration Ft0 and given
the input u[t

0
,t
f
].

III. CONSTRAINING THE TERMINAL STATE

Let md ∈ Rn denote a desired value for the state of the
system to which we would like the controller to bring the
state of the system at the terminal time tf . Let

xFt
τ ≡ xτ = xt+

∫ τ

t

f (s, xs, us) ds+

∫ τ

t

g (s, xs) dws (3)

denote the random variable representing the state at a future
time τ ∈ [t, tf ] given the filtration Ft and under the input

u[t
0
,t
f
]
1. It shall be remarked that under the assumption of full

observation of the state xFt
t = xt is a known (deterministic)

value whereas xFt
τ is a random variable for τ > t.

Because direct constraints on the terminal state such as
xFt
tf

= md are non-causal (hence, cannot be achieved by
causal inputs), we restrict attention to causal constraining
methods. In particular, the following methods of constraining
the terminal state are studied in this paper.

A. Almost Surely Satisfactions

The strongest form of constraining the control problem is
to required the terminal constraint to match the desired value
almost surely, which can be interpreted in the following two
ways.

1) Almost Surely Satisfaction in Total Probability: The
constrained optimal control problem becomes the minimiza-
tion of the cost (2) subject to the dynamics (1) and the
constraint xFt0

tf

a.s.
== md, which can equivalently be written

as P
(
xtf = md

)
= 1. Since Ft0 contains all the P-null sets,

this is equivalent to

P
u[t0,tf

]

Ft0

(
xtf = md

)
= 1, (4)

where P
u[t

0
,t
f
]

Ft0
(·) denotes the conditional probability under

the filtration Ft0 of a state-dependent event under the input
u[t

0
,t
f
].

2) Almost Surely Satisfaction in Conditional Probabilities:
The constrained problem is formed by imposing the family
of constraints

P
u[t,t

f
]

Ft

(
xtf = md

)
= 1, t ∈ [t0, tf ]. (5)

This family of constraints includes, in particular, the con-
straint (4) but it contains uncountably many other constraints
for any t ̸= t0.

B. Satisfaction in Expectation

A weaker (more relaxed) method of constraining the
problem is to require the expected value of the terminal state
to match the desired value. Similar to the previous case, this
requirement can be imposed only on the total expectation,
or on the family of conditional expectations.

1) Satisfaction in Total Expectation: The constrained
problem is formed by imposing the constraint
E[xtf −md] = 0, which is equivalently written as

E
u[t

0
,t
f
]

Ft0

[
xtf −md

]
= 0. (6)

2) Satisfaction in All Conditional Expectations: The con-
strained problem is formed by imposing the family of con-
straints

E
u[t,t

f
]

Ft

[
xtf −md

]
= 0, t ∈ [t0, tf ]. (7)

1u[t,τ ] to be more precise because, due to the causality of the system, the
evolution of the state within the interval [t, τ ] depends only the restriction
of u[t

0
,t
f
] to the time interval [t, τ ].
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C. Satisfaction in Probability Distributions

Another method of constraining the control problem is
to require the probability distribution of the terminal state
to match, either exactly or approximately, a specific desired
probability distribution. These requirements are a general-
ization to nonlinear systems of the literature on assigning
terminal probability distribution to the state linear stochastic
systems [1]–[13]. Let pd be a probability distribution, i.e.,

(i) pd ≥ 0.

(ii)
∫
Rn pd(dx) = 1,

(iii)
∫
B1

x∪B2
x
pd(dx) =

∫
B1

x
pd(dx) +

∫
B2

x
pd(dx) whenever

B1
x ∩B2

x = ∅ for any Borel sets B1
x, B

2
x ⊂ Rn.

In particular, for consistency with the requirement that the
terminal state reaches (now, in probability distribution) the
desired value md ∈ Rn, we require that∫

Rn

x pd(dx) = md (8)

We also denote by Σd the covariance of the desired
probability distribution, i.e.,∫

Rn

(x−md)(x−md)
⊤pd(dx) = Σd (9)

Depending on whether the total probability or the family
of conditional probabilities are used and whether equality
or inequalities are enforced, we present four constraining
methods.

