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Abstract— The interaction topology plays a significant role in
the collaboration of multi-agent systems. How to preserve the
topology against inference attacks has become an imperative
task for security concerns. In this paper, we propose a dis-
tributed topology-preserving algorithm for second-order multi-
agent systems by adding noisy inputs. The major novelty is that
we develop a strategic compensation approach to overcome the
noise accumulation issue in the second-order dynamic process
while ensuring the exact second-order consensus. Specifically,
we design two distributed compensation strategies that make the
topology more invulnerable against inference attacks. Further-
more, we derive the relationship between the inference error
and the number of observations by taking the ordinary least
squares estimator as a benchmark. Extensive simulations are
conducted to verify the topology-preserving performance of the
proposed algorithm.

I. INTRODUCTION

Over the past few decades, researchers have focused on
designing multi-agent systems (MASs) where agents with
limited capacity coordinate with each other in a distributed
manner and accomplish specific tasks. Distributed coope-
rative control has broad applications such as sensor net-
works [1], distributed computing [2], swarm flocking [3] and
cooperative manipulation [4]. The importance of the interac-
tion topology for distributed cooperative control is reflected
in its impact on the autonomy, adaptation, scalability, and
efficiency of the MAS [5]. As a result, it receives significant
attention from researchers and brings up various studies
focusing on estimating the interaction topology based on
accessible observation data. This topology inference problem
can be solved by various methods such as the Ordinary Least
Squares (OLS) estimator [6], causality-based estimator [7],
identification method [8], reinforcement learning [9], etc.

However, as the behavior of common MASs can be ob-
served externally, the advanced topology inference methods
may be leveraged by malicious adversaries to regress the
interaction topology of the MAS, causing critical security
breaches. For example, with knowledge of the topology,
adversaries can predict the future states of vulnerable or
critical agents and launch precise interceptions [10], or
they can attack the communication links, thus paralyzing
the system [11]. Such attacks can severely deteriorate the
collaboration performance of the MASs. To address this
security risk associated with topology inference attacks, it
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is of utmost importance to develop topology-preserving col-
laboration algorithms that can efficiently conceal the actual
topology while maintaining the stability and cooperative
performance of the MASs.

Technically, countering topology inference attacks requires
well-designed modifications to the cooperative algorithms.
Researchers have delved into the cooperative algorithm to
address specific consensus-based needs, such as protecting
the privacy of agents [12], [13], enhancing resilience against
false data injection attacks [14], and improving robust-
ness in handling intermittent communications and actuator
faults [15]. Among these defense mechanisms, two main
methods are commonly applied, namely dynamic topology
and noise-adding algorithms. In the former approach, the
interaction topology of the agents changes over time, signif-
icantly increasing the uncertainty of the states of the agents
to enhance protection on the system [16]–[18]. Nevertheless,
these methods usually have a strong dependence on the
connectivity of topology and often present greater challenges
to collaboration. On the other hand, noise-adding algorithms
impose additional noisy signals on the states of the agents
during the collaboration, thereby hiding the accurate state
information from the adversaries [12], [13], [19], [20]. For
example, the authors of [12] propose a differential privacy
scheme based on Laplace noise to preserve the privacy of
the states of the agents, and the authors of [13] introduce a
noise-adding algorithm to preserve the privacy of the initial
states while achieving exact average consensus in the sense
of mean square convergence.

According to the aforementioned works, noise-adding
methods are flexible and effective in addressing specific
needs without a strong dependence on topology, making
them promising for topology-preserving algorithm design.
Following this idea, our latest work [21] has made prior
efforts to preserve the topology of first-order MASs. How-
ever, this algorithm is not directly suitable for second-order
systems, which have more practical applications such as
flocking and formation control [22], [23]. The infeasibility
lies in that the added noisy inputs in second-order systems
or higher-order systems will accumulate in the states and
deteriorate the system convergence. How to preserve the
topology of second-order MASs still remains an open issue.

Motivated by the above observations, this paper focuses
on designing a topology-preserving algorithm for second-
order MASs by utilizing noise-adding methods. Specifically,
we propose a distributed topology-preserving second-order
consensus (TPSC) algorithm by designing strategic compen-
sating inputs, which effectively conceals the actual topology
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structure from the inference attack without sacrificing collab-
oration performance. The main challenge related to designing
the algorithm is to retain exact second-order consensus
performance in a distributed manner while defending against
inference attacks as much as possible. The main contributions
of our work are summarized as follows:

• We investigate the topology preservation problem in
second-order MASs, and we propose a distributed al-
gorithm that secures the interaction topology while
guaranteeing collaboration performance.

