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Abstract— We address the asymptotic problem of signalling
information from one controller to another controller, in a
series network, consisting of control system 1 (CS-1) and control
system 2 (CS-2), as shown in Figure I.1, first analyzed in [1]
for finite-horizon. Controller 2 of CS-2 has access to feedback
information from its output, while controller 1 of CS-1 does not
have access to feedback information from its output. Under
suitable detectability and stabilizability conditions of matrix
algebraic Riccati equations (AREs), it is shown that, if the
rate of generating information by CS-1 is below the asymptotic
control-coding (CC) capacity of CS-2, then we can synthesize,
i) a controller-encoder for CS-2 that simultaneously controls
the CS-2 and encodes the state of the CS-1, and operates at
the CC capacity of CS-2,
ii) a decoder for CS-2 that is optimal with respect to a mean-
square error (MSE) criterion, and
iii) a controller for CS-1, which acts on the decoder output,
and it is optimal with respect to the pay-off of CS-1.
Compared to [1], this paper includes bounds to MSE and Error
probability of communicating digital messages.

I. INTRODUCTION

Shannon’s coding capacity [2] is developed over the years
with emphasis on communication system applications [3],
[4]. It is demonstrated in [5] (see Theorem 4.1, Theorem
5.1) and [6], [7], that Shannon’s coding capacity admits a
natural generalization to decision models (DMs), such as,
stochastic control systems, while in [8]–[10] is extended to
unstable communication channels with memory. Further, in
[11] it is demonstrated that optimal randomized strategies can
be transformed into controller-encoders that simultaneously
control outputs, encode Gaussian messages, and signal the
messages to a decoder that reconstructs them with asymp-
totically arbitrary small MSE error.

The new paradigms of information signalling of control
strategies constructed in [5], [11], illustrate that stochastic
dynamical control systems with randomized control strate-
gies, are also candidates of communication channels, capable
of information transfer from their inputs to their outputs.
The operational definition is a variant of Shannon’s coding
rate, called control-coding (CC) rate, with the encoder
replaced by a controller-encoder [5], [11]. Consequently, a
generalization of Shannon’s direct coding theorem, states
the following [5] (Theorem 4.1, Theorem 5.1): “For any
CC rate of R bits/second below the control-coding (CC)
capacity (supremum of all rates R) of the DM, there exists
a controller-encoder which controls the output process and
encodes an information process, and a decoder or estimator,
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which operates asymptotically, with arbitrary small decoding
error probability.”

However, real-time signalling of information from the
input to the output of DMs, is still a challenging problem.
Real-time signalling is often addressed via joint source
channel coding (JSCC) design, using lossy compression of
the information process. The JSCC is discussed in [12],
using the nonanticipative rate distortion function (RDF). An
example of signalling messages generated by a digital binary
symmetric source over a binary symmetric channel with
memory is given in [13].

The main objective of this paper is to analyze the per
unit time limit of a series network of two unstable control
systems, each assigned one controller, as shown in Fig.I.1, to
signal information from one controller to another controller.
The current analysis is focused on asymptotic analysis, and
builds on the prior concepts and results of [1].
The Series Network of Control Systems of Figure I.1. The
underlying hypotheses of the network are the following.

CS-2. The controller of CS-2 observes its output through
feedback, and

CS-1. the controller of CS-1 does not observe its output.
Applications of such network include,
Scenario 1: CS-1 is controllable but its state process {Xi :
i = 0, . . . , n} is not observable, possibly because CS-1
corresponds to the internal dynamics, and
Scenario 2: the state process {Xi : i = 0, . . . , n}, which
can be controlled or uncontrolled, is to be reproduced at the
output of a decoder for the purpose of relaying it to another
processor (not shown in the figure), etc.
To overcome the limitation of the controller of CS-1, the CC
Capacity of CS-2 is determined and the randomized control
strategy which achieves it, is found. Then the randomized
control strategy of CS-2 is transformed into an controller-
encoder, which simultaneously controls the output process
{Yi : i = 0, . . . , n} of CS-2, and encodes the state process
{Xi : i = 0, . . . , } of CS-1, and a decoder or estimator is
designed {X̂i : i = 0, . . . , }, with respect to a performance
objective, while the decoder output {X̂i : i = 0, . . . , } is
made available to the controller of CS-1, to minimize the
pay-off of CS-1.

For Gaussian systems we show under suitable detectability
and stabilizability conditions that involve three matrix AREs,
that the following hold.
(a) If the CC Capacity of CS-2 is above the rate at which
the CS-1 generates its output {Xi : i = 0, . . . , }, then the
controlled process {Xi : i = 0, . . . , } can be encoded into
the control strategy of CS-2 and decoded with arbitrary small
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Fig. I.1. Signalling of Information in a Series Network of Control Systems via Control-Coding.

asymptotic error probability. For this to hold, it it necessary
to allocate sufficient power to CS-2, which corresponds to the
ergodic minimum cost of controlling CS-2. Any additional
power is converted into information, which is signalled from
the input to the output of CS-2.
(b) Under the condition of (a), the optimal controller of CS-1
is determined with respect to its ergodic control performance,
and stability and optimality of the networked control system,
and signalling of information is achieved, with small error
probability, by proper control-coding-decoding.

