
Large-Population Risk-Sensitive Linear-Quadratic Optimal Control

Yu Wang Minyi Huang

Abstract— We study a risk-sensitive linear-quadratic optimal
control problem where a large number of N agents have mean-
field interactions. We derive the centralized optimal control
law and the resulting decentralized individual control law by
passing to the mean-field limit. This procedure is similar to
the so-called direct approach in mean-field control. We further
compare the asymptotic performances of the above two control
laws. The performance difference between the two sets of
control laws does not vanish, and instead has an upper bound
depending on the risk sensitivity parameter and the noise
intensity. This phenomenon is very different from both risk-
neural social optimization and risk-sensitive mean-field games,
and is inherently due to the exponential functional structure of
the cost, which is closely related to large deviations theory.

I. INTRODUCTION

There has been a long history of research on risk-sensitive
control problems. In 1972, Howard and Matheson [1] inves-
tigated a risk-sensitive control problem with Markov deci-
sion processes. Whittle [2] studied risk-sensitive control for
discrete-time linear-quadratic Gaussian systems. Fleming and
McEneaney [3] derived the optimal control for the nonlinear
risk-sensitive control problem on an infinite time horizon by
a large deviations method. Meanwhile, they demonstrated
that the original problem leads to a robust control problem
of a deterministic system as the noise tends to zero. Nagai
[4] investigated a class of nonlinear risk-sensitive control
problems by dynamic programming and identified the rela-
tionship between asymptotic solutions and the large deviation
principle. Lim and Zhou [5] established a maximum principle
for risk-sensitive optimal control problems, where control
enters the diffusion term. For the application of risk-sensitive
control problems in finance, one can refer to Fleming and
Sheu [6]-[7], Bielecki and Pliska [8].

With the introduction of mean-field game theory [9]-
[10], related risk-sensitive mean-field game problems have
attracted significant attention; see [11]-[14]. In parallel to
mean-field games studying noncooperative decision-makers,
a different optimization paradigm has been successfully
developed for cooperative mean-field decision models in
which agents coordinate for social optimality. Huang et al.
[15] introduce the social certainty equivalence approach in
large-population linear-quadratic optimal control problems
(or called mean-field social optimization problems), and
derive decentralized feedback control laws to asymptotically
achieve the social optima. Nourian et al. [16] study the
relationship among Nash, social and centralized solutions of
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mean-field control models. One can refer to [17]-[19] for
further details on mean-field social optima.

It is worth noting that research on large-population risk-
sensitive optimal control problems is still limited. Existing
studies have primarily focused on seeking Nash equilibria,
with little literature addressing large-population risk-sensitive
control seeking the social optimum. This paper considers
a class of large-population risk-sensitive linear-quadratic
optimal control problems, and some innovative findings have
been obtained. The contributions are as follows. (i) By the
direct approach via dynamic programming, we obtain the
centralized control law and the limit decentralized control
law of the large-population risk-sensitive optimal control
problem; (ii) using the value function method, we demon-
strate that the difference between the costs of centralized
and (limit) decentralized control laws depends on the risk
sensitivity parameter and the diffusion coefficient. Such a
persistent cost gap is in dramatic contrast to mean-field
games [20] and mean-field social optimization with risk
neutral cost [19]; (iii) for comparison, we also derive the
centralized strategy and the decentralized strategy of the
risk-sensitive linear-quadratic mean-field game. Again using
the value function method, we prove that the difference
between the costs of centralized and decentralized strategies
tends 0 as the population size N → ∞, i.e., the set of
decentralized strategies is an O(1/N)-Nash equilibrium of
the risk-sensitive mean-field game. Our method for the risk-
sensitive mean-field game provides much tighter bound on
performance loss than in the literature [13]-[14].

The paper is organized as follows. Section II formulates
the large-population risk-sensitive optimal control problem,
which is compared with the mean-field game formulation.
Section III derives the centralized optimal control law, and
quantitatively examines the performance difference of the
optimal control and the resulting decentralized control law
obtained as the former’s mean-field limit. For comparison,
we further extend our method to risk-sensitive mean-field
games in Section IV. Section V provides some numerical
computations to illustrate the theoretical results. Section VI
concludes the paper.