• By exploiting the sufficient and necessary conditions
on added noisy inputs for exact second-order consensus,
we develop two strategic compensating input designs for
the state-updating process of each node, without relying
on any global system parameters.

• For the self-compensating strategies, we prove the exact
second-order consensus of the MAS under the TPSC al-
gorithm. The relationship between the convergence rate
of the inference error and the number of observations
is derived. Representative simulations demonstrate the
effectiveness of the proposed TPSC algorithm.

Notation: Let 1 be an all-one column vector, and 0 be
an all-zero column vector with compatible dimensions. Let
N and N+ be the sets of non-negative integers and positive
integers. Let R be the set of real numbers. Let ∥ · ∥ and
∥ · ∥F represent the spectral norm and Frobenius norm of
a matrix, respectively. For two functions f(x) and g(x),
f(x) = O(g(x)), x → ∞ mean that there exists a positive
real number M and a real number x0 such that ∥f(x)∥ ≤
Mg(x),∀ x ≥ x0.

The rest of the paper is organized as follows: Section
II provides some preliminary knowledge and formulates
the problem. The proposed algorithm and its performance
analysis are in Section III. Section IV shows the simulation
results. Finally, Section V concludes the work.

II. PRELIMINARIES

Let G = (V, E) be an undirected graph that models the
topology information within the multi-agent system, where
V = {1, . . . , N} is the set of nodes and E ⊆ V × V
denotes the set of edges. Each node represents an agent, and
each weighted edge represents an information transmission
channel. The adjacency matrix AG = [aij ]N×N of a graph G
with N agents specifies the interconnection topology of the
system, where aij > 0 if and only if (i, j) ∈ E , else aij = 0.
Let Ni = {j | (i, j) ∈ E} be the neighbor set of agent i and
di = |Ni| be its in-degree. Define Laplacian matrix of G as
LG = DG −AG , where DG is the diagonal matrix of all dis.

A. Second-order Consensus-based Algorithm

The consensus algorithm is widely applied in multi-agent
systems for collaboration tasks, where the group of agents
reach a consensus based on limited shared information
exchanges [24]–[27]. In this section, we will introduce the
second-order consensus-based formation algorithm. Consider
a network represented by the graph G with N nodes. Each

agent i follows a double-integrator dynamic given by

ṗi(t) = vi(t), v̇i(t) = ui(t), i = 1, 2, . . . , N, (1)

where pi(t) ∈ R and vi(t) ∈ R are the position and velocity
of agent i at time t ≥ 0, respectively, and ui(t) ∈ R is
the corresponding control input. Since in the real world, the
control inputs are always applied at discrete sampling times,
we discretize the dynamics with sampling period T [28]. The
system (1) becomes:

pi(k + 1) = pi(k) + Tvi(k) +
T 2

2
ui(k),

vi(k + 1) = vi(k) + Tui(k), i = 1, . . . , N,
(2)

where pi(k), vi(k), ui(k) are position, velocity, control input
for agent i at time t = kT , respectively. Define ∆ij = δi−δj
as the desired position deviation between agent i and agent j
in a formation. To simplify the notation, we use the relative
position p̃i(k) = pi(k) − δi of agent i in the rest of this
paper. The following algorithm which considers the relative
positions and velocities is adopted:

ui(k)=−
∑
j∈V

aij [(p̃i(k)−p̃j(k))+α(vi(k)−vj(k))] , (3)

where α is a positive scalar. The objective of the algorithm
is second-order consensus in the sense that agents come to
the desired formation pattern with the same velocity, i.e.,{

limk→∞[pi(k)− pj(k)] = ∆ij , ∀ i, j ∈ V,
limk→∞[vi(k)− vj(k)] = 0, ∀ i, j ∈ V.

(4)

The discrete-time system model (2) under the algo-
rithm (3) can be written in the following matrix form:[

p̃(k + 1)
v(k + 1)

]
=

[
IN − T 2

2 LG TIN − αT 2

2 LG
−TLG IN − αTLG

]
︸ ︷︷ ︸

G

[
p̃(k)
v(k)

]
, (5)

where IN is an identity matrix, p̃(k) = [p̃1(k), · · · , p̃N (k)]⊤

is the concatenated relative position vector, and v(k) =
[v1(k), · · · , vN (k)]⊤ is the concatenated velocity vector.

