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Abstract— In this work, we consider the consensus problem
in which legitimate agents share their values over an undirected
communication network in the presence of malicious or faulty
agents. Different from the previous works, we characterize
the conditions that generalize to several scenarios such as
intermittent faulty or malicious transmissions, based on trust
observations. As the standard trust aggregation approach
based on a constant threshold fails to distinguish intermittent
malicious/faulty activity, we propose a new detection algorithm
utilizing time-varying thresholds and the random trust values
available to legitimate agents. Under these conditions, legitimate
agents almost surely determine their trusted neighborhood
correctly with geometrically decaying misclassification proba-
bilities. We further prove that the consensus process converges
almost surely even in the presence of malicious agents. We
also derive the probabilistic bounds on the deviation from the
nominal consensus value that would have been achieved with
no malicious agents in the system. Numerical results verify the
convergence among agents and exemplify the deviation under
different scenarios.

I. INTRODUCTION

In this paper we are interested in the consensus problem
[1], [2] in cyberphysical multi-agent systems under intermit-
tent malicious attacks or failures. Agents need to reach an
agreement over a set of variables using only local computa-
tion and communicating over a static undirected graph in the
presence of malicious (non-cooperative) agents. Consensus
algorithms constitute a basis for distributed decision-making
in networked multi-agent systems [3], and are relevant for
many multi-agent coordination applications, such as deter-
mining heading direction, rendezvous, and velocity agree-
ment [4]–[6]. However, consensus algorithms that assume
all agents are cooperative are known to be susceptible to
malicious and faulty behaviors [7], [8]. Our goal in this work
is to develop a resilient consensus algorithm utilizing “trust
observations” for intermittent malicious and faulty behavior.

Achieving resilient consensus in the presence of malicious
agents has been studied extensively in the literature. Earlier
methods that only use the transmitted data to detect or
eliminate untrustworthy information impose restrictions on
the connectivity of the network and the number of tolerable
malicious agents [8], [9]. As these fundamental limitations
apply to other distributed computation algorithms [10], [11],
researchers have explored leveraging additional information,
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that can be obtained from the physicality of the system, to
assess the trustworthiness of the agents via stochastic trust
observations αijptq P r0, 1s indicating the trustworthiness of
a link pi, jq [12]–[16].

Previous work [17] shows that agents can detect untrust-
worthy agents with static behavior over time using trust
observations with a predetermined threshold value and reach
consensus even when malicious agents are in the majority.
However, this ability breaks under intermittent attacks of
the malicious agents, occurring infinitely many times with
a constant positive probability at each time. In certain cases,
malicious agents can inflict more damage to distributed
systems by attacking randomly instead of attacking all
the time [18], [19]. Notably, the detection ability with a
constant threshold is compromised even for unintentional
behavior such as intermittent failures due to noisy sensors
leading to incorrect location reporting. The reason is that
intermittent behavior results in a mixture of trustworthy
and untrustworthy transmissions, precluding the ability to
differentiate an attacker from a legitimate agent by using
a constant threshold as was the case in previous works [17],
[20]. Standard statistical tests necessitate the knowledge and
certain forms of the distributions where samples are drawn,
e.g. their moments and continuity [21], [22]. However, such
properties may not be available to agents or may not hold
with intermittent malicious transmissions, leading to the un-
availability of convergence guarantees for standard statistical
tests.

We address these challenges by proposing a new de-
tection algorithm and a consensus method providing re-
silience against intermittent attacks and failures. Our de-
tection method (Algorithm 1) utilizes the key point that
legitimate agents’ trust observations are sampled from the
same distribution and that their expectations are higher
than the malicious agents even when they act intermittently
malicious. In the proposed algorithm, agents accumulate
trust values from neighbors over time. Each round, they
select their most trusted neighbor (the one with the highest
aggregate trust value) as a reference and construct a trusted
neighborhood by comparing other agents’ aggregate trust
values with the most trusted neighbor. Agents employ an
adaptive threshold that grows over time, allowing them to
exclude all malicious agents eventually, while still keeping
their legitimate neighbors in their trusted neighborhood.
Agents perform consensus updates using the values coming
from their trusted neighbors only. Under the assumption that
all legitimate agents have at least one legitimate neighbor,
we demonstrate that the probability of agents misclassifying
their neighbors decreases geometrically over time, result-
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ing in a period after which no classification errors occur
(Lemmas 1-2). Moreover, we show that the legitimate agents
reach consensus almost surely, and their deviation from the
consensus value is bounded (Corollary 1). We derived the
maximal deviation from the nominal consensus process for a
predetermined error tolerance (Theorem 1). In summary, our
contributions are two-fold, i) we propose a novel detection
algorithm for removing faulty and malicious activity in finite
time, and ii) we show the convergence of the consensus
process and analyze the deviation from nominal consensus.
Numerical results also corroborate our theoretical analysis in
different scenarios.