II. PROBLEM FORMULATION

A. Notation

Let ⊗ stand for the Kronecker product, 1m×n for an m×n
matrix with all entries equal to 1 (in particular, 1m = 1m×1),
In for an n × n identity matrix, and the column vectors
{en1 , · · · , enn} for the canonical basis of Rn.
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B. Risk-Sensitive Mean-Field Model
For 1 ≤ i ≤ N , the state equation of player Ai is

dXi(t) =
[

AXi(t) +Bui(t) +GX
(N)(t)

]

dt+DdWi(t), (1)

where Xi(t) ∈ R
n and ui(t) ∈ R

n1 are state and con-
trol of player Ai, respectively, X(N)(t) = 1

N

∑N

i=1 Xi(t),
and {Wi, 1 ≤ i ≤ N} are N independent R

n2-valued
Brownian motions. The coefficient matrices A,B,G and D
are deterministic with suitable dimensions. The initial state
Xi(0) = xi is deterministic.

Denote u−i = (u1, · · · , ui−1, ui+1, · · · , uN). The social
cost functional of players is

J (N)
soc (u) =

1

α
lnE

[

eα
∑N

i=1
Li(ui,u−i)

]

, (2)

where α > 0 is a risk-sensitive parameter and

Li(ui, u−i) =

∫ T

0

(

|Xi(t)− ΓX(N)(t)|2Q + |ui(t)|2R
)

dt

+ |Xi(T )− ΓfX
(N)(T )|2Qf

. (3)

Here R > 0, Q ≥ 0, Qf ≥ 0, Γ, Γf are constant matrices.
Denote φ : [0, T ]×R

n×· · ·×R
n → R

n1 and ϕ : [0, T ]×
R

n → R
n1 . For player Ai, we introduce

Uc
i = {ui|ui = φ(t,X1, · · · , XN )} and Ud

i = {ui|ui = ϕ(t,Xi)}

as sets for the centralized control laws and decentralized con-
trol laws ensuring a well defined closed-loop state process,
respectively. Let u = (u⊤

1 , · · · , u⊤
N)⊤, Uc = Uc

1 × · · · × Uc
N

and Ud = Ud
1 × · · · × Ud

N .
Problem (RS-OC) Find a centralized optimal control law

u∗(·) ∈ Uc such that

J (N)
soc (u∗) = inf

u∈Uc
J (N)
soc (u). (4)

Subsequently, by taking the mean-field limit of the cen-
tralized optimal control law u∗, we obtain the corresponding
decentralized control law ǔ. We are interested in the asymp-
totic performance of the decentralized control law, and will
analyze the cost gap between ǔ and u∗.

C. Risk-Sensitive Mean-Field Game

We will further extend our analysis to treat a risk-sensitive
mean-field game, where each player Ai, 1 ≤ i ≤ N has
individual cost

J
(N)
i (ui, u−i) =

1

α
lnE

[

eαLi(ui,u−i)
]

. (5)

Definition 2.1: The set of decentralized strategies ûi(·) ∈
Ud
i , 1 ≤ i ≤ N is an εN -Nash equilibrium if for each i,

J
(N)
i (ûi, û−i) ≤ J

(N)
i (ui, û−i) + εN , ∀ui ∈ Uc

i . (6)
Problem (RS-Nash) For the mean-field game with dy-

namics (1) and cost (5), find a set of decentralized strategies
that possesses an ε-Nash equilibrium property.

Existing works [13]-[14] rely heavily on the fixed-point
approach. By estimating the state processes, they can only
show a bound of O(1/

√
N) for the cost gap between central-

ized strategies and the decentralized strategies. We employ
the direct approach and use the Feynman-Kac formula to

directly estimate the cost difference, leading to a bound of
O(1/N). The reader is referred to [20] for an overview of the
fixed point approach and the direct approach, as two funda-
mental methodologies in mean field games. Compared with
the existing works, our approach needs weaker conditions
and yields tighter estimates.