Assumption 2.1: Assume graph G has a spanning tree
and LG has eigenvalues λ1 = 0 and 0 < λ2 ≤ · · · ≤ λN .

Lemma 2.1: (Theorem 4.1 in [28]) If Assumption 2.1
holds, the second-order consensus is achieved if and only
if parameters α and T are chosen from the following set:

Qr =

{
(α, T ) | T

2
< α <

2

λNT

}
. (6)

The velocities and the relative positions of agents will
converge as follows:

lim
k→∞

vi(k) = v̄(0), ∀ i ∈ V, (7a)

lim
k→∞

p̃i(k) = p̄(0) + kT v̄(0), ∀ i ∈ V, (7b)

where p̄(0) and v̄(0) are the mean values of initial relative
positions and velocities of agents in the system, respectively.

Lemma 2.1 provides the necessary and sufficient condi-
tions for convergence to second-order consensus. It is worth
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noting that (6) is not difficult to satisfy when T is much
smaller than 1 and α is chosen properly.

The system model can be written as:[
p̃(k)
v(k)

]
= Gk

[
p̃(0)
v(0)

]
. (8)

Agents seek to achieve a global consensus on their relative
positions and velocities by leveraging the information shared
by their local neighbors. As is shown in (8), this process
is tightly coupled with the interaction topology among the
neighboring agents. As a result, the changes in the relative
positions and velocities can reveal important information
about the underlying topology of the MAS.

B. Topology Inference Mechanism

The objective of the adversaries is to obtain the Laplacian
matrix LG of the graph G. From (5), we know that:

LG

[
T 2

2
p̃(k)+α

T 2

2
v(k)

]
= p̃(k)+Tv(k)−p̃(k + 1),

LG [T p̃(k) + αTv(k)] = v(k)− v(k + 1).

(9)

The above two equations are equivalent. For simplicity, we
only use the second equation for topology inference.

Consider the scenario where adversaries collect the data
from time 0 to time k and then use widely adopted opti-
mization methods, such as the OLS estimator, to regress
the topology. Let y(k) = T p̃(k) + αTv(k) and z(k) =
v(k) − v(k + 1). Stack the vectors and denote Y (k) =
[y(0), · · · , y(k)] and Z(k) = [z(0), · · · , z(k)]. Then, the
topology inference problem is formulated as follows:

min
L̂G(k)

∥L̂G(k)Y (k)− Z(k)∥2F . (10)

In the above equation, L̂G(k) is the inferred topology based
on data from time 0 to time k. If matrix Y (k)⊤ has full col-
umn rank, which is generally the case, the optimal solution
of (10) is given by L̂G(k)

⋆ = Z(k)Y (k)⊤(Y (k)Y (k)⊤)−1.

C. Problem Formulation

In this paper, we mainly consider how to conceal the actual
topology of the MAS by adding inputs to the states of the
agents. The regular algorithm (3) is revised to

ui(k)=−
∑
j∈V

aij [(p̃i(k)−p̃j(k))+α(vi(k)−vj(k))]+θi(k),

and the system model (5) can be rewritten as[
p̃(k + 1)
v(k + 1)

]
= G

[
p̃(k)
v(k)

]
+

[
T 2

2 θ(k)
Tθ(k)

]
, (11)

where θ(k) ∈ RN is the vector of designed inputs at time
k. It can be seen that the dynamics of the agents in (11) are
affected not only by the topology information of the system
but also by the designed inputs.

The objective of this paper is to develop a topology-
preserving algorithm that can effectively prevent adversaries
from inferring the topology correctly while guaranteeing the
exact second-order average consensus in the MASs. Hence,
we formulate the corresponding optimization problem:

max
θ

min
L̂G(k)

∥L̂G(k)Y (k)− Z(k)∥2F
s.t. (7a) and (7b) hold.

(12)

Our primary concern is designing optimal inputs that
maximize the inference error for adversaries while ensuring
accurate convergence. However, the optimal solution to this
problem is determined by knowledge of the global topology.
Since we aim to use a distributed approach to design inputs
for each agent, we can only increase the inference error as
much as possible within specific algorithms. Another chal-
lenge lies in that achieving second-order consensus is more
complicated than first-order consensus. Therefore, the extra
inputs must be designed carefully to avoid the accumulation
effect of noisy inputs in second-order systems.