Statements (a), (b) are one of the possible applications
of Shannon’s operational definition of capacity of noisy
channels, extended to unstable dynamical systems. However,
since this paper is a continuation of [1], then it is necessary
to recall several results from [1], before we can address the
per unit time infinite horizon problem.

II. NETWORKED CONTROL SYSTEM WITH SIGNALLING

Here, we introduce Fig. I.1 and definitions of optimality.
A. Networked Control System

Consider Fig. I.1. The control process of CS-2 is An
4
=

{Ai : i = 0, 1, . . . , n} with values in An 4= ×ni=0Ai, its
controlled processes is Y n

4
= {Yi : i = 0, . . . , n}, with

values in Yn 4= ×ni=0Yi, with initial state S
4
= Y−1, with

values in S 4= Y−1. Similarly, the control process of CS-1 is
Un

4
= {Ui : i = 0, . . . , n}, with values in Un 4= ×ni=0Ui, its

controlled process is Xn 4= {Xi : i = 0, . . . , n}, with values
in Xn 4= ×ni=0Xi.
CS-1. The conditional distribution of CS-1 is described by

PXi|Xi−1,Ui−1,Ai−1,Y i−1,S = PXi|Xi−1,Ui−1,Yi−1

≡ Si(dxi|xi−1, ui−1, yi−1), i = 0, . . . , n. (II.1)

For i = 0, PX0|X−1,U−1,Yi−1
= S0(dx0).

The Control Strategies of CS-1 are measurable maps

U[0,n−1]
4
=
{
gi:Ui−1 × Yi−1×S7−→Ui, u0 = g0(s), . . . ,

ui=gi(u
i−1, yi−1, s), i = 0, 1, . . . , n− 2

}
. (II.2)

The Pay-off or Performance Criterion of CS-1 is

J0,n(g∗)
4
= inf
{gi}n−1

i=0 ∈U[0,n−1]

Es

{
`0,n(Un−1, Xn)

}
, (II.3)

`0,n(un−1, xn)
4
=

n−1∑

i=0

`i(ui, xi) + ϕn(xn) (II.4)

where `0,n(·, ·) is a measurable function.
The controller of CS-1 does not have access to {Xi : i =
0, . . . , n}, but instead has access to the controlled process
{Yi : i = 0, . . . , n} and initial state S = s of CS-2.
CS-2. The conditional distribution of CS-2 is

PYi|Y i−1,Ai,S,Xi,Ui ≡ Qi(dyi|yi−1, ai), i = 0, . . . , n. (II.5)

Definition 2.1: (Admissible controller-encoder-decoders)
(a) Controller-Encoder Strategies of CS-2. The controller-

encoder strategies which control the controlled process {Yi :
i = 0, . . . , n} and encode the controlled process {Xi : i =
0, . . . , n} are measurable maps defined by

E[0,n](κ)
4
=
{
ei:Xi×Ai−1×Yi−1 × S7−→Ai,

ai=ei(x
i, ai−1, yi−1, s), i = 0, . . . , n :

1

n+ 1
Es

(
γ0,n(An, Y n−1)

)
≤ κ

}
,

γ0,n(An, Y n−1)
4
=

n∑

i=0

γi(ai, yi−1)

where γ0,n(·, ·) : An ×Yn−1 7−→ (−∞,∞] is a measurable
function and κ ∈ [0,∞] is the total power.
(b) Decoder Strategies of CS-2. The decoder strategies which
reconstruct or estimate the process {Xi : i = 0, . . . , n} are
square integrable sequences defined by

D[0,n]
4
=
{
di : Yi×S 7−→ X̂i, x̂i = di(y

i, s), i = 0, . . . , n
}
.

The CC-Capacity [5], [11] of CS-2 is defined using the
randomized control strategies of Definition 2.2. These are
transformed into an controller-encoder, which encodes {Xi :
i = 0, . . . , n} and operates at the CC Capacity of CS-2.
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Definition 2.2: Admissible randomized control strategies
of CS-2 belong to the constraint set

P[0,n](κ)
4
=
{
Pi(dai|ai−1, yi−1, s), i = 0, . . . , n :

1

n+ 1
Es

(
γ0,n(An, Y n−1)

)
≤ κ

}
. (II.6)

The Pay-off of CS-2 is the maximization over P[0,n](κ),

of the directed information from An
4
= {A0, . . . , An} to

Y n
4
= {Y0, . . . , Yn}, for fixed initial data S = s [14], [15],

I(An→Y n|s) 4= EPs

{ n∑

i=0

log
( dQi(·|Yi−1, Ai)
dPP (·|Y i−1, S)

(Yi)
)}

where for each i, PP (dyi|yi−1, s) ≡ PYi|Y i−1,S is generated
from

{
Qi(·|·), Pi(·|·) : i = 0, 1, . . . , n

}
.