III. RISK-SENSITIVE OPTIMAL CONTROL

Define

X = (X⊤
1 , · · · , X⊤

N )⊤, W = (W⊤
1 , · · · ,W⊤

N )⊤,

x0 = (x⊤
1 , · · · , x⊤

N )⊤, B = diag[B, · · · , B],

A = diag[A, · · · , A] + 1N×N ⊗ (G/N),

D = diag[D, · · · , D], R = diag[R, · · · , R]

QΓ = |I − Γ |2Q −Q, QΓ
f = |I − Γf |2Qf

−Qf ,

Q1 = diag[Q, · · · , Q], Q1f = diag[Qf , · · · , Qf ],

Q2 = 1N×N ⊗ (QΓ /N), Q2f = 1N×N ⊗ (QΓ
f /N),

Q = Q1 +Q2, Qf = Q1f +Q2f . (7)

The system dynamics (1) and cost (2) can be rewritten as

dX(t) = (AX(t) +Bu(t)) dt+DdW (t), (8)

J
(N)
soc (u) =

1

α
lnE

[

e
α

[

∫

T
0 (|X(t)|2Q+|u(t)|2R)dt+|X(T )|2Qf

]]

. (9)

A. Centralized Control Law for Social Optima

For given time t ∈ [0, T ], we set the initial condition
(X⊤

1 (t), · · · , X⊤
N(t))⊤ = x ∈ R

nN and define

W (t,x) = inf
u∈Uc

E

[

e
α
[

∫

T

t (|X(s)|2Q+|u(s)|2R)ds+|X(T )|2Qf

]
]

.

By dynamic programming, we obtain

−∂tW (t,x) = inf
u

[

∂
⊤
x W (Ax+Bu) +

1

2
Tr

(

∂
2
xxWDD

⊤
)

+ αW (t,x)
(

|x|2Q + |u|2R
)

]

. (10)

Setting V (t,x) = 1
α
lnW (t,x), we use (10) to derive



















−∂tV (t,x) = ∂
⊤
x VAx+

1

2
Tr

(

∂
2
xxVDD

⊤
)

+
α

2
|D⊤

∂xV |2

+ |x|2Q −
1

4
∂
⊤
x VBR

−1
B

⊤
∂xV,

V (T,x) = |x|2Qf
.

(11)
The optimal control law is given by

u∗ = −1

2
R−1B⊤∂xV. (12)

Taking the ansatz V (t,x) = x⊤P(t)x+r(t) and substituting
it into (11), we obtain
{

Ṗ+A
⊤
P+PA−P

(

BR
−1

B
⊤ − 2αDD

⊤
)

P+Q = 0,

P(T ) = Qf ,
(13)

and
ṙ+Tr

(

PDD⊤
)

= 0, r(T ) = 0. (14)
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We introduce the following assumption.
Assumption 3.1: BR−1B⊤ − 2αDD⊤ ≥ 0.
Lemma 3.2: Under Assumption 3.1, equations (13)-(14)

have a unique solution.
Proof: Q in (9) is obtained by adding up all quadratic

forms of X in (2)-(3). Consequently, we have the symmetric
matrix Q ≥ 0 since Q ≥ 0. Similarly we derive Qf ≥ 0.
Therefore, the Riccati equation (13) has a unique solution
under Assumption 3.1. Then (14) has a unique solution.

Due to the high dimensionality of P ∈ R
nN×nN , the

centralized optimal control law (12) is not useful for imple-
mentation. Next, we show a simple structure for P, which
will be used to get a limit form of the optimal control law.