III. MAIN RESULTS

In this section, we propose the TPSC algorithm and
analyze its performance. First, we demonstrate the key idea
and details of the TPSC algorithm to address the challenges
mentioned in Section II. Then, we present the performance
analysis of the TPSC algorithm, including the convergence
analysis and the inference error analysis.

A. Algorithm Design

To fulfill the requirements of the formulated problem,
the TPSC algorithm consists of two major parts: inject
additive inputs thus enlarging the regression errors, and add
compensating inputs to ensure the convergence of the MAS.
Instead of adding random inputs with a fixed distribution,
we add well-designed inputs to the agents, which can ensure
exact convergence.

As mentioned in Section II, the subsequent state of an
agent depends on the current states of its neighbors and itself.
In this way, the input of a particular agent will spread its
influence through the interaction topology, thereby affecting
the performance of the entire system. To fulfill the consensus
requirement, the conditions proposed by the following lemma
must be satisfied.

Lemma 3.1: The second-order average consensus in (11)
is achieved when the following conditions are satisfied:

lim
k→∞

{
k∑

l=0

N∑
i=1

θi(l)

}
= 0,

lim
k→∞

{
k∑

l=0

N∑
i=1

[(
k − l +

1

2

)
θi(l)

]}
= 0.

(13)

This lemma shows the complexity of achieving exact
average consensus in second-order systems and intuitively
shows that the extra inputs have an accumulation effect on
positions and velocities over time.

Denote ai(k) ∈ [−φk, φk], 0 < φ ≤ 1 as a decision
variable whose precise value will be determined later. Denote
bi(k) as the additive input indicator that follows a Bernoulli
distribution, given by

Pr{bi(k) = 1} = ϵ, Pr{bi(k) = 0} = 1− ϵ, 0 ≤ ϵ ≤ 1.
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Based on Lemma 3.1, we propose two strategy examples
(SE 1 and SE 2) that satisfy (13), thereby guaranteeing
consensus of the system. In both examples, the additive input
ωi(k | k) is added to the i-th agent at time k if bi(k) = 1.
To balance the effect of this additive input on convergence,
compensating inputs ωi(k + l | k), l ∈ N+ are imposed after
several iterations.

SE 1:
ωi(k | k) = ai(k)

ωi(k + τm | k) = − 2
τe−1ai(k), τm = 1, 2, . . . , τe − 1

ωi(k + τe | k) = ai(k), τe ∈ N+

SE 2:
ωi(k | k) = ai(k)

ωi(k + τm | k) = − τe
τe−τm

ai(k), τm ∈ N+

ωi(k + τe | k) = τm
τe−τm

ai(k), τe ∈ N+ and τm < τe

In the above examples, τm and τe stand for the compensating
time in the middle of the input sequence and in the end of the
sequence, respectively. Note that τe > 2 is a variable that can
be fixed manually or randomized within a specified range.
In SE 1, τm and the amplitude of the compensating inputs
are determined by ai(k) and τe. In SE 2, τm is randomly
chosen, and the amplitude of the compensating inputs is also
affected by τm. In general, the expression of θi(k) is

θi(k) =

k∑
l=0

ωi(k | k − l)bi(k − l). (14)

It is worth noting that based on Lemma 3.1, more strate-
gies for the proposed algorithm can be developed, and this
paper only presents two possible designs. The central idea
of these designs is similar. In order to avoid redundancy, we
mainly focus on the analysis and simulation of SE 1 in this
paper. Specifically, the details of the TPSC algorithm with
SE 1 are illustrated in Algorithm 1 where k0 is the terminal
time of adding additive inputs.

B. Convergence Analysis

When the TPSC algorithm is applied to the MASs, the
added inputs to the agents will confuse not only the adver-
saries but also the agents in the neighborhood. To ensure the
cooperative performance of the system, an exact convergence
to the second-order consensus must be guaranteed.

Theorem 3.1: Given any p̃(0) and v(0), an exact second-
order consensus is achieved using the TPSC algorithm, i.e.,
(7a) and (7b) hold.