II. CONSENSUS DYNAMICS WITH FAILURES AND
ATTACKS

A. Notation

We use |.| to denote absolute values of scalars and car-
dinalities of sets. We write r.si and r.sij for the ith entry
of a vector and the ij-th entry of a matrix, respectively.
We also extend the notation |.| to matrices/vectors to define
the element-wise absolute value of matrices/vectors, e.g.,
r|A|sij “ |rAsij |. For matrices A and B, we write A ą B
(or A ě B) when rAsij ą rBsij (or rAsij ě rBsij) for
all i, j. We use 0 and 1 to represent vectors/matrices whose
entries are all 0 and 1, respectively.

We also use the backward matrix product of the matrices
Hpkq, defined as follows:

t
ź

k“τ

Hpkq :“

#

Hptq ¨ ¨ ¨Hpτ ` 1qHpτq if t ě τ,

I otherwise,
(1)

where I corresponds to the identity matrix.

B. Consensus in Presence of Untrustworthy Agents

We study the consensus dynamics among multiple agents
defined by the set N :“ t1, . . . , Nu. The agents send
and receive information through a static undirected graph
GpN , Eq, where E Ď N ˆN represents the set of undirected
edges among the agents. For each agents i, the set of
neighboring agents is denoted by Ni :“ tj P N : pi, jq P

Eu. The agent set N consists of legitimate agents who
are always trustworthy and malicious agents who can be
trustworthy or not. The set of legitimate agents is denoted by
L, while the set of malicious agents is denote by M, with
L Y M “ N and L X M “ H. These sets are fixed over
time and assumed to be unknown. The legitimate agents have
associated nonnegative weights, subject to changes over time,
for the existing communication links such that wijptq P r0, 1s

if pi, jq P E , otherwise wijptq “ 0. The consensus dynamics
among the agents starts at some time T0 ě 0, and we model
the dynamic for the legitimate agents, as follows: for all i P L
and for all t ě T0 ´ 1,

xipt ` 1q “ wiiptqxiptq `
ÿ

jPNi

wijptqxjptq, (2)

where xiptq P R for all i P L. According to this update rule,
each legitimate agent i P L takes a convex combination of
its value and its neighbors, i.e. wiiptq ą 0, wijptq ě 0, and
wiiptq`

ř

jPNi
wijptq “ 1. Since the consensus update starts

at time T0, we assume that xip0q “ xiptq for all 0 ď t ă T0.
The dynamic of the malicious agent’s values is assumed to
be unknown even in the case they are not actively attacking,
and it is not modeled.

We define xptq P RN as a vector of agents’ values at
time t. Given the partition of the agents as legitimate and
malicious, we partition the vector xptq accordingly, i.e.,
xptq “ rxLptq, xMptqsT . Then, the consensus dynamics (2)
can be written in a vector notation:

xLpt ` 1q “
“

WLptq WMptq
‰

.

„

xLptq
xMptq

ȷ

, (3)

where WLptq P R|L|ˆ|L| and WMptq P R|L|ˆ|M| are the
weight matrices associated with legitimate and malicious
agents. Hence, the consensus dynamics of legitimate agents
can be written as a sum of two terms at any time t ě T0,

xLpT0, tq “ x̃LpT0, tq ` ϕMpT0, tq, (4)

where

x̃LpT0, tq “

ˆ t´1
ź

k“T0´1

WLpkq

˙

xLp0q, (5)

ϕMpT0, tq “

t´1
ÿ

k“T0´1

ˆ t´1
ź

ℓ“k`1

WLpℓq

˙

WMpkqxMpkq. (6)

Here, the term x̃LpT0, tq represents the influence of legiti-
mate agents on each other and the term ϕMpT0, tq represents
the influence of malicious agents on the legitimate agents’
values. These relations in (4)-(6) are the backbone of the
subsequent analysis, as they capture the consensus dynamics
of the legitimate agents in terms of the starting time T0, the
initial values xp0q, together with the malicious inputs xMpkq.