Denote M0 = BR−1B⊤, N0 = 2αDD⊤, and M = M0−
N0. We introduce the following ODEs:

{

Λ̇1 + Λ1A+A⊤Λ1 − Λ1MΛ1 +Q = 0,

Λ1(T ) = Qf ,
(15)











Λ̇2 + Λ2 (A+G−MΛ1) + (A+G−MΛ1)
⊤
Λ2

+G⊤Λ1 + Λ1G− Λ2MΛ2 +QΓ = 0,

Λ2(T ) = QΓ
f ,

(16)

ṙ +Tr(Λ1DD⊤) = 0, r(T ) = 0. (17)

We have the following lemma.
Lemma 3.3: Under Assumption 3.1, (i) the ODEs (15)-

(17) have a unique solution. (ii) P(t) has the representation

P(t) =











ΠN
1 (t) ΠN

2 (t) · · · ΠN
2 (t)

ΠN
2 (t) ΠN

1 (t) · · · ΠN
2 (t)

...
...

. . .
...

ΠN
2 (t) ΠN

2 (t) · · · ΠN
1 (t)











, (18)

and

sup
0≤t≤T

(

|ΠN
1 − Λ1|+ |NΠN

2 − Λ2|

+|(1/N)r− r|) = O(1/N). (19)
Proof: By Lemma 3.2, P(t) has a solution for each N .

See [21] for detailed proof of the lemma.
We introduce the following assumption stating that the

initial states in (1) have convergent empirical mean and
convergent empirical covariance.

Assumption 3.4: For initial states xi, 1 ≤ i ≤ N , we have
1
N

∑N

i=1 xi → x̄0 and 1
N

∑N

i=1(xi − x̄0)
T (xi − x̄0) → Σ0

as N → ∞.
Theorem 3.5: Suppose Assumptions 3.1 and 3.4 hold. For

1 ≤ i ≤ N , player Ai’s centralized optimal control law is

u∗
i = −R−1B⊤

(

ΠN
1 Xi +

N
∑

j 6=i

ΠN
2 Xj

)

(20)

and the corresponding social cost is

J (N)
soc (u∗) = N

[

Tr (Λ1(0)Σ0) + x̄⊤
0 (Λ1(0)

+Λ2(0)) x̄0 + r(0) + o(1)
]

= O(N). (21)

Proof: According to (9) and Lemma 3.3, we have

J (N)
soc (u∗) =

N
∑

i=1

x⊤
i

(

ΠN
1 (0)−ΠN

2 (0)
)

xi

+ x(N)⊤N2ΠN
2 (0)x(N) + r(0)

=

N
∑

i=1

x⊤
i Λ1(0)xi + x(N)⊤NΛ2(0)x

(N)

+Nr(0) +O(1). (22)

By Assumption 3.4, we obtain (21).

B. Decentralized Control Law

Taking the centralized control law in (1), we have

dXi =
[

(

A−M0Π
N
1

)

Xi +GX(N)

−M0

(

N
∑

j 6=i

ΠN
2 Xj

)]

dt+DdWi, (23)

where Xi(0) = xi, 1 ≤ i ≤ N . Let the (limit) decentralized
control law be

ǔi = −R−1B⊤
(

Λ1X̌i + Λ2X̄
)

, 1 ≤ i ≤ N, (24)

where






















dX̌i =
[

(A−M0Λ1) X̌i +GX̌(N) −M0Λ2X̄
]

dt

+DdWi,

dX̄ = (A+G−M0Λ1 −M0Λ2) X̄dt,

X̌i(0) = xi, X̄(0) = x̄0, 1 ≤ i ≤ N.

(25)

In view of the approximation in (19), equations (24)-(25)
can be obtained by taking N → ∞ in (20) and (23),
and approximating 1

N

∑

j 6=i Xj(t) by X̄(t). Here X̄(t) is
regarded as the limit of X(N)(t).

Assumption 3.6: The Riccati equation










˙̌Λ+ (A+G−MΛ1)
⊤Λ̌+ Λ̌(A+G−MΛ1)

+G⊤Λ1 + Λ1G+QΓ + Λ̌N0Λ̌ = 0,

Λ̌(T ) = QΓ
f

has a solution Λ̌ on [0, T ].
Theorem 3.7: If Assumptions 3.1, 3.4 and 3.6 hold, the

difference between the costs of centralized optimal control
law (20) and decentralized control law (24) satisfies

|J (N)
soc (ǔ)− J (N)

soc (u∗)| = O (N)
(

αTr(DD⊤) + o(1)
)

,
(26)

where u∗ = (u∗⊤
1 , · · · , u∗⊤

N )⊤ and ǔ = (ǔ⊤
1 , · · · , ǔ⊤

N)⊤.
Proof: See Appendix.