1) Exact Assignment of Total Probability Distribution:
Following the exact assignment of Gaussian distributions to
linear systems in [1]–[13], the problem of assigning a general
probability distribution to nonlinear systems is presented in
[22] by imposing the constraint

P
u[t

0
,t
f
]

Ft0

(
xtf ∈ Bx

)
=

∫
Bx

pd(dx), (10)

for every Borel set Bx ∈ Rn.
2) Exact Assignment of the Total Expectation and Con-

tainment of the Total Covariance: Following the covariance
containment methodology [11], [12], the constrained optimal
control problem is defined by imposing the constraints

E
u[t

0
,t
f
]

Ft0

[
xtf

]
= md, (11)

E
u[t0,tf

]

Ft0

[
xtfx

⊤
tf

]
− E

u[t0,tf
]

Ft0

[
xtf

]
E
u[t

0
,t
f
]

Ft0

[
x⊤
tf

]
≼ Σd. (12)

3) Exact Assignment of Conditional Expectations and
Containment of Conditional Covariances: Extending the
requirements (11) and (12) to constrain the optimal control
problem under all filterations, we impose the constraints
defined by

E
u[t,t

f
]

Ft

[
xtf

]
= md, (13)

E
u[t,t

f
]

Ft

[
xtfx

⊤
tf

]
− E

u[t,t
f
]

Ft

[
xtf

]
E
u[t,t

f
]

Ft

[
x⊤
tf

]
≼ Σd. (14)

IV. OPTIMALITY CONDITIONS

Convex duality relationships between the space of signed
measures and that of continuous functions are powerful tools
for the identification of the value function and the associated
optimality conditions. In particular, with the generalization
of the occupations defined in [22] to accommodate general
filtrations Ft, we define the input-state-time occupation
measure as

µ
u[t,t

f
] (Bt, Bx, Bu) := E

u[t,t
f
]

Ft

∫
Bt∩[t,tf ]

IBx
(xs) · IBu

(us) ds,

(15)
for arbitrary Borel sets Bt ⊂ [t0, tf ], Bx ⊂ Rn, Bu ⊂ U ,
where IB denotes the indicator function of the set B. We
also define the terminal state occupation measure as

κ
u[t,t

f
] (Bx) := P

u[t,t
f
]

Ft

(
xtf ∈ Bx

)
. (16)

for an arbitrary Borel set Bx ⊂ Rn.
Then for every twice continuously differentiable function

v ∈ C2 ([t, tf ]× Rn)〈〈〈
vtf , κ

u[t,t
f
]
〉〉〉
−
〈〈〈
Av, µ

u[t,t
f
]
〉〉〉
= v(t, xt), (17)

where〈〈〈
v, κ

u[t,t
f
]
〉〉〉
=

∫
Rn

v(tf , x)κ
u[t,t

f
](dx), (18)〈〈〈

Av, µ
u[t,t

f
]
〉〉〉
=

∫
[t,tf ]×Rn×U

Auv(s, x)µ
u[t,t

f
](ds, dx, du),

(19)

and A is the infinitesimal operator of the Markov process (1)
and is given as

Auv(t, x) =
∂v(t, x)

∂t
+

[
∂v(t, x)

∂x

]⊤
f(t, x, u)

+
1

2
tr
(
g(t, x)⊤g(t, x)

∂2v(t, x)

∂x2

)
. (20)

Since the relation (17) holds for all v ∈ C2 ([t, tf ]× Rn),
we can write it (see, e.g., [22], [26]) as

κ
u[t,t

f
] −A∗µ

u[t,t
f
] = δ̄(t,xt), (21)

where δ̄(t,xt) is the Dirac measure, and A∗ is the adjoint
of (20) defined as the operator satisfying〈〈〈

Av, µ
〉〉〉
=

〈〈〈
v,A∗µ

〉〉〉
(22)

for every Borel measure µ, and any twice continuously
differentiable function v ∈ C2 ([t0, tf )× Rn).