B. Information Structures of Randomized Control Strategies

By [5], the information CC Capacity of CS-2 is a Markov
Decision (MD) problem with randomized strategies:

C0,n(κ)
4
= JAn→Y n|s(π

∗, κ)

= sup
◦
P[0,n](κ)

Eπs

{ n∑

i=0

log
(Qi(·|Yi−1, Ai)

Ππ
i (·|Yi−1)

(Yi)
)}

≡ sup
◦
P[0,n](κ)

n∑

i=0

Iπ(Ai;Yi|Yi−1) (II.7)

◦
P [0,n] (κ)

4
=
{
πi(dai|yi−1), i = 0, . . . , n :

1

n+ 1
Eπs

( n∑

i=0

γi(Ai, Yi−1)
)
≤ κ

}
⊂ P[0,n](κ) (II.8)

where the output process {Y0, . . . , Yn} is Markov, with
corresponding transition probability distribution given by

Ππ
i (dyi|yi−1) =

∫

Ai
Qi(dyi|yi−1, ai)⊗ πi(dai|yi−1).

By [5] the CC Capacity of CC-2 (under conditions) is

C(κ)
4
= JA∞→Y∞|s(π

∗, κ) = lim
n→∞

1

n+ 1
JAn→Y n|s(π

∗, κ).

By [11], the cost-rate denoted by κ0,n(C), is defined by

κ0,n(C) , inf
πi(dai|yi−1),i=0,...,n: 1

n+1

∑n
i=0 I

π(Ai;Yi|Yi−1)≥C

Eπs

{
γ0,n(An, Y n−1)

}
. (II.9)

≥ inf
πi(dai|yi−1),i=0,...,n

Eπs

{
γ0,n(An, Y n−1)

}
≡ κ0,n(0).

We should note that κ0,n(C) − κ0,n(0) is the cost of
signalling {Xt : t = 0, . . . , n} to the output of CS-2.

Under certain conditions given in [5], C(κ) is an upper
bound on the the supremum of all achievable CC rates, and
any CC rate below C(κ) is achievable.
Algorithm for Synthesizing Strategies. The algorithm for
signalling of information to CS-1 is the following.

(1) Compute the CC-Capacity C(κ) of CS-2, and the
optimal randomized control strategy

{
π∗i (dai|yi−1) : i =

0, . . . , n
}
∈
◦
P [0,n] (κ), which achieves it.

(2) Transform {π∗i (dai|yi−1):i = 0, . . . , n} ∈
◦
P [0,n] (κ)

into an controller-encoder, which controls {Yi : i =
0, . . . , n}, encodes {Xt : t = 0, . . . , n}, and reconstructs
{Xt : t = 0, . . . , n}, by a decoder to produce {X̂t : t =
0, . . . , n}.

(3) Apply the estimated process {X̂t : t = 0, . . . , n} to
the optimal controller of CS-1 that minimizes pay-off (II.3).

C. Multi-Objective Optimality of Strategies

By [1], since no controller-encoder strategy can operate at
a higher information rate than C0,n(κ), and no decoder strat-
egy can operate at an information rate higher than C0,n(κ),
then we invoke the following definition of optimality.

Definition 2.3: A {controller-encoder, decoder, controller},
(eo(·), do(·), go(·)) ∈ E[0,n](κ)×D[0,n]×U[0,n−1] is optimal,
if the following hold.
(i) For given g(·), d(·) the strategy eo(·, g(·), d(·)) ∈
E[0,n](κ) operates at JAn→Y n|s(π∗, κ), called information
lossless.
(ii) For a given g(·) the decoder do(·) ∈ D[0,n] satisfies

Ĵ0,n(g, do(·, g), eo(·, g, do)) 4= Eg,e
o,do

s

{ n∑

i=0

ρi(Xi, X̂i)
}

≤ Ĵ0,n(g, d(·, g), eo(·, g, d)), ∀(d, g) ∈ D[0,n] × U[0,n−1]
where ρi : Xi × X̂i 7−→ [0,∞), (x, x̂) 7−→ ρi(x, x̂), i =
0, . . . , n is the error fidelity. The mean square error (MSE)
fidelity is defined by ρi(x, x̂)

4
= |x− x̂|2, i = 0, . . . , n.

(iii) The control strategy of the CS-1 go(·) ∈ U[0,n−1]
satisfies

J0,n(go(·), do(·, go), eo(·, go, do))
4
= Eg

o,eo,do

s

{
`0,n(Un−1, Xn)

}

≤ J0,n(g(·), do(·, g), eo(·, g, do)),∀g(·) ∈ U[0,n−1]. (II.10)

Next, we characterize the set of “information lossless
controller-encoder strategies” using [1].