Remark 3.8: Theorems 3.5 and 3.7 imply the difference
between the costs of centralized and decentralized control
laws is of the same order of magnitude as the cost of the
centralized control law. If |α| or Tr(DD⊤) is small, the
decentralized control law can approximate the centralized
control law well.
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IV. RISK-SENSITIVE MEAN-FIELD GAME
For 1 ≤ i ≤ N , we define

Ki = e
N⊤
i −

1

N
1
⊤
N ⊗ Γ, Kif = e

N⊤
i −

1

N
1
⊤
N ⊗ Γf ,

Qi = K⊤
i QKi, Qif = K⊤

ifQfKif , Bi = e
N
i ⊗B. (27)

With the notation in (7) and (27), we rewrite (1) and (5) in
the following form:

dX(t) =
(

AX(t) +

N
∑

i=1

Biui(t)
)

dt+DdW (t), (28)

and

J
(N)
i (ui, u−i)

=
1

α
lnE

[

e
α
[

∫

T

0
(|X(t)|2Qi

+|ui(t)|
2

R)dt+|X(T )|2Qif

]
]

. (29)

A. Centralized Nash Equilibrium Strategy
Under closed-loop perfect state information, we may apply

dynamic programming to derive a system of HJB equations
for the value functions of the N players, which further leads
to the following Riccati equation system:






















Ṗi +A
⊤
Pi +PiA+Pi(BiR

−1
B

⊤
i + 2αDD

⊤)Pi +Qi

−Pi

N
∑

j=1

BjR
−1

B
⊤
j Pj −

N
∑

j=1

PjBjR
−1

B
⊤
j Pi = 0,

Pi(T ) = Qif , 1 ≤ i ≤ N.
(30)

If the Riccati ODE system (30) has a solution on [0, T ], the
set of (centralized) Nash equilibrium strategies is given by

v∗i = −R−1B⊤
i PiX, 1 ≤ i ≤ N, (31)

which gives the closed-loop state process

dX =
(

AX −
N
∑

i=1

BiR
−1B⊤

i PiX
)

dt+DdW. (32)

To analyze the solvability of (30), we introduce
{

Λ̇o
1 + Λo

1A+A⊤Λo
1 − Λo

1MΛo
1 +Q = 0,

Λo
1(T ) = Qf ,

(33)











Λ̇o
2 + Λo

1G+A⊤Λo
2 + Λo

2 (A+G)− Λo
2M0Λ

o
1

− Λo
1M0Λ

o
2 + Λo

1N0Λ
o
2 − Λo

2M0Λ
o
2 −QΓ = 0,

Λo
2(T ) = −QfΓf ,

(34)











Λ̇o
3 + Λo⊤

2 G+G⊤Λo
2 + Λo

3 (A+G−M0Λ
o
12)

+ (A+G−M0Λ
o
12)

⊤
Λo
3 − Λo⊤

2 MΛo
2 + Γ⊤QΓ = 0,

Λo
3(T ) = Γ⊤

f QfΓf

(35)

where Λo
12 = Λo

1 + Λo
2.

Note that (33) is a standard Riccati equation and has a
unique solution on [0, T ] if Assumption 3.1 holds. Let us
introduce the following assumption.

Assumption 4.1: Riccati equation (34) has a solution on
[0, T ] (which is then unique).

In analogue to Lemma 3.3 and Theorem 3.5, we have the
following theorem.

Theorem 4.2: Suppose Assumptions 3.1 and 4.1 hold.
Then we have the following assertions.

(i) Equation (35) has a unique solution on [0, T ].
(ii) For all sufficiently large N , the system (30) has a

unique solution on [0, T ], with the representation

P1 =











ΠoN
1 ΠoN

2 · · · ΠoN
2

ΠoN⊤
2 ΠoN

3 · · · ΠoN
3

...
...