Hence, by defining (see [22])

MPB :=
{
(µ, κ) ∈ M+ ([t, tf ]× Rn × U)×M+ (Rn) :

∥µ∥ ≤ tf − t0, ∥κ∥ ≤ 1.
}
, (23)

MA :=
{
(µ, κ) ∈ M± ([t, tf ]× Rn × U)×M± (Rn) :

κ−A∗µ = δ̄(t,xt).
}
, (24)
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we can identify a subspace in the space of signed measures
which tightly embeds the space of all occupation measures
generated by all u[t,t

f
] ∈ U , i.e.,

MU :=
{(

µ
u[t,t

f
] , κ

u[t,t
f
]
)
: u[t,t

f
] ∈ U

}
⊂ MPB ∩MA

(25)
In the remainder of this section, we provide measure

theoretic equivalents of the constraints introduced in Sec-
tion III and present (without proof, due to space limitations)
the associated optimality conditions established by convex
duality approaches (see [22], [26] for detailed derivations).

A. Almost Surely Satisfactions

The constraints (4) and (5) can be written as

κ
u[•,t

f
] = δ̄(tf ,md) (26)

since, by the definition of the Dirac probability measure, for
every Borel sets Bt ⊂ [t0, tf ], Bx ⊂ Rn we have

δ̄(t,x)(Bt, Bx) =

{
1, if t ∈ Bt and x ∈ Bx,

0, otherwise.
(27)

and, hence,

P
u[•,t

f
]

F•

(
xtf ∈ Bx

)
=

∫
Bx

δ̄(tf ,md)(dx) (28)

Since δ̄(tf ,md) can be regarded as a special case of a
general desired probability distribution pd, we delay the
presentation of the optimal results until Section IV-C.

It is worth remarking that both of the above cases are
likely to yield inexistence of a solution, i.e., such strong
constraining the terminal state leads to ill-posedness of the
associated optimal control problem.

B. Satisfaction in Expectation

While in [19] the optimality conditions for problems with
expectation constraints are established in the form of the
Terminally Constrained Stochastic Minimum Principle (TC-
SMP), a separate (but closely related) set of optimality
conditions are presented here based upon convex duality
methods.

Using occupation measures, the constraints (6) and (7) can
be expressed as

〈〈〈
x − md, κ

〉〉〉
= 0. Accordingly, we define

the weak value function as

W (t, xt) := min
(µ,κ)∈MPB∩MA,E

〈〈〈
ℓ, µ

〉〉〉
+
〈〈〈
L, κ

〉〉〉
, (29)

with

MA,E :=
{
(µ, κ) ∈ M± ([t, tf ]× Rn × U)×M± (Rn) :

κ−A∗µ = δ̄(t,xt),
〈〈〈
x−md, κ

〉〉〉
= 0.

}
. (30)

Then by invoking Rockafellar duality theorem (see
[22], [26]) together with the equality of the weak and
strong value functions, i.e., W (t, x) = V (t, x) for all
(t, x) ∈ [t0, tf ]× Rn, due to the tightness of embedding

[22], [26], we obtain the representation of the value function
as

V (t, xt) = sup
βt,xt∈R, v∈C2([t,tf ]×Rn)

{
v(t, xt)

s.t.
∂v(s, x)

∂s
+

[
∂v(s, x)

∂x

]⊤
f(s, x, u)

+
1

2
tr
(
g(s, x)⊤g(s, x)

∂2v(s, x)

∂x2

)
+ ℓ(s, x, u) ≥ 0,

and v(tf , x) ≤ L(x) + βt,xt
(x−md),

for all (s, x, u) ∈ [t, tf ]× Rn × U

}
. (31)

It shall be remarked that the scalar βt,xt ∈ R is, in general,
different under each filtration Ft, i.e., for different values
of (t, x) ∈ [t, tf ] × Rn. This, indeed, reflects the inherent
time-inconsistency [34] in stochastic control problems with
covariance constraints [35].