Theorem 2.1: (Information structures of information
lossless strategies) [1]. For a given g(·), d(·), let
eo(·, g(·), d(·)) ∈ E[0,n](κ) be the optimal strategy for

IXn→Y n|s(e
∗, κ)

4
= sup
E[0,n](κ)

Ees

{ n∑

i=0

log
(dP(·|Yi−1, ei(Xi, Ai−1, Y i−1, S))

Pe(·|Y i−1, S)
(Yi)

)}
. (II.11)

Then the following hold.
(i) The optimal strategy in (II.11) occurs in the subset of
Markov strategies in {Xi : i = 0, . . . , n}, defined by
◦
E [0,n] (κ)

4
=
{
µi:Xi×Yi−1×S 7−→ Ai, ai=µi(xi, yi−1, s)

i = 0, . . . , n:
1

n+ 1
Eµs

(
γ0,n(An, Y n−1)

)
≤κ
}
⊂ E[0,n](κ)
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and moreover, IXn→Y n|s(e∗, κ) reduces to the expression

IXn→Y n|s(µ
∗, κ)

4
= sup
◦
E[0,n](κ)

Eµs

{ n∑

i=0

log
(dP(·|Yi−1, µi(Xi, Y

i−1, S))

Pµ(·|Y i−1, S)
(Yi)

)}
(II.12)

≡ sup
◦
E[0,n](κ)

n∑

i=0

Iµ(Xi;Yi|Y i−1, s) (II.13)

Pµ(dyi|yi−1, s) =

∫

Xi
P(dyi|yi−1, µi(xi, yi−1, s))

Pµ(dxi|yi−1, s). (II.14)

That is, Markov coding of Markov process is optimal.
(ii) An optimal information lossless controller-encoder strat-
egy {µ∗i : i = 0, . . . , n} ∈

◦
E [0,n] (κ) satisfies the identity,

IXn→Y n|s(µ
∗, κ) = JAn→Y n|s(π

∗, κ). (II.15)

III. SIGNALLING IN GAUSSIAN NETWORKS

Now, we apply the concepts to the following CS-1, CS-2.
CS-2. A Gaussian Linear Decision Model (GL-DM-2)

with quadratic cost function defined, for i = 0, . . . , n:

Yi = Ci−1 Yi−1 +Di Ai + Vi, Y−1 = y−1 ≡ s, (III.16)
PVi|V i−1,Ai,Y−1

= PVi(dvi), Vi ∼ N(0,KVi), (III.17)

γi(ai, yi−1) , 〈ai, Riai〉+ 〈yi−1, Qi−1yi−1〉 (III.18)

where (Ci−1, Di) ∈ Rp×p × Rp×q, (Qi−1, Ri) ∈
Sp×p+ × Sq×q++ . The control system distribution is given by
Qi(dyi|yi−1, ai) ∼ N(Ci−1yi−1 +Diai,KVi), i = 0, . . . , n.

CS-1. A GL-DM-1 with quadratic cost function described
recursive over the horizon i = 0, 1, . . . , n:

Xi+1 = HiYi + FiXi +BiUi +GiWi, X0 = x ∈ Rq
(III.19)

`i(xi, ui) , 〈ui, R̃iui〉+ 〈xi, Q̃ixi〉, ϕn(x) = 〈xn, M̃nxn〉,
Bi ∈ Rq×m, (Q̃i, R̃i) ∈ Sq×q+ × Sm×m++ , M̃n ∈ Sq×q+

where {Wi ∼ N
(
0,KWi

)
: i = 0, . . . , n − 1} are

Rk−valued independent Gaussian processes, independent of
the Gaussian RV X0, (i.e., PX0

(dx) ∼ N
(
0,KX0

)
). By

(III.17), {Wi : i = 0, . . . , n− 1} is independent of {Vi : i =
0, 1, . . . , n}.

A. Information CC-Capacity: Hierarchical Optimality

Orthogonal Decomposition of Optimal Strategies.
By [11], the optimal randomized control strategy
{π∗i (dai|yi−1) : i = 0, . . . , n} is induced by the Gaussian
process Ai = Agi ,

Agi=e
g
i (Y

g
i−1, Z

g
i )=Ugi +Zgi = ΓiY

g
i−1+Zgi , U

g
i

4
= ΓiY

g
i−1,

Y gi =
(
Ci−1 +DiΓi

)
Y gi−1 +DiZ

g
i + Vi, Y g−1 = y−1

(i) Zgi independent of (Ag,i−1, Y g,i−1), i = 0, . . . , n,
(ii) Zg,i independent of V i, for i = 0, . . . , n,

(iii) {Zgi ∼ N(0,KZi) : i = 0, . . . , n} indep. Gaussian.