. . .
...

ΠoN⊤
2 ΠoN

3 · · · ΠoN
3











,Pi = J⊤
1iP1J1i,

(36)

where Jij , 1 ≤ i 6= j ≤ N represents the matrix obtained by
exchanging the i-th row and the j-th row of submatrices in
matrix InN .

(iii) We have

sup
0≤t≤T

(

|ΠoN
1 − Λo

1|+ |NΠoN
2 − Λo

2|

+|N2ΠoN
3 − Λo

3|
)

= O(1/N).

The centralized Nash equilibrium strategy of player Ai is

v∗i = −R−1B⊤
(

ΠoN
1 Xi +

∑

j 6=i

ΠoN
2 Xj

)

, 1 ≤ i ≤ N.

(37)
Proof: The proof is similar to that of Theorems 3, 4, 5

and 6 in [20].

B. Limit Decentralized Strategy

Taking N → ∞ in equation (37), the limit decentralized
strategy of player Ai is

ûi = −R−1B⊤(Λo
1X̂i + Λo

2X̄), 1 ≤ i ≤ N, (38)

where Λo
1 and Λo

2 satisfy (33)-(34), and the closed-loop
dynamics are














dX̂i =
[

(A−M0Λ
o
1) X̂i +GX̂

(N) −M0Λ
o
2X̄

]

dt+DdWi,

dX̄ = (A+G−M0Λ
o
1 −MΛ

o
2) X̄dt,

X̂i(0) = xi, X̄(0) = x̄0, 1 ≤ i ≤ N,
(39)

where X̂(N) = 1
N

∑N

i=1 X̂i. We have the following ε-Nash
equilibrium property for the decentralized strategies.

Theorem 4.3: If Assumptions 3.1, 3.4 and 4.1 hold, the
set of decentralized strategies ûi, 1 ≤ i ≤ N in (38) satisfies

|J (N)
i (ûi, û−i)− inf

ui∈Uc
i

J
(N)
i (ui, û−i)| = O(1/N), (40)

which implies {ûi, 1 ≤ i ≤ N} is an O(1/N)-Nash
equilibrium of Problem (RS-Nash).

Proof: See [21] for detailed proof.

V. NUMERICAL SIMULATION

We illustrate our results in Section III through a numerical
example. Let the parameters in (1)-(3) be

A = 2, G = 0.2, B = 1, D = 0.7, R = 1.2, Q = 0.6,

Γ = −0.7, Qf = 2, Γf = 1, T = 1, x̄0 = 1, Σ0 = 0.5.

Here x̄0 and Σ0 denote the limits of the empirical mean and
covariance of the initial states xi, 1 ≤ i ≤ N , as N → ∞.
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Fig. 1. Scaled social costs for the two control laws, x̄0 = 1
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Fig. 2. Scaled social costs for the two control laws, x̄0 = 0

Note that the social costs under the optimal control law
u∗ and the decentralized control law ǔ are unbounded as
N → ∞. We normalize them by 1/N and define the limits
V c = limN→∞

1
N
J
(N)
soc (u∗) and V d = limN→∞

1
N
J
(N)
soc (ǔ),

which will simply be called the scaled social costs.
Fig. 1 compares the scaled social costs under the control

laws u∗ and ǔ, and shows a persistent gap between the two
costs. Furthermore, the cost gap widens as the risk sensitivity
parameter α increases. In Fig. 2, we set x̄0 = 0 while keeping
all other parameters unchanged; we find that the cost gap
disappears in this case.

VI. CONCLUSION

This paper considers a class of large-population risk-
sensitive linear-quadratic optimal control problems. We de-
rive the centralized optimal control law and construct a
limit decentralized control law. We show that the difference
between the costs of the centralized and limit decentralized
control laws depends on the risk sensitivity parameter and
the diffusion coefficient. This phenomenon of non-vanishing
performance gap is very different from the case of social
optimization with a risk-neural social cost [19], and may be
attributed to the exponential functional structure which has
connections with large deviations theory [22].