C. Satisfaction in Probability Distributions

1) Exact Assignment of Total Probability Distribution: It
has been established in [22] that the value function for this
case is identified by

V (t0, x0) =

∫
Rn

L(x)pd(dx)

+ sup
v∈C2([t0,tf ]×Rn)

{
v(t0, x0)−

∫
Rn

v(tf , x)pd(dx),

s.t.
∂v(s, x)

∂s
+

[
∂v(s, x)

∂x

]⊤
f(s, x, u)

+
1

2
tr
(
g(s, x)⊤g(s, x)

∂2v(s, x)

∂x2

)
+ ℓ(s, x, u) ≥ 0,

for all (s, x, u) ∈ [t0, tf ]× Rn × U

}
. (32)

It is worth remarking that since in this class of prob-
lems, κ

u[t,t
f
] = pd is fixed, then

∫
Rn L(x)κ

u[t,t
f
](dx) =∫

Rn L(x)pd(dx) is a control-invariant constant in the prob-
lem and, hence, without loss of generality, we can assume
L(x) = 0 and obtain the same representation as in [22,
Theorem 4]. However, since other cases with non-fixed
terminal distributions κ

u[t,t
f
] are also studied in this paper,

we present the results of this case with the constant term∫
Rn L(x)pd(dx) included in the representation.

We can also use (32) to write the optimality conditions for
Section IV-A by setting pd = δ̄(tf ,md). Due to limitations in
space, these results are only displayed in Table I and not
presented separately.

2,3) Exact Assignment of the Expectation(s) and Con-
tainment of Covariance(s): The constraints (11) and (13),
as before, are expressed as

〈〈〈
x − md, κ

〉〉〉
= 0. Moreover,

the constraints (12) and (14) can be expressed by a set of
inequality constraints2 which we express by

〈〈〈
hΣ(x), κ

〉〉〉
≤ 0.

2Including the facts that if Σ = [σij ] ≼ 0 then
∑

σii ≥ 0,
|σij | ≤

√
(|σiiσjj |) and |σij | ≤ maxi σii.
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Terminal Constraint Optimization
Parameters

Suprimizing Value HJ Boundary Inequality

P
u[t

0
,t
f
]

Ft0

(
xtf = md

)
= 1 v ∈ C2([t0, tf ]× Rn) v(t0, x0)− v(tf ,md) v(tf , x) : free

P
u[t,t

f
]

Ft

(
xtf = md

)
= 1, t ∈ [t0, tf ] v ∈ C2([t, tf ]× Rn) v(t, xt)− v(tf ,md) v(tf , x) : free

E
u[t0,tf

]

Ft0

[
xtf

]
= md

β ∈ R
v ∈ C2([t0, tf ]×Rn)

v(t0, x0) v(tf , x) ≤ L(x) + β(x−md)

E
u[t,t

f
]

Ft

[
xtf

]
= md, t ∈ [t0, tf ]

βt,xt ∈ R
v ∈ C2([t, tf ]×Rn)

v(t, xt) v(tf , x) ≤ L(x) + βt,xt (x−md)

P
u[t0,tf

]

Ft0

(
xtf ∈ Bx

)
=

∫
Bx

pd(dx) v ∈ C2([t0, tf ]× Rn) v(t0, x0)−
∫
Rn

v(tf , x)pd(dx) v(tf , x) : free
E
u[t

0
,t
f
]

Ft0

[
xtf

]
= md,

cov
u[t

0
,t
f
]

Ft0
(xtf ) ≼ Σd

β ∈ R
Γ ∈ Rn×n

⪰0

v ∈ C2([t0, tf ]×Rn)

v(t0, x0)
v(tf , x) ≤ L(x)+ β(x−md)

+ 1
2
(x−md)

⊤Γ(x−md)
E
u[t,t

f
]

Ft

[
xtf

]
= md,

cov
u[t,t

f
]

Ft
(xtf ) ≼ Σd,

t ∈ [t0, tf ]

βt,xt ∈ R
Γt,xt ∈ Rn×n

⪰0

v ∈ C2([t, tf ]×Rn)

v(t, xt)
v(tf , x) ≤ L(x)+βt,xt (x−md)

+ 1
2
(x−md)

⊤Γt,xt (x−md)

TABLE I: Summary of the results of the Distributionally Constrained Convex Duality Optimal Control (DC-CDOC) in the form of
sup

Optimization Parameters
{Suprimizing Value | Av+ ℓ ≥ 0∧ HJ Boundary Inequality} corresponding to different forms terminal state constraints.