Hierarchical Decomposition and Separation Principle.
The optimal strategy {Γi = Γ∗i : i = 0, . . . , n}, is given by

ug,∗i = eg,∗i (yi−1) = Γ∗i yi−1, i = 0, . . . , n, (III.20)

Γ∗i = −
(
DT
i P (i+1)Di+Ri

)−1
DT
i P (i+1)Ci−1 (III.21)

where Γ∗n = 0 and
{
P (i) : i = 0, . . . , n

}
is a solution of the

matrix difference Riccati equation (DRE)

P (i) = CTi−1P (i+ 1)Ci−1 +Qi−1

− CTi,i−1P (i+ 1)Di

(
DT
i P (i+ 1)Di +Ri

)−1

(
CTi−1P (i+ 1)Di

)T
, P (n) = Qn−1. (III.22)

The optimal randomized part of the strategy
{
KZi = K∗Zi :

i = 0, . . . , n
}

is the solution of the water-filling problem:

JAn→Y n|y(π∗, κ) = Cy0,n(κ∗0, . . . , κ
∗
n)≡

n∑

i=0

Cyi (κ∗i )

4
= sup
KZi�0,i=0,...,n,

∑n
i=0 κi(KZi )=κ(n+1)

n∑

i=0

Cyi (κi) (III.23)

Cyi (κi)
4
=

1

2
log
|DiKZiD

T
i +KVi |

|KVi |
, i = 0, . . . , n (III.24)

κi ≡κi(KZi) (III.25)

4
=





tr
(
RnKZn

)
, i = n

tr
(
P (i+ 1)

[
DiKZiD

T
i +KVi

]

+RiKZi

)
, i = 1, . . . , n− 1

tr
(
P (1)

[
D0KZ0D

T
0 +KV0

]
+R0KZ0

)

+〈y, P (0)y〉, i = 0.

Note that KZi = 0,∀i, implies κy0,n(0)
4
=
∑n−1
i=0 tr

(
P (i +

1)KVi

)
+ 〈y, P (0)y〉, which is the LQG optimal cost.

Example 3.1: (Scalar DM) For case p = q = 1, then

K∗Zn =
{ 1

2λRn
− KVn

D2
n

}+

,
{
x
}+ 4

= max
{

0, x
}

(III.26)

K∗Zi =
{ 1

2λ
(
P (i+ 1)D2

i +Ri

) − KVi

D2
i

}+

(III.27)

for i = n− 1, n− 2, . . . , 0, where λ = λn(κ, y) ≥ 0 chosen
to satisfy the average constraint with equality given by

n−1∑

i=0

{{ 1

2λ
−

(
P (i+ 1)D2

i +Ri

)
KVi

D2
i

}+

+P (i+1)KVi

}

+
{ 1

2λ
− RnKVn

D2
n

}+

+ y2P (0) = κ(n+ 1). (III.28)

The information CC capacity is given by

Cy0,n(κ) =
1

2

n−1∑

i=0

{
log
( D2

i

2λ
(
P (i+ 1)D2

i +Ri

)
KVi

)
)}+

+
1

2

{
log
( D2

i

2λRnKVn

)}+

=

n∑

i=0

Cyi (κ∗i ). (III.29)
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For κ ∈ (κy(0),∞), we obtain λ from (III.28). Clearly, in
general, for each i, Cyi (κ∗i ) > 0 provided κ∗i ∈ (κmin,i,∞).

B. Signalling of Information via Coding: Controller-
Encoder-Decoder Strategies

In this section, we state a theorem from [1] that gives the
optimal strategies {controller-encoder, decoder, controller},
according to Definition 2.3. This theorem is needed to
address the infinite horizon version.

Theorem 3.1: (optimal quadruple of strategies
{controller-encoder, decoder, controller}) [1]. Consider
CS-1, i.e., {Xi : i = 0, 1, . . . , n}, which is to be encoded
and transmitted over the CS-2 defined by (III.16)-(III.18).
Let

{(
Γ∗i ,K

∗
Zi

)
: i = 0, . . . , n

}
be the optimal strategy

given by (III.21), (III.23) with optimal distribution
{π∗i (dai|yi−1) : i = 0, . . . , } and

{
(A∗i , Y

∗
i ) : i = 0, . . . , n

}
,

which achieves JAn→Y n|s(π∗, κ).
Define the filter estimates and conditional covariances by

X̂i|i−1
4
= Es

{
Xi

∣∣∣Y ∗,i−1
}
, X̂i|i

4
= Es

{
Xi

∣∣∣Y ∗,i
}
,

Σi|i−1
4
= Es

{(
Xi − X̂i|i−1

)(
Xi − X̂i|i−1

)T ∣∣∣Y ∗,i−1
}
,

Σi|i
4
= Es

{(
Xi − X̂i|i

)(
Xi − X̂i|i

)T ∣∣∣Y ∗,i
}
, i = 0, . . . , n.

