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Abstract— In this paper we address the problem of rejecting
an unknown disturbance, which is matched with the input,
from an infinite-dimensional plant belonging to the class of
regular linear systems. The plant input and output are finite-
dimensional and the time-derivative of the disturbance is
assumed to be bounded with a known bound. In our solution
approach to this problem, we drive a stable ODE using the
output of the plant. Via a state transformation obtained by
solving a Sylvester equation with possibly unbounded operators,
we derive an auxiliary ODE in which the disturbance and the
input are matched. We then build a nonlinear disturbance
observer for the auxiliary ODE, based on the super-twisting
sliding mode algorithm, to generate asymptotically accurate
estimates for the unknown disturbance. By letting the input
to the plant to be the negative of the disturbance estimate
obtained, the matched disturbance in the plant can be rejected.
In case the plant is unstable, including a stabilizing feedback
signal in the input will ensure that the plant state converges
to zero asymptotically. Our approach requires the state of the
plant to be known. When only the plant output is known, our
approach can be implemented using a state observer for the
plant and then modifying the disturbance observer suitably.
We demonstrate the efficacy of our approach in simulations
by taking the plant to be an anti-stable 1D wave equation and
assuming output measurement.

I. INTRODUCTION

Stabilizing plants while rejecting unknown matched distur-
bances, i.e. disturbances present in the input channel of the
plant, is a problem of practical interest. Several papers in the
literature have addressed this problem for finite-dimensional
plants, see for instance [1], [17] and the references therein.
However, for linear infinite-dimensional plants this problem
is harder to solve and fewer works have addressed it. One
of the earliest works to study this problem for infinite-
dimensional plants in an abstract setting is [12], where a
discontinuous control law is proposed based on the sliding
mode technique. In that work it is assumed that the input
operator is bounded, so plants with boundary control inputs
cannot be considered, and that the full-state of the plant
can be measured. Under similar assumptions [13] addressed
this problem (and a tracking problem) for the 1D heat and
wave equations. Subsequently, other works have addressed
the above stabilization/disturbance rejection problem for par-
ticular boundary controlled infinite-dimensional plants such
as the 1D heat and wave equations.

The problem of stabilizing boundary controlled 1D heat
equations while rejecting matched disturbances has been
addressed in [2], [14] and [15]. While [2] develops a
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state-feedback controller for solving the problem, [14] and
[15] develop output-feedback controllers. The heat equation
considered in [15] is more general than those in [2] and
[14]. For PDE-ODE cascade systems in which the PDE
is a boundary controlled 1D heat equation with matched
disturbance whose output drives an unstable ODE system, the
stabilization with disturbance rejection problem is addressed
in [20] by developing a state-feedback control law and in [8]
by developing an output-feedback control law.

In the case of boundary controlled 1D wave equations with
unknown matched disturbances, the problem of stabilization
with disturbance rejection has been addressed in [4], [5],
[7] and [11]. For an anti-stable wave equation [7] develops
an output-feedback controller (which can ensure the decay
only of the vibrating energy), [5] develops a state-feedback
controller and [4] develops an observer-based output feed-
back controller. The work [11] presents an output-feedback
controller for an unstable wave equation. For PDE-ODE
cascade systems in which the PDE is a boundary controlled
unstable wave equation with matched disturbance whose
output drives an unstable ODE system, the stabilization
with disturbance rejection problem is addressed in [22] by
developing an output-feedback controller. The above problem
is solved for an Euler-Bernoulli beam equation in [6] and a
linear 2 × 2 hyperbolic system in [18] using state-feedback
controllers.

A natural scheme for addressing the problem of stabi-
lization with matched disturbance rejection is as follows:
develop an observer for estimating the disturbance, cancel the
disturbance directly using the estimate and then address the
stabilization problem by ignoring the cancelled disturbance.
This scheme is implemented in [4], [5], [6] and [22], for
specific PDE models, by designing a high-gain observer
for estimating the disturbance. In this work, we propose
an alternate observer for estimating the disturbance which
can be used in conjunction with the above scheme. In our
observer design approach, we introduce an ODE system in
cascade with the infinite-dimensional plant. Using a state
transformation obtained by solving a Sylvester equation, we
derive an auxiliary ODE in which the disturbance and the
input are matched. We then build a nonlinear disturbance
observer for the auxiliary ODE to generate asymptotically
accurate estimates for the unknown disturbance. Our ap-
proach requires the state of the plant to be known, but can be
combined with an state observer when only the plant output
is known. Our observer design is based on the super-twisting
sliding mode algorithm and so does not require high gains.
We have developed our approach in an abstract setting and
it is applicable to plants belonging to a large class of linear
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systems called regular linear systems.
The rest of the paper is organized as follows. In Section

II we introduce our assumptions and state the disturbance
estimation problem addressed in this paper. Section III and
Section IV present the design of observers using full-state
measurement and output measurement, respectively, for esti-
mating the unknown disturbance. In Section V we illustrate
the efficacy of our output-based disturbance observer design
numerically by taking the plant to be an anti-stable 1D wave
equation. We show in simulations that by cancelling the
disturbance using the estimate from the observer and im-
plementing the stabilizing output-feedback control law from
[5], the state of the plant can be taken to zero asymptotically.
Notations. Let X and Y be two Hilbert spaces. The norm
in X is written as ‖ · ‖X . We denote the space of bounded
linear operators from X to Y by L(X,Y ) and write L(X,X)
as L(X). The space of X-valued locally square integrable
functions on [0,∞) is denoted as L2

loc([0,∞);X). For a
linear operator A : D(A) ⊂ X → X , where D(A) is the
domain of A, let σ(A) be its spectrum and ρ(A) its resolvent
set. For x ∈ R, the set-valued function sign(x) is defined as

sign(x) =


1 x > 0,
[−1, 1] x = 0,

−1 x < 0.

For a vector v = [v1 v2 · · · vn]> ∈ Rn, we define
sign(v) = [sign(v1) sign(v2) · · · sign(vn)]> and |v| 12 =
[|v1|

1
2 |v2|

1
2 · · · |vn|

1
2 ]>.

II. PROBLEM FORMULATION

In this work, we consider an infinite-dimensional plant
which can be written as an abstract evolution equation on a
Hilbert space Z as follows: for t > 0,

ż(t) = Az(t) +B(u(t) + d(t)), (2.1)
y(t) = CΛz(t). (2.2)

Here z(t) ∈ Z is the plant state, u(t) ∈ Rm is the control
input, d(t) ∈ Rm is the unknown disturbance and y(t) ∈ Rp
is the plant output. The state operator A is the generator of a
strongly continuous semigroup T on Z. For some β ∈ ρ(A),
let Z−1 be the Hilbert space obtained by completing Z with
respect to the norm ‖z‖Z−1

= ‖(βI − A)−1z‖Z and let
Z1 be the domain of A with the norm ‖z‖Z1

= ‖(βI −
A)z‖Z . We assume that B ∈ L(Rm, Z−1) is an admissible
control operator for T and C ∈ L(Z1,Rp) is an admissible
observation operator for T. The Λ-extension of C, denoted
as CΛ, is defined on Z as follows:

CΛz = lim
λ→+∞

Cλ(λI −A)−1z whenever the limit exists.

The domain of CΛ, written as D(CΛ), is the set of all z ∈ Z
for which the above limit exists. We have D(A) ⊂ D(CΛ)
and the restriction of CΛ to