According, we define

MPBΣ :=
{
(µ, κ) ∈ M+ ([t, tf ]× Rn × U)×M+ (Rn) :〈〈〈

hΣ(x), κ
〉〉〉
≤ 0, ∥µ∥ ≤ tf − t0, ∥κ∥ ≤ 1.

}
, (33)

and write the value function as

V (t, xt) := min
(µ,κ)∈MPBΣ∩MA,E

〈〈〈
ℓ, µ

〉〉〉
+
〈〈〈
L, κ

〉〉〉
, (34)

Then by invoking Rockafellar duality theorem we obtain
the representation of the value function as

V (t, xt) = sup
βt,xt∈R, Γt,xt∈Rn×n

⪰0
, v∈C2([t,tf ]×Rn)

{
v(t, xt)

s.t.
∂v(s, x)

∂s
+

[
∂v(s, x)

∂x

]⊤
f(s, x, u)

+
1

2
tr
(
g(s, x)⊤g(s, x)

∂2v(s, x)

∂x2

)
+ ℓ(s, x, u) ≥ 0,

and v(tf , x) ≤ L(x) + βt,xt(x−md)

+
1

2
(x−md)

⊤Γt,xt
(x−md),

for all (s, x, u) ∈ [t, tf ]× Rn × U

}
. (35)

V. CONCEPTUAL ALGORITHM

Based on the results of Section IV summarized in Table I,
one can employ the following conceptual algorithm to estab-
lish the value function of each of the constrained stochastic
optimal control problems.

Step 0: Set the iteration counter to k = 0.
Step 1: If the corresponding HJ boundary inequality in Ta-

ble I is free, then initiate the algorithm with an
arbitrary terminal cost function Lk(x); otherwise,
initiate Lk(x) by selecting arbitrary values for βk

(and Γk as appropriate).
Step 2: Solve the HJB equation3

∂vk(t, x)

∂t
+min

u∈U

{(
∂vk(t, x)

∂x

)⊤

f(x, u, t)+ℓ(x, u, t)

}
= 0,

(36)
subject to vk(tf , x) = Lk(x).

Step 3: Evaluate vk(t0, x0)−
∫
Rn vk(tf , x)pd(dx).

Step 4: Update Lk+1(x) using an ascent direction4 for the
cost in the column “Suprimizing Value” in Table I.

VI. CONCLUDING REMARKS

The Distributionally Constrained Convex Duality Optimal
Control (DC-CDOC) is a powerful tool for identifying the
value function in a large class of nonlinear stochastic optimal
control problems subject to a wide range of Gaussian and

3If a classical solution does not exist, one needs to consider an additional
supremization over subsolutions of the HJB, i.e., the family of functions

(indexed by another iteration j, satisfying the HJ inequalities
∂vk

j (t,x)

∂t
+

minu∈U

{(
∂vk

j (t,x)

∂x

)⊤
f(x, u, t) + ℓ(x, u, t)

}
≥ 0, but subject to the

equality conditions vkj (tf , x) = Lk(x) for all j. However, it can be shown
that the suprimizing function (over all j) converges to the viscosity solution
of the HJB equation (36).