Then the encoder strategy and corresponding controlled
process, which operates at JAn→Y n|s(πg,∗, κ), are given by

A∗i=µ
∗
i (Xi, Y

∗,i−1)=Γ∗i Y
∗
i−1+Θ∗i

{
Xi−X̂i|i−1

}
, (III.30)

Θ∗i=K
∗, 12
Zi

Σ
− 1

2

i|i−1, Θ∗i � 0, (III.31)

Y ∗i =
(
Ci−1+DiΓ

∗
i

)
Y ∗i−1+Di Θ∗i

{
Xi−X̂i|i−1

}
+Vi

(III.32)

for i = 0, . . . , n. Moreover, the following hold.
(a) Filter Estimates. The innovations process defined by{
ν∗i
4
= Y ∗i −E

{
Y ∗i

∣∣∣Y ∗,i−1
}

: i = 0, . . . , n
}

satisfies

ν∗i = Y ∗i −
(
Ci−1+DiΓ

∗
i

)
Y ∗i−1 = Di Θ∗i

{
Xi−X̂i|i−1

}
+Vi,

Es

{
ν∗i

∣∣∣Y ∗,i−1
}

= Es

{
ν∗i
}

= 0,

Es

{
ν∗i (ν∗i )T

∣∣∣Y ∗,i−1
}

= DiK
∗
ZiD

T
i +KVi = Es

{
ν∗i (ν∗i )T

}

and the sequence of RVs,
{
ν∗i : i = 0, . . . , n

}
is uncorre-

lated. The optimal filter estimates satisfy the recursions:

X̂i+1|i = HiY
∗
i + FiX̂i|i−1 +Bigi(Y

∗,i−1)

+Ψi|i−1ν
∗
i , X̂0|−1 = Given, (III.33)

Σi+|i = FiΣi|i−1F
T
i +GiKWiG

T
i − FiΣi|i−1

(
DiΘ

∗
i

)T

.
[
DiK

∗
ZiD

T
i +KVi

]−1(
DiΘ

∗
i

)
Σi|i−1F

T
i , (III.34)

Σ0|−1 = Es

{(
X0 − X̂0|−1

)(
X0 − X̂0|−1

)T}
(III.35)

Σi|i = Σi|i−1 −Ψi|i−1
(
DiΘ

∗
i

)
Σi|i−1 (III.36)

where the filter gains are defined by

Ψi|i−1
4
= FiΨi|i−1,

Ψi|i−1
4
= Σi|i−1

(
DiΘ

∗
i

)T [
DiK

∗
ZiD

T
i +KVi

]−1
(III.37)

and the controlled process
{
Y ∗i : i = 0, . . . , n

}
is given by

Y ∗i =
(
Ci,i−1 +DiΓ

∗
i

)
Y ∗i−1 + ν∗i , i = 0, 1, . . . . (III.38)

(b) Information Lossless Controller-Encoder Operating at
JAn→Y n|s(π∗, κ). The controller-encoder {µ∗i (·, ·) : i =
0, . . . , } is information lossless, that is,

IXn→Y n|s(µ
∗, κ) =

n∑

i=0

{
H(ν∗i )−H(Vi)

}

=JAn→Y n|s(π
∗, κ). (III.39)

(c) The optimal decoder is X̂i|i, i = 0, . . . , n.
(d) The optimization problem of CS-1 is given by

J0,n(g∗) = inf{
gi(·):i=0,...,n−1

}
∈U[0,n−1]

Es

{ n−1∑

i=0

(
〈Ui, R̃iUi〉

+ 〈X̂i|i−1, Q̃iX̂i|i−1〉
)

+ 〈X̂n|n−1, M̃nX̂n|n−1〉
}

+

n−1∑

i=0

Tr
(
Q̃iΣi|i−1

)
+ Tr

(
M̃Σn|n−1

)
(III.40)

subject to the constraint

X̂i+1|i = HiY
∗
i + FiX̂i|i−1 +Bigi(Y

∗,i−1)

+Ψi|i−1ν
∗
i , X̂0|−1 = Given, (III.41)

Y ∗i =
(
Ci,i−1 +DiΓ

∗
i

)
Y ∗i−1 + ν∗i , i = 0, 1, . . . . (III.42)

Moreover, the optimal strategy of CS-1 is linear in Xi
4
=

(Y ∗i−1, X̂i|i−1), i = 0, . . . , n, i.e., U∗i = g∗i (Xi) =
KiXi, i = 0, . . . , n, where Ki, i = 0, . . . , n is determined
from the solution of a control DRE.
Special Case. If Hi = 0, i = 0, . . . , n − 1 then the optimal
strategy g∗(·) ∈ U[0,n−1] of CS-1 is given by

U∗i =g∗i (X̂i|i−1) = KiX̂i|i−1, i = 0, . . . , n− 1, (III.43)

Ki
4
=−

[
R̃i +BTi S(i+ 1)Bi

]−1
BTi S(i+ 1)FiX̂i|i−1,

where S(·) satisfies the matrix DRE

S(i) = Q̃i + FTi S(i+ 1)Fi − FTi S(i+ 1)Bi

[
R̃i

+BTi S(t+ 1)Bi

]−1
BTi S(i+ 1)Fi, S(n) = M̃n (III.44)

and the optimal pay-off is given by

J0,n(g∗, µ∗, d∗, y) = 〈X̂0|−1, S(0)X̂0|−1〉

+

n−1∑

i=0

Tr
(
Q̃iΣi|i−1

)