For comparison, we also consider the risk-sensitive mean-
field game and prove that the set of decentralized strategies
constructed is an O(1/N)-Nash equilibrium.

For future work, we will consider optimizing a decentral-
ized control law directly for solving the risk-sensitive social
optimal control problem, and compare its cost with that of
the centralized control law.

APPENDIX: PROOF OF THEOREM 3.7

Set (X̌⊤
1 , · · · , X̌⊤

N )⊤ = X̌. Combining (7) with (24), the
limit decentralized control law is

ǔ = −Θ̌1X̌ − Θ̌2X̄, (41)

where Θ1 = R−1B⊤Λ1, Θ2 = R−1B⊤Λ2, Θ̌1 = IN ⊗Θ1,
and Θ̌2 = 1N ⊗Θ2. The closed-loop dynamics are











dX̌ =
(

AX̌ −BΘ̌1X̌ −BΘ̌2X̄
)

dt+DdW,

dX̄ = (A+G−BΘ1 −BΘ2) X̄dt,

X̌(0) = x0 ∈ R
nN , X̄(0) = x̄0.

(42)

For given time t ∈ [0, T ], we set the initial conditions X̌(t) =
x̌, and X̄(t) = x̄ and define the social cost

J (N)
soc (t, x̌, x̄; ǔ)

=
1

α
lnE

[

e
α
[

∫

T

t (|X̌|2Q+|Θ̌1X̌+Θ̌2X̄|2R)ds+|X̌(T )|2Qf

]
]

. (43)

Set V̌ (t, x̌, x̄) = J
(N)
soc (t, x̌, x̄; ǔ). According to the

Feynman-Kac formula, we have


































−∂tV̌ (t, x̌, x̄) = ∂⊤
x̌ V̌

(

Ax̌−BΘ̌1x̌−BΘ̌2x̄
)

+ ∂⊤
x̄ V̌ (A+G−BΘ1 −BΘ2) x̄

+
1

2
Tr(∂2

x̌x̌V̌DD⊤) +
α

2
|D⊤∂x̌V̌ |2

+ |x̌|2Q + |Θ̌1x̌+ Θ̌2x̄|2R,

V̌ (T, x̌, x̄) = x̌⊤Qf x̌.
(44)

Suppose V̌ takes the following form

V̌ (t, x̌, x̄) = x̌
⊤
P̌11(t)x̌+ 2x̌⊤

P̌12(t)x̄+ x̄
⊤
P̌22(t)x̄+ ř(t).

(45)

Substituting (45) into (44), we have










˙̌
P11 + P̌11(A−BΘ̌1) + (A−BΘ̌1)

⊤P̌11

+ 2αP̌11DD⊤P̌11 +Q+ Θ̌⊤
1 RΘ̌1 = 0,

P̌11(T ) = Qf ,

(46)











˙̌
P12 + P̌12(A+G−BΘ1 −BΘ2)− P̌11BΘ̌2

+ (A−BΘ̌1)
⊤P̌12 + 2αP̌11DD⊤P̌12 + Θ̌⊤

1 RΘ̌2 = 0,

P̌12(T ) = 0,
(47)























˙̌
P22 + P̌22(A+G−BΘ1 −BΘ2) + (A+G−BΘ1

−BΘ2)
⊤P̌22 − P̌⊤

12BΘ̌2 − (BΘ̌2)
⊤P̌12

+ 2αP̌⊤
12DD⊤P̌12 + Θ̌⊤

2 RΘ̌2 = 0,

P̌22(T ) = 0,
(48)

and ˙̌r+Tr(P̌11DD⊤) = 0 with ř(T ) = 0.
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Note that the solutions of (46)-(47) are in high dimension.
In order to characterize the asymptotic behaviour (as N →
∞) of P̌11 and P̌12, we introduce the following ODEs:











˙̌Λ1 + (A−BΘ1)
⊤
Λ̌1 + Λ̌1(A−BΘ1) + Λ̌1N0Λ̌1

+Q+Θ
⊤
1 RΘ1 = 0,

Λ̌1(T ) = Qf ,

(49)