4Due to the computationally expensive nature of the cost, and the infinite
dimensionality of the space of terminal costs, derivative-free methods such
as Bayesian optimization shall be used in this general procedure.
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non-Gaussian terminal distribution constraints under various
filtrations. Despite the inherent time-inconsistency, due to the
involvement of the second moment (covariance) and higher
order moments of the state distribution (which precludes
the implementation of Bellman’s principle of optimality [36]
to arrive at a Hamilton-Jacobi-Bellman (HJB) equation) the
DC-CDOC framework effectively identifies the value func-
tion via an optimization problem over a class of Hamilton-
Jacobi (HJ) inequalities. A key advantage of DC-CDOC
is that the identification is performed through a family of
smooth (sub-)solutions despite the potential nonsmoothness
of the original value function. This opens the door for the
development of new numerical algorithms by constructing
parameterized families of smooth functions and constructing
an optimization problem with parameters described in Ta-
ble I. However, special care must be taken as (i) the sequence
of test functions might converge to a value smaller than the
optimal cost which suggests that the family of functions does
not contain a function characterizing the value function, or
(ii) a maximum might not exist; therefore, the supremum
(and thus the value function) must be characterized by
examining the limiting behavior of the associated family of
functions.

ACKNOWLEDGMENT

Discussions concerning this work with Panagiotis Tsiotras
are gratefully acknowledged.

REFERENCES

[1] A. Hotz and R. E. Skelton, “Covariance Control Theory,” International
Journal of Control, vol. 46, no. 1, pp. 13–32, 1987.

[2] J.-H. Xu and R. Skelton, “An Improved Covariance Assignment The-
ory for Discrete Systems,” IEEE transactions on Automatic Control,
vol. 37, no. 10, pp. 1588–1591, 1992.

[3] K. Yasuda, R. E. Skelton, and K. M. Grigoriadis, “Covariance
Controllers: A New Parametrization of the Class of all Stabilizing
Controllers,” Automatica, vol. 29, no. 3, pp. 785–788, 1993.

[4] K. M. Grigoriadis and R. E. Skelton, “Minimum-Energy Covariance
Controllers,” Automatica, vol. 33, no. 4, pp. 569–578, 1997.

[5] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal Steering of a Linear
Stochastic System to a Final Probability Distribution, Part I,” IEEE
Transactions on Automatic Control, vol. 61, no. 5, pp. 1158–1169,
2015.

[6] ——, “Optimal Steering of a Linear Stochastic System to a Final
Probability Distribution, Part II,” IEEE Transactions on Automatic
Control, vol. 61, no. 5, pp. 1170–1180, 2015.

[7] A. Beghi, “On the Relative Entropy of Discrete-Time Markov Pro-
cesses with Given End-Point Densities,” IEEE Transactions on Infor-
mation Theory, vol. 42, no. 5, pp. 1529–1535, 1996.

[8] E. Bakolas, “Optimal covariance control for discrete-time stochastic
linear systems subject to constraints,” in Proceedings of the 55th IEEE
Conference on Decision and Control, 2016, pp. 1153–1158.

[9] ——, “Finite-Horizon Covariance Control for Discrete-Time Stochas-
tic Linear Systems subject to Input Constraints,” Automatica, vol. 91,
pp. 61–68, 2018.

[10] M. Goldshtein and P. Tsiotras, “Finite-Horizon Covariance Control
of Linear Time-Varying Systems,” in Proceedings of the 56th IEEE
Conference on Decision and Control, 2017, pp. 3606–3611.

[11] K. Okamoto, M. Goldshtein, and P. Tsiotras, “Optimal Covariance
Control for Stochastic Systems Under Chance Constraints,” IEEE
Control Systems Letters, vol. 2, no. 2, pp. 266–271, 2018.

[12] K. Okamoto and P. Tsiotras, “Optimal Stochastic Vehicle Path Plan-
ning using Covariance Steering,” IEEE Robotics and Automation
Letters, vol. 4, no. 3, pp. 2276–2281, 2019.

[13] A. Halder and E. Wendel, “Finite Horizon Linear Quadratic Gaussian
Density Regulator with Wasserstein Terminal Cost,” in Proceedings of
the American Control Conference, 2016, pp. 7249–7254.

[14] K. F. Caluya and A. Halder, “Finite Horizon Density Control for Static
State Feedback Linearizable Systems,” in Proceedings of the 2020
American Control Conference (ACC). IEEE, 2020, pp. 3577–3582.

[15] ——, “Wasserstein proximal algorithms for the schrödinger bridge
problem: Density control with nonlinear drift,” IEEE Transactions on
Automatic Control, vol. 67, no. 3, pp. 1163–1178, 2021.

[16] I. Nodozi and A. Halder, “Schrödinger meets kuramoto via feynman-
kac: Minimum effort distribution steering for noisy nonuniform ku-
ramoto oscillators,” in 2022 IEEE 61st Conference on Decision and
Control (CDC). IEEE, 2022, pp. 2953–2960.

[17] J. Ridderhof, K. Okamoto, and P. Tsiotras, “Nonlinear Uncertainty
Control with Iterative Covariance Steering,” in 2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE, 2019, pp. 3484–
3490.

[18] Z. Yi, Z. Cao, E. Theodorou, and Y. Chen, “Nonlinear covariance
control via differential dynamic programming,” in 2020 American
Control Conference (ACC). IEEE, 2020, pp. 3571–3576.

[19] A. Pakniyat and P. Tsiotras, “Steering the State of Linear Stochastic
Systems: A Constrained Minimum Principle Formulation,” in Proceed-
ings of the 2021 IEEE American Control Conference (ACC), 2021, pp.
1300–1305.

[20] ——, “Partially Observed Steering the State of Linear Stochastic
Systems,” in Proceedings of the 60th IEEE Conference on Decision
and Control (CDC), 2021, pp. 3780–3785.

[21] A. Pakniyat, “Theoretical Guarantees for Satisfaction of Terminal State
Constraints for Nonlinear Stochastic Systems,” in IUTAM Symposium
on Optimal Guidance and Control for Autonomous Systems. Springer,
2023, pp. 135–163.

[22] ——, “A Convex Duality Approach for Assigning Probability Distri-
butions to the State of Nonlinear Stochastic Systems,” IEEE Control
Systems Letters, vol. 6, pp. 3080–3085, 2022.

[23] R. B. Vinter and R. M. Lewis, “The Equivalence of Strong and Weak
Formulations for Certain Problems in Optimal Control,” SIAM Journal
on Control and Optimization, vol. 16, no. 4, pp. 546–570, 1978.

[24] ——, “A Necessary and Sufficient Condition for Optimality of Dy-
namic Programming Type, Making No a Priori Assumptions on the
Controls,” SIAM Journal on Control and Optimization, vol. 16, no. 4,
pp. 571–583, 1978.

[25] D. Vermes, “Optimal Control of Piecewise Deterministic Markov
Processes,” Stochastics: An International Journal of Probability and
Stochastic Processes, vol. 14, no. 3, pp. 165–207, 1985.

[26] W. H. Fleming and D. Vermes, “Convex Duality Approach to the Opti-
mal Control of Diffusions,” SIAM journal on control and optimization,
vol. 27, no. 5, pp. 1136–1155, 1989.

[27] H. Zhu, “Convex Duality for Finite-Fuel Problems in Singular Stochas-
tic Control,” Journal of optimization theory and applications, vol. 75,
no. 1, pp. 155–181, 1992.

[28] A. G. Bhatt and V. S. Borkar, “Occupation Measures for Controlled
Markov Processes: Characterization and Optimality,” The Annals of
Probability, pp. 1531–1562, 1996.

[29] T. Kurtz and R. Stockbridge, “Existence of Markov Controls and
Characterization of Optimal Markov Controls,” SIAM Journal on
Control and Optimization, vol. 36, no. 2, pp. 609–653, 1998.

[30] M. Cho and R. Stockbridge, “Linear Programming Formulation for
Optimal Stopping Problems,” SIAM Journal on Control and Optimiza-
tion, vol. 40, no. 6, pp. 1965–1982, 2002.

[31] J. B. Lasserre, D. Henrion, C. Prieur, and E. Trélat, “Nonlinear
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