+ Tr
(
M̃nΣn|n−1

)
+

n−1∑

i=0

Tr
(
S(i+ 1)DiD

T

i

)
, (III.45)

Di
4
= Ψi|i−1

(
DiK

∗
ZiD

T
i +KVi

)
ΨT
i|i−1. (III.46)
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Example 3.2: By Theorem 3.1, with p = q = 1, then

Σi|i = F 2
i−1e

−2Cyi (κ∗i )Σi−1|i−1 (III.47)

+ e−2C
y
i (κ
∗
i )G2

i−1KWi−1
, Σ0|0 = e−2C

y
0 (κ
∗
0)Σ0|−1.

Special Case. Suppose Xi+1 = FiXi + BiUi, X0 ∼
N(0, σ2

X0
), i = 0, . . . , n, that is, Gi = 0. Then

Σn|n = |F0F1 . . . Fn−1|2 e−2
∑n
j=0 C

y
j (κ
∗
j )Σ0|−1, n = 0, 1, . . .

Moreover, the MSEs Σn|n, n = 0, 1, . . . satisfy:

If
n∑

i=0

Cyi (κ∗i ) >
∑

i∈{0,...,n−1}:|Fi|>1

log |Fi|, ∀n = 0, . . .

then lim
n−→∞

Σn|n = 0. (III.48)

Remark 3.1: Condition (III.48) is fundamentally different
from past literature [16]–[19], because it holds for time-
varying systems and finite-time n.

C. Control-Coding Capacity of CS-2

We give conditions for C(κ) to be the CC capacity of CS-
2. Define the open unit disc of the space of complex number
C by Do

4
=
{
c ∈ C : |c| < 1

}
, and the spectrum of a matrix

A ∈ Rq×q (the set of all its eigenvalues), by spec(A) ⊂ C.
Theorem 3.2: (CC Capacity of CS-2). Consider the time-

invariant (TI) version of CS-2, i.e., (III.16)-(III.18) with
(Ci−1, Di, Qi−1, Ri,KVi) = (C,D,Q,R,KV ). Assume
i) The pair (C,D) is stabilizable,
ii) the pair (G,C) is detectable, Q = GTG, G ∈ Sp×p+ .
iii) πi(dai|yi−1) = π∞(dai|yi−1),∀i, i.e., TI.
Then C(κ)

4
= limn−→∞ 1

n+1JAn→Y n|Y−1
(π∞,∗, κ), κ ∈

(κmin,∞) exists and is finite. Moreover, the following hold.
(a) The optimal strategy is π∞,∗(·|·) ∼ N(e∞,∗(y),K∗Z),
and the corresponding unique invariant distribution of {Yi :
i = 0, 1, . . .} is Pπ

∞,∗
(·) ∼ N(0,KY ), where

e∞,∗(y)=Γ∗y, Γ∗ = −(DTPD+R)−1DTPC, (III.49)

P=CTPC+Q−CTPD(DTPD+R)−1DTPC, (III.50)

KY =(C+DΓ∗)KY (C+DΓ∗)T+DK∗ZD
T+KV , (III.51)

spec(C+DΓ∗) ⊂ Do. (III.52)

Ai
4
= e∞,∗(Yi−1) + Zi ≡ A

∗
i + Zi, A

∗
i=Γ∗ Yi−1, (III.53)

Yi = CYi−1 +DA
∗
i +DZi + Vi, i = 0, 1, . . . , (III.54)

(b) C(κ) is given by

C(κ) = sup
KZ∈Sq×q+

{1

2
log
|DKZD

T +KV |
|KV |

+ λκ

− λ tr
(
RKZ

)
− λ tr

(
P
[
DKZD

T +KV

])}
(III.55)

where KZ = K∗Z is the optimal value and λ ≡ λ(κ) ≥ 0 is
the Lagrange multiplier found from the constraint

tr
(
RKZ

)
+ tr

(
P
[
DKZD

T +KV

])
≤ κ. (III.56)

(c) C(κ) is the CC capacity of the TI-GL-DM.

Remark 3.2: (Comments on Theorem 3.2)
Theorem 3.2, (c) is derived using the ergodicity of the
directed information density and the optimal control cost.
It implies that we can also encode digital messages into the
randomized strategies of the CS-2, which may experience
long coding delays. Applications include coding of actuator
failures of CS-2. The technical problem of long coding
delays is removed by joint source channel coding of digital
sources over digital channels, as illustrated in [13].

D. Infinite Horizon Signalling of Information via Coding:
Controller-Encoder-Decoder Strategies

Now, we are ready to state all assumptions that allow us
to extend all statements of Theorem 3.1, to the per unit time
limit, and thus ensuring asymptotic stationarity.