Proof: The system under our algorithm can be rewritten
in the following way:[

p̃(k)
v(k)

]
= Gk

[
p̃(0)
v(0)

]
+

k∑
l=0

Gk−l

[
T 2

2 θ(l)
Tθ(l)

]
. (15)

Generally, we have

lim
k→∞

k0∑
l=0

Gk−l

[
T 2

2 θ(l)

Tθ(l)

]
= lim

k→∞

k0∑
l=0

[(
k − l + 1

2

)
T 2θ̄(l)

T θ̄(l)

]
,

Algorithm 1: Topology-Preserving Second-Order
Consensus (TPSC) Algorithm

Input: G,T, k0, p̃(0), v(0), ϵ, φ;
Output: Observation data set;
Initialization;
for k = 0, 1, . . . do

if k < k0 then
for i = 1, · · · , N do

Generate bi(k) and τe;
if bi(k) = 1 then

Determine ai(k) ∈ [−φk, φk] by (18);
ωi(k | k) = ai(k);
for τm = 1, · · · , τe − 1 do

ωi(k + τm | k) =
−2/(τe − 1)× ai(k);

end
ωi(k + τe | k) = ai(k);

end
Calculate θi(k) by (14);

end
end
Update p̃(k + 1) and v(k + 1) by (11);

end

where θ̄(l) = 1
N

∑N
i=1 θi(l)1. The elements of the above

vector can be written as

lim
k→∞

k0∑
l=0

[(
k − l +

1

2

)
T 2θi(l)

]

= lim
k→∞

k0∑
l=0

[(
k − l +

1

2

)
T 2

l∑
x=0

ωi(l |x)bi(x)

]

= lim
k→∞

k0∑
x=0

k0∑
l=x

(
k − l +

1

2

)
T 2ωi(l |x)bi(x).

Similarly, it can be derived that

lim
k→∞

k0∑
l=0

Tθi(l) = lim
k→∞

k0∑
x=0

k0∑
l=x

Tωi(l |x)bi(x).

With SE 1, we obtain

k0∑
l=x

(
k − l +

1

2

)
T 2ωi(l |x)bi(x) = 0, ∀x ∈ N,

k0∑
l=x

Tωi(l |x)bi(x) = 0, ∀x ∈ N.

The above equations lead to

lim
k→∞

k0∑
l=0

Gk−l

[
T 2

2 θ(l)
Tθ(l)

]
= 0.

Therefore, it can be concluded that

lim
k→∞

[
p̃(k)
v(k)

]
= lim

k→∞
Gk

[
p̃(0)
v(0)

]
, (16)

which completes the proof.
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C. Inference Error Analysis

To keep the adversaries from inferring the actual topology,
we need to enlarge the regression error:

∥L̂G(k)− LG∥2F . (17)

As mentioned in Section II, the optimal solution of the
OLS estimator is L̂G(k)

⋆ = Z(k)Y (k)⊤(Y (k)Y (k)⊤)−1.
Then the deviation of the topology inference can be described
as EL̂G(k) = L̂G(k)−LG = Θ(0; k)Y (k)⊤(Y (k)Y (k)⊤)−1,
where Θ(0; k) = [Tθ(0), · · · , T θ(k)]. In terms of the choice
of the amplitude of ωi(k | k), the problem can be formulated
as a constrained optimization problem where the additive
input ωi(k | k) is selected to maximize the inference error:

P1: max
θ(k)

∥∥Θ(0; k)Y (k)⊤(Y (k)Y (k)⊤)−1
∥∥
F

s.t. − φk ≤ ωi(k | k) ≤ φk.
(18)

Theorem 3.2: (Policy of ωi(k | k) design) The optimal
solution of P1 in (18) equals to one of the constrained
boundaries, either −φk or φk.

Proof: Define Υ = Y (k)⊤(Y (k)Y (k)⊤)−1 and split it
into ΥA whose size is k×N and ΥB whose size is 1×N .
Split Θ(0; k) into Θ(0; k− 1) and θ(k). Thus the optimized
objective function of (18) can be broken down as∥∥∥∥[Θ(0; k − 1) | θ(k)]

[
ΥA

ΥB

]∥∥∥∥
F

=

√√√√ N∑
i=1

∥(Θi(0; k − 1)ΥA + θi(k)ΥB)∥2F .

Hence, P1 can be decomposed into N independent sub-
optimization problems, i.e., the Frobenius norm optimization
problems of each row, which are given by

P2: max
θi(k)

∥Θi(0; k − 1)ΥA + θi(k)ΥB∥F
s.t. − φk ≤ ωi(k | k) ≤ φk.

(19)

The objective function of P2 in (19) is a convex quadratic
function of θi(k). Therefore, it is maximized when the com-
ponent ωi(k | k) equals one of the restrictions. Furthermore,
as the Frobenius norm of each row is independent and always
positive, the overall target of (18) is accomplished if and only
if each optimization problem in (19) is maximized.