˙̌Λ2 + (A+G−BΘ1)
⊤
Λ̌2 + Λ̌2(A+G−BΘ1) +G

⊤
Λ̌1

+ Λ̌1G+Q
Γ + Λ̌2N0Λ̌2 + Λ̌1N0Λ̌2 + Λ̌2N0Λ̌1 = 0,

Λ̌2(T ) = Q
Γ
f ,

(50)










˙̌Λ3 + (A+G−BΘ1)
⊤
Λ̌3 + Λ̌3(A+G−BΘ1 −BΘ2)

+ (Λ̌1 + Λ̌2)(N0Λ̌3 −BΘ2) +Θ
⊤
1 RΘ2 = 0,

Λ̌3(T ) = 0,
(51)























˙̌Λ4 + (A+G−BΘ1 −BΘ2)
⊤
Λ̌4 + Λ̌4(A+G

−BΘ1 −BΘ2)− Λ̌
⊤
3 BΘ2 −Θ

⊤
2 B

⊤
Λ̌3

+ Λ̌
⊤
3 N0Λ̌3 +Θ

⊤
2 RΘ2 = 0,

Λ̌4(T ) = 0.

(52)

Under Assumption 3.1, we verify that Λ1 is the unique
solution of (49), which implies Λ1(t) = Λ̌1(t). Under
Assumption 3.6, (50) has a unique solution. Subsequently, we
obtain the solvability of (51) and (52). Then, using Theorems
3 and 4 in [20], we show that (46)-(48) have a solution if N
is sufficiently large.

In analogue to Lemma 3.3, we obtain the representation
of P̌11 and P̌12:

P̌11 =











Π̌N
1 Π̌N

2 · · · Π̌N
2

Π̌N
2 Π̌N

1 · · · Π̌N
2

...
...

. . .
...

Π̌N
2 Π̌N

2 · · · Π̌N
1











, P̌12 =







Π̌N
3

...
Π̌N

3






.

For the solutions of (46)-(48) and of (49)-(52), we have

sup
0≤t≤T

(

|Π̌N
1 − Λ̌1|+ |NΠ̌N

2 − Λ̌2|+ |Π̌N
3 − Λ̌3|

+|(1/N)P̌22 − Λ̌4|
)

= O(1/N).

Then the cost functional becomes

J (N)
soc (ǔ) =

N
∑

i=1

x⊤
i

(

Π̌N
1 (0)− Π̌N

2 (0)
)

xi

+ x(N)⊤N2Π̌N
2 (0)x(N) + x̄⊤

0 P̌
N
22(0)x̄0

+ 2x(N)⊤NΠ̌N
3 (0)x̄0 + ř(0). (53)

Combining (21) with (53), we have

∣

∣

∣J
(N)
soc (ǔ)− J

(N)
soc (u∗)

∣

∣

∣

= N
[

Tr
(

(Λ̌1(0) − Λ1(0))Σ0

)

+ x̄
⊤
0

(

Λ̌1(0) + Λ̌2(0) + Λ̌3(0)

+Λ̌
⊤
3 (0) + Λ̌4(0)− Λ1(0)− Λ2(0)

)

x̄0 + o(1)
]

. (54)

Set ∆ = Λ̌1 + Λ̌2 + Λ̌3 + Λ̌⊤
3 + Λ̌4 − Λ1 − Λ2. Then























∆̇+∆(A+G−BΘ1 −BΘ2) + (A+G−BΘ1

−BΘ2)
⊤∆+

(

Λ̌1 + Λ̌2 + Λ̌3

)⊤
N0

(

Λ̌1 + Λ̌2 + Λ̌3

)

− (Λ1 + Λ2)
⊤
N0 (Λ1 + Λ2) = 0,

∆(T ) = 0.

Note that N0 = 2αDD⊤. If α or D tends to 0, ∆ tends to
0. Since Λ1(t) = Λ̌1(t), the trace part within (54) is equal
to 0. Then (26) holds.
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