Theorem 3.3: (Infinite horizon optimal quadruple of
strategies {controller-encoder, decoder, controller})

Consider the CS-1 and CS-2 of Theorem 3.1 with the
following conditions.
(1) CS-2 is TI and satisfies the conditions of Thm 3.2, i)-iii).
(2) CS-1 is the TI version of (III.19) with Hi = H = 0, i =
0, . . . , n− 1 (for simplicity).
(3) i) The pair (D,F ) is detectable, ii) the pair (F,W )
is stabilizable, W = GKWG

T , G ∈ Sq×q+ , iii) the pair
(F,B) is stabilizable, iv) the pair (G̃, C) is detectable, where
Q̃ = G̃T G̃, G̃ ∈ Sq×q+ .
(4) The control strategies of CS-1 are TI, i.e., {gi(·) =
g∞(·) : i = 0, . . . , }.
Then the following hold.
(a) The limits of Riccati difference equations of Theo-
rem 3.2 Σ

4
= limn−→∞Σn|n−1, Σ̂

4
= limn−→∞Σn|n, S

4
=

limn−→∞ S(n) exist, and satisfy algebraic Riccati equations.
(b) The controller-encoder strategy defined below is infor-
mation lossless with respect to the CC capacity C(κ) of
Theorem 3.2.

A∗i = µ∞,∗(Xi, Y
i−1,∗) = Γ∗Y ∗i−1 + Θ∗

{
Xi − X̂i|i−1

}
,

Θ∗ = K
∗, 12
Z Σ−

1
2 , Θ∗ � 0,

Y ∗i = (C +DΓ∗)Y ∗i−1 +BU∗i +D Θ∗
{
Xi − X̂i|i−1

}
+Vi.

where Y ∗−1 ∼ N(0,KY ). Specifically, Theorem 3.1, (a)-(c)
holds with appropriate changes, such as, the following.
(a) The controller-encoder µ∞,∗(·, ·) satisfies

lim
n→∞

1

n+ 1
IXn→Y n|Y−1

(µ∞,∗, κ) = JA∞→Y∞|Y−1
(π∞,∗κ).

(b) limn−→∞ 1
n+1J0,n(g∞,∗, µ∞,∗, d∞,∗) exists, it is finite,

and the optimal strategy g∞,∗(·) is given by

U∞,∗i =g∞,∗(X̂i|i−1) = K∞X̂i|i−1, i = 0, . . . , (III.57)

K∞
4
=−

[
R̃+BTSB

]−1
BTSFX̂i|i−1, (III.58)

spec(F +BK∞) ⊂ Do. (III.59)
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where S(·) satisfies the matrix Riccati algebraic equation

S = Q̃+ FTSF − FTSB
[
R̃+BTSB

]−1
BTSF.

Proof: The derivation follows from Theorem 3.1 and
the assumptions of detectability and stabilizability.

Theorem 3.3 illustrates the optimal signalling of information
to stabilize CS-1, by encoding its unobserved state {Xi : i =
0, . . . , } using the randomized strategies of the CS-2, while
ensuring optimality of control/communication objectives.

E. Digital Signalling of Information

Now, we discuss an application of CC capacity of CS-2,
for digital messages, using generalizations of Schalkwijk-
Kailath [20] coding scheme.

Problem 3.1: The objective is to reconstruct the state
process Xn that satisfies the recursion Xi+1 = FXi, X0 ∼
N(0, σ2

X0
), i = 0, . . . , at the output of a scalar CS-2, using

digital coding and decoding.
The problem of signalling Xn via CS-2 is equivalent to

the problem of coding-decoding of the initial value X0, while
operating at the CC capacity of CS-2.
Maximum Likelihood Error Probability. Consider a quan-
tized representation of the initial state X0 into equiprobable
messages X(n) = x(n) ∈ M(n) 4=

{
0, 1, . . . ,M (n)

}
, n =

0, 1, . . ., where X0 is an arbitrary RV, not necessarily Gaus-
sian, with values in R. By Example 3.2, and repeating [21],
we can show that the probability of Maximum Likelihood
(ML) decoding error at time n decreases doubly exponen-
tially in (n+ 1), according to

PML
n,error ≤ 2Q

(√3

e
exp

{
(n+ 1)

( 1

n+ 1
C0,n(κ)−R

)})

=2Q
(√3

e
exp

{
(n+ 1)

(
C(κ)−R

)})
for large n

where C(κ) is the CC capacity of the CS-2, and M (n) 4=
exp{(n+ 1)R} is the rate. However, by Example 3.2,

if |F | > 1, then C(κ) > log |F |, κ ∈ (κmin,∞). (III.60)

Hence, we have demonstrated that signalling digital mes-
sages through CS-2 is feasible, and this can be extended to
the series network.

IV. CONCLUSIONS

An asymptotic hierarchical constructive procedure is de-
veloped to synthesize optimal controllers-encoders-decoders,
to signal information from the controller of one control sys-
tem to the controller of another control system, generalizing
earlier work on CC Capacity of stochastic systems.
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