We assume that the values xiptq of all agents are bounded,
i.e., |xiptq| ď η by a scalar η ą 0 for all i P N , and this value
is known by all agents. Under this assumption, no malicious
agent will ever send a value outside the interval r´η, ηs

otherwise it will be immediately detected. This assumption
is crucial for bounding the cumulative impact of malicious
inputs, as captured by ϕMpT0, tq in (6).

C. Trusted Neighborhood Learning
Each legitimate agent i P L aims to classify its legitimate

neighbors NL
i :“ Ni X L and malicious neighbors NM

i :“
Ni XM correctly over time by gathering trust values αijptq
for each transmission from their neighbors j P Ni (see [12]
for more details on how to compute the trust values αijptq).
The values αijptq, t ě 0, are random with values in the unit
interval, i.e., αijptq P r0, 1s for all j P N and all t ě 0,
where higher αijptq values (αijptq Ñ 1) indicate the event
that a neighbor j is legitimate, is more likely.

The legitimate agents utilize the observed trust values
tαijpkqu0ďkďt to determine their trustworthy neighbors and
select the weights wijptq at time t. Following the work
in [17], we use the aggregate trust values, i.e.,

βijptq “

t
ÿ

k“0

pαijpkq ´ 1{2q, for all i P L and j P Ni. (7)

We make the following assumption on the trust values αijptq.
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Assumption 1 Suppose that the following statements hold.

(i) The expected value of malicious and legitimate trans-
missions sent from a neighbor agent j P Ni and
received by a legitimate agent i P L are constant over
time t and satisfy

cj “ Epαijptqq, j P M, (8)
d “ Epαijptqq, j P L, (9)

where d ´ cj ą 0 for all j P M.
(ii) The random variables αijptq observed by a legitimate

agent i P L are independent and identically distributed
for a given agent j P Ni at any time index t P N.

(iii) The subgraph GL “ pL, ELq induced by the set of
legitimate agents L is connected, where EL :“ tpi, jq P

E : pi, jq P L ˆ Lu.

Assumption 1-(i) captures the scenarios where each mali-
cious agent m P M transmits malicious information with a
(nonzero) probability pm P p0, 1s at each time t, and it send
legitimate values with probability 1 ´ pm, whereas a legiti-
mate agent l P L never exhibits malicious behavior. It also
holds when a malicious agent periodically sends malicious
information in (deterministic) bounded time intervals. As a
result, different and unknown rates of malicious transmis-
sions correspond to mixed distributions with different expec-
tations for the malicious agents’ trust values. Assumption 1-
(ii) requires independent trust samples of each neighbor from
identical distributions; note that distributions of trust values
given an agent j P Ni are identical, while these distributions
can be a mixture of several distributions. Assumption 1-
(iii) imposes the connectivity among legitimate agents with
a fixed topology. This assumption is consistent with the
existing work leveraging trust values [12], [17], [20], [23]
and is more relaxed than connectivity assumptions in other
resilient multi-agent system works [7]–[10].

Unlike the work in [17], we assume that the legitimate
agents do not have any apriori threshold values to determine
their trusted neighborhood. This phenomenon can arise
due to the dynamic behavior of the malicious agents. To
handle the situation when an apriori threshold is unavailable,
we propose a new learning method that legitimate agents
implement to identify their trustworthy neighbors over time.
The algorithm is built on three properties, (1) all legitimate
agents have at least one legitimate neighbor, i.e., NL

i ‰ H,
(Assumption 1-(iii)) (2) the legitimate agents have identical
aggregate trust values in expectation, and (3) the legitimate
agents have higher trust values compared to malicious agents
in expectation (see Assumption 1-(i)). Based on property (3),
in the algorithm, each legitimate agent chooses the highest
aggregate trust value as a reference point. Then, it eliminates
the malicious agents based on the unbounded (expected)
difference of trust value aggregates between a legitimate and
a malicious agent, as t ÝÑ 8 (based on Assumption 1-(i)).
Algorithm 1 is provided as below.

Algorithm 1 Trusted Neighborhood Learning

1: Input: Threshold value ξ ą 0, γ P p0.5, 1q.
2: Each agent i P L finds j̄ptq “ argmaxjPNi βijptq.
3: Each agent i P L checks if βij̄ptqptq´βijptq ď ξt, where

ξt “ ξpt ` 1qγ , for all j P Ni.
4: Each agent i P L returns Niptq “ tj P Ni|βij̄ptqptq ´

βijptq ď ξtu.

In words, each legitimate agent i P L first selects its
most trusted neighbor (Step 2). Then, it compares others’
trusted values with the most trusted agent (Step 3), and
finally determines its trusted neighborhood with time-varying
threshold values (Step 4). The chosen range for γ ensures the
threshold grows slow enough to exclude malicious agents
while maintaining a pace that retains legitimate agents over
time. The rationale behind this selection will become more
evident in Lemma 1 and Lemma 2 later on.

Next, we define the actual weights wijptq “ rW ptqsij
assigned by legitimate agents i P L based on their learned
trusted neighborhoods Niptq, as below,

wijptq “

$

’

&

’

%

1
nwi

ptq if j P Niptq,

1 ´
ř

ℓPNiptq wiℓptq if j “ i,

0 otherwise,

(10)

where nwi
ptq “ maxt|Niptq| ` 1, κu ě 1 and κ ą 0 is

a parameter that limits the influence of other agents on the
values xiptq. Similarly, we define the matrix ĎWL that would
have been constructed if the legitimate agents have known
their trusted neighbors, i.e., for the pairs of agents pi, jq P

L ˆ N ,

rĎWLsij “

$

’

&

’

%

1
maxt|NL

i |`1,κu
if j P NL

i ,

1 ´ 1
maxt|NL

i |`1,κu
if j “ i,

0 otherwise.

(11)

The (nominal) matrix ĎWL is the ideal and target case for
each legitimate agent to eliminate the effect of malicious
agents in the consensus process defined in Eqs. (4)-(6).

III. ANALYSIS OF CONSENSUS DYNAMICS

A. Convergence of Consensus Dynamics
We start by analyzing the probability that a legitimate

agent i misclassifies one of its neighbors at some time t in
Algorithm 1. This misclassification can occur in two ways.
A legitimate agent i can misclassify one of its legitimate
neighbors j P NL

i as malicious, resulting in agent j being
excluded from the trusted neighborhood Niptq. Conversely,
agent i can misclassify one of its malicious neighbors m P

NM
i as legitimate, resulting in agent m being included in

the trusted neighborhood Niptq.
Lemma 1 Suppose Assumption 1 holds. Let ξ ą 0 and γ P

p0.5, 1q be the parameters defined in Algorithm 1. Let j be an
arbitrary legitimate neighbor of a legitimate agent i, i.e., j P

NL
i for agent i P L. Then, the misclassification probability

of agent j by agent i has the following upper bound,

Ppj RNiptqq ď |NL
i | expp´ξ2pt ` 1q2γ{2pt ` 1qq

` |NM
i | expp´pξpt ` 1qγ ` λpt ` 1qq2{2pt ` 1qq,
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λ :“ minmPMpd ´ cmq.

Proof: By Algorithm 1, a legitimate neighbor j is
mislassified when the event tβij̄ptqptq ´βijptq ą ξtu occurs.
First, notice that this event is equivalent to the union of
the events

Ť

nPNi
tβinptq ´ βijptq ą ξtu. We check this

equivalence in both directions. The event βij̄ptqptq ą βijptq`

ξt implies that there exist an element j1 P Ni such that
βij1 ptq ą βijptq ` ξt, as we can simply choose j1 “ j̄ptq.
The converse is also true. The existence of a j1 P Ni with
βij1 ptq ą βijptq`ξt implies that βij̄ptqptq ą βijptq`ξt since
βij̄ptqptq ě βij1 ptq by definition given in Algorithm 1 Step 2.
Therefore, we have that the event tβij̄ptqptq´βijptq ą ξtu is
equivalent to the union of events

Ť

nPNi
tβinptq ´ βijptq ą

ξtu. Using this equality, we have,

Ppj R Niptqq “Ppβij̄ptqptq ´ βijptq ą ξtq (12)

“Pp
ď

nPNi

tβinptq ´ βijptq ą ξtuq (13)

ď
ÿ

lPNL
i ztju

Ppβilptq ´ βijptq ą ξtq (14)

`
ÿ

mPNM
i

Ppβimptq ´ βijptq ą ξtq, (15)

where the last step follows from the union bound. First, we
focus on bounding the probability Ppβilptq ´ βijptq ě ξtq.
Notice that βilptq ´ βijptq “

řt
s“0pαilpsq ´ αijpsqq is the

sum of independent random variables pαilpsq ´αijpsqq with
expectation Epαilpsq ´ αijpsqq “ 0. Therefore, we directly
apply the Chernoff-Hoeffding inequality to obtain

Ppβilptq ´ βijptq ą ξtq ď expp´ξ2t {2pt ` 1qq

“ expp´ξ2pt ` 1q2γ{2pt ` 1qq,

where in the last step we used the definition of ξt. Us-
ing a similar line of reasoning, we bound the probability
Ppβimptq ´ βijptq ą ξtq, as follows:

Ppβimptq ´ βijptq ą ξtq

paq
“ Ppβimptq ´ βijptq ´ Epβimptq ´ βijptqq

ą ξpt ` 1qγ ` pt ` 1qpd ´ cmqq

pbq

ď expp´pξpt ` 1qγ ` pt ` 1qpd ´ cmqq2{2pt ` 1qq,

where in paq we embed the expected difference of trust
values into both sides, and in pbq we apply the Chernoff-
Hoeffding inequality since pd ´ cmq ą 0 by Assumption 1-
(i). The rest of the proof follows from combining the bounds
with Eq. (15).
Next, we analyze the probability of misclassifying a mali-
cious neighbor m P Ni. Such misclassification happens if the
gap between the maximum aggregate trust value βij̄ptqptq and
m’s value βimptq is at most ξt, i.e., βij̄ptqptq ´ βimptq ď ξt.
Lemma 2 Suppose Assumption 1 holds. Let ξ ą 0 and γ P

p0.5, 1q be the parameters defined in Algorithm 1. Let m be
an arbitrary malicious neighbor of a legitimate agent i, i.e.,

m P NM
i for agent i P L. Then, for all t ą

´

ξ
λ

¯1{p1´γq

´1,

the misclassification probability of agent m by agent i has
the following upper bound,

Ppm PNiptqq ď expp´pξpt ` 1qγ ´ pt ` 1qλq2{2pt ` 1qq.

Proof: By the definition of the trusted neighborhood in
Algorithm 1, a malicious neighbor m is misclassified when
we have βij̄ptqptq ´ βimptq ď ξt. We note that this event
is equivalent to the intersection of events

Ş

jPNi
tβijptq ´

βimptq ď ξtu. This equivalence holds as we validate it
from both directions. The event that the maximum element
βij̄ptqptq ď βimptq ` ξt, which holds by the definition of
Niptq (from Alg. 1) and βij̄ptqptq, implies that βijptq ď

βimptq ` ξt for all j P Ni (see Fig. 1.b). Conversely,
if βijptq ď βimptq ` ξt for all j P Ni, then we have
βij̄ptqptq ď βijptq ` ξt since j̄ptq is also chosen from the
set of all j P Ni (see Step 2 in Algorithm 1). Thus we have
that the event tβij̄ptqptq ´ βimptq ď ξtu is equivalent to the
intersection of events

Ş

jPNi
tβijptq ´ βimptq ď ξtu. Using

this equality, we get

Ppm P Niptqq “ Ppβij̄ptqptq ´ βimptq ď ξtq

“ Pp
č

nPNi

tβinptq ´ βimptq ď ξtuq

ď min
nPNi

Ppβinptq ´ βimptq ď ξtq.

Consider an arbitrary legitimate neighbor of an agent i,
l P NL

i . We know that such a neighbor must exist due to
Assumption 1-(iii). Then, we have

min
nPNi

Ppβinptq ´ βimptq ď ξtq ď Ppβilptq ´ βimptq ď ξtq

“ Ppβilptq ´ βimptq ´ Epβilptq ´ βimptqq

ď ξpt ` 1qγ ´ pt ` 1qpd ´ cmqq.

Then, for t ą

´

ξ
d´cm

¯1{p1´γq

´ 1, we have ξpt` 1qγ ´ pt`

1qpd´cmq ă 0. Therefore, we apply the Chernoff-Hoeffding
inequality to obtain the desired result.
Lemmas 1 and 2 show the misclassification probabilities
go to 0, as t Ñ 8, due to the Chernoff-Hoeffding bound.
The next lemma states almost sure convergence of weights
matrices.

Lemma 3 Suppose Assumption 1 holds. Let ξ ą 0 and γ P

p0.5, 1q be the parameters defined in Algorithm 1.There exists
a (random) finite time Tf ą 0 such that WLptq “ ĎWL for
all t ě Tf . Furthermore, it holds almost surely

8
ź

t“T0´1

WLptq “ 1νT
ˆ maxtTf ,T0u´1

ź

t“T0´1

WLptq

˙

, (16)

where the matrix product
ś8

t“T0´1 WLptq ą 0 for any T0 ě

0 almost surely, and ν ą 0 is a stochastic vector.

Proof: Using Lemmas 1 and 2, legitimate agents
have geometrically decaying misclassification probabilities.
The infinite sums of misclassification probabilities satisfy
ř8

t“0 Ppj R Niptqq “
ř8

t“0 Opexpp´ξ2pt`1q2γ{2pt`1qq ă

8 for legitimate neighbors j P NL
i , and

ř8

t“0 Ppj P

Niptqq “
řT 1

´1
t“0 Ppj P Niptqq `

ř8

t“T 1 Opexpp´pξpt `
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1qγ ´ pt ` 1qλq2{2pt ` 1qqq ă 8 for all t ě T 1, where

T 1 ě

´

ξ
d´cm

¯1{p1´γq

´ 1. Hence, there exists a finite time
Tf such that we have WLptq “ ĎWL for all t ě Tf .

As WLptq “ ĎWL for all t ě Tf , for the product of the
matrices WLptq, we have,

8
ź

t“T0´1

WLptq “

8
ź

t“maxtT0,Tf u

WLptq

maxtT0,Tf u´1
ź

t“T0´1

WLptq

“

8
ź

t“maxtT0,Tf u

ĎWL

maxtT0,Tf u´1
ź

t“T0´1

WLptq

“ lim
tÑ8

ĎW
t´maxtT0,Tf u

L

maxtT0,Tf u´1
ź

t“T0´1

WLptq.

By Assumption 1, the subgraph induced by the legitimate
agents is connected and, by the definition of ĎWL, it fol-
lows that ĎWL implies is a primitive stochastic matrix.
Therefore,by the Perron-Frobenius Theorem, we have that
limtÑ8

ĎW
t´maxtT0,Tf u

L “ 1νT , with ν ą 0, and

8
ź

t“T0´1

WLptq “ 1νT
ˆ maxtTf ,T0u´1

ź

t“T0´1

WLptq

˙

.

In addition, note that as ν is a stochastic and that diagonal
entries of WLptq are positive. Thus,

ś8

t“T0´1 WLptq ą 0

almost surely and νT
ˆ

śmaxtTf ,T0u´1
t“T0´1 WLptq

˙

ą 0.

The following two lemmas are the direct results of
Lemma 3 and the proofs are along the lines of Propositions
2-3 in [17].

Lemma 4 Suppose Assumption 1 holds. In Algorithm 1, let
ξ ą 0 and γ P p0.5, 1q. Let xLp0q be the initial values of
legitimate agents. Then, x̃LpT0, tq converges almost surely,
i.e., almost surely

lim
tÑ8

x̃LpT0, tq “

ˆ 8
ź

k“T0´1

WLpkq

˙

xLp0q “ y1,

where y P R is a random variable depending on Tf and T0.

Lemma 5 Suppose Assumption 1 holds. In Algorithm 1, let
ξ ą 0 and γ P p0.5, 1q. Then, the influence ϕMpT0, tq
from malicious agents converges almost surely, i.e., we have
almost surely

lim
tÑ8

ϕMpT0, tq “

8
ÿ

k“T0´1

ˆ 8
ź

ℓ“k`1

WLpℓq

˙

WMpkqxMpkq

“ f1,

where f P R is a random variable depending on Tf and T0.

We now state that legitimate agents reach a common value
asymptotically.

Corollary 1 Suppose Assumption 1 holds, and let ξ ą 0 and
γ P p0.5, 1q in Algorithm 1. Then, the consensus protocol (3)
among the legitimate agents converges almost surely, i.e.,

lim
tÑ8

xLpT0, tq “ z1 almost surely, (17)

where z P R is a random variable given by z “ y ` f , with
y and f from Lemma 4 and Lemma 5, respectively.

Proof: The result follows by the relation xLpT0, tq “

x̃LpT0, tq ` ϕMpT0, tq (see (4)) and Lemmas 4–5.
Corollary 1 states that the legitimate agents reach the same
random scalar value z almost surely. However, the consensus
value z can be outside the convex hull of the initial values
xLp0q of legitimate agents, unlike the result of the standard
consensus process.

We conclude this section with the final theorem on the
deviation from nominal consensus.

Theorem 1 Suppose Assumption 1 holds. Let ξ ą 0 and
γ P p0.5, 1q be as given in Algorithm 1. For an error level

δ ą 0, T0 ą

´

ξ̃
λ

¯1{p1´γq

´ 1 and any ξ̃ ą ξ, we have,

Ppmax lim sup
tÝÑ8

|rxLpT0, tq ´ 1νTxLp0qsi| ă ∆maxpT0, δqq

ě 1 ´ δ,

where ∆maxpT0, δq “ 2p
2η
δ gLpT0q `

η
κδ gMpT0qq.

We examined the deviation from the nominal consensus
process in the extended version [24]. The result shows that
as agents wait longer to start the consensus process, i.e. with
increasing T0, they have tighter bounds on the probabilities.

IV. NUMERICAL STUDIES

In this section, we assess the performance of our proposed
algorithm against different type of malicious attacks in
numerical studies. We consider a challenging scenario with
10 legitimate and 15 malicious agents where the malicious
agents constitute the majority. We construct the communi-
cation graph as follows: first, we generate a cycle graph
among the legitimate agents and then add 10 more random
edges between them. The malicious agents form random con-
nections to every other agent with probability 0.2 while we
also ensure that they are connected to at least one legitimate
agent. We sample agents’ initial values from the uniform
distribution Ur´4, 4s once for both legitimate and malicious
agents. Legitimate agents follow the consensus dynamics
given in Eq. (2) with κ “ 10. The legitimate neighbors’ trust
values are sampled from the uniform distribution Ur0.3, 1s

resulting in the expected value d “ 0.65. To model the case
where each malicious agent has a different expected value,
we choose their expectations from the uniform distribution
Ur0, 0.45s.

We consider two types of attack in our experiments:
1) Consistent attacks where malicious agents always send η
(or ´η) if the true consensus value is negative (positive).
During each communication, a malicious agent m’s trust
value is sampled from the uniform distribution Ur2cm´1, 1s

with probability pm and from Ur0.3, 1s (the same distribution
as the legitimate neighbors) with probability 1 ´ pm. 2) In-
termittent failures where malicious nodes follow the same
consensus update rule as the legitimate agents but send η (or
´η) to their neighbors with probability pm. During failures,
malicious agents’ trust values are sampled from the uniform
distribution Ur2cm ´ 1, 1s and from Ur0.3, 1s otherwise.

6061



For both attacks, we assume that all malicious agents
have the same pm, and consider two cases with pm “ 0.2
and pm “ 0.8. We use ξ “ 0.15 and γ “ 0.7 as the
parameters of our learning algorithm Algorithm 1. We use
T0 “ 60 as it satisfies the largest theoretical lower bound on
T0 given in Theorem 1 for all cases. We track the maximum
deviation from the nominal consensus value over time in
Fig. 1. Note that these results are averaged over 100 trials
for each setup, where the communication graph, the initial
values and the expected values of agents are fixed across the
trials. In all cases and trials, we observe that agents reach
consensus, as predicted by Corollary 1. Moreover, we see
that the probability of being observable, pm, has the highest
impact on the deviation, as it affects the misclassification
probabilities (see Lemma 2 and Lemma 1). As expected,
consistent attacks have more impact on the system when
the attack probability is low (pm “ 0.2) since malicious
agents are always inserting a constant value η (or ´η) to
the system, and they stay undetected for a longer time.
When the attack probability is high (pm “ 0.8), malicious
agents get detected quickly, and the errors mainly stem from
misclassified legitimate agents.

Fig. 1: The maximal deviation from the nominal consensus. Ma-
licious input η is the maximum impact that malicious agents can
have on the system.

V. CONCLUSION

In this paper, we studied the multi-agent resilient con-
sensus problem in undirected and static communication
networks. Assuming trust observations are available, we
considered the scenarios with intermittent faulty or malicious
transmissions. We developed a novel detection algorithm
to let legitimate agents determine their neighbors’ types
correctly. We showed that misclassification probabilities go
to zero in finite time and agents reach a consensus almost
surely asymptotically. We characterized the maximal devia-
tion in terms of error tolerance, expected trust values, and
algorithmic parameters. Numerical experiments showed the
convergence of the consensus process and the deviation under
different scenarios.
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