This theorem provides the step-by-step optimal choice
for each agent when adding additive inputs in a distributed
network. In practice, agents cannot access global data Y (k)
and determine the ideal boundary. In this way, each agent can
randomly select an amplitude for the additive input between
the boundaries.

Theorem 3.3: Applying the TPSC algorithm to the sys-
tem (2), the non-asymptotic error bound of the OLS estimator
is characterized by:

lim
k0→∞

E
[∥∥∥EL̂G(k0)

∥∥∥
F

]
=O

(
4ϵTN

(τe + 1)
√
1− φ2

)
, φ < 1,

lim
k0→∞

E
[∥∥∥EL̂G(k0)

∥∥∥
F

]
=O

(
4ϵTN

τe + 1

)
, φ = 1.

(a) Positions of agents (b) Velocities of agents

Fig. 1. The positions and the velocities of agents under the algorithm (3)

(a) Positions of agents (b) Velocities of agents

Fig. 2. The positions and the velocities of agents under the TPSC algorithm

Proof: We consider the compact singular value decom-
position Y (k0) = UΣV ⊤, where U ∈ RN×N is a unitary
matrix and V ∈ R(k0+1)×N is a semi-unitary matrix. Note
that we have ∆G(k0) = Θ(0; k0)Y (k0)

⊤(Y (k0)Y (k0)
⊤)−1,

which implies that

∥∆G(k0)∥ ≤
√

1/λmin(Y (k0)Y (k0)⊤) ∥Θ(0; k0)V ∥ .

The value of φ affects the variation in the amplitude of
the noisy inputs, leading to different convergence rates in
λmin(Y (k0)Y (k0)

⊤). It can be concluded that√
1/λmin(Y (k0)Y (k0)⊤) =

{O(1), φ < 1,

O
(
1/
√
k0

)
, φ = 1.

Based on SE 1, the expectation of ∥Θ(0; k0)∥F can be writ-
ten as E [∥Θ(0; k0)∥F ] = 4ϵTN

√
φ0 + · · ·+ φ2k0/(τe+1),

leading to the following equations
E [∥Θ(0; k0)∥F ] =

4ϵTN

(τe + 1)
√
1− φ2

, φ < 1,

E [∥Θ(0; k0)∥F ] =
4ϵTN

√
k0

τe + 1
, φ = 1,

(20)

which complete the proof.

IV. SIMULATION

A. Simulation Setting

In this section, we verify the effectiveness of the TPSC
algorithm via simulations. An undirected graph with five
agents that represents the interaction topology of the system
is randomly constructed. Assign all the agents with specific
initial states, and start the iteration as in Algorithm 1.

B. Results and Analysis

Fig. 1 and Fig. 2 depict changes in the positions and ve-
locities of agents in the MAS during the consensus progress
under the normal algorithm and the TPSC algorithm, re-
spectively. It can be seen in the figures that the proposed
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(a) φ < 1 (b) φ = 1

Fig. 3. The error performance of the TPSC algorithm

algorithm ensures exact second-order consensus, although
positions and velocities may fluctuate due to the extra inputs.

Fig. 3 illustrates the inference error for the adversaries
when the proposed algorithm with SE 1 is adopted. Firstly,
the topology of the MAS can be accurately inferred when
the normal algorithm is applied (shown by the purple lines
on the x-axis). In contrast, the TPSC algorithm effectively
enlarges the inference error. Fig. 3(a) and Fig. 3(b) depict
inference errors for the adversaries when the proposed TPSC
algorithms with φ < 1 and φ = 1 are adopted, respectively.
In the former case, the curves exhibit a modest decrease and
converge to a constant value, while in the latter, the curves
display a turning point at around k = 50 and also converge to
a constant. Before reaching this threshold, limited data is the
primary factor that affects the inference accuracy, while after
this point, the influence of the inputs becomes dominant.

To conclude, the simulation results demonstrate that the
TPSC algorithm performs well in addressing the topology
preservation problem for second-order systems.

V. CONCLUSION

In this work, we focus on the topology preservation
problem in second-order MASs. To address this problem,
we propose the TPSC algorithm and design extra inputs for
agents to prevent the adversaries from performing topology
inference attacks while guaranteeing the exact second-order
consensus. The convergence analysis and inference error
analysis under the proposed algorithm are given. Extensive
simulations are conducted to verify the effectiveness of the
TPSC algorithm. Future research directions include expand-
ing our study to more general networks, such as higher-order
multi-agent systems with switching networks and exploring
algorithms that adapt to other topology inference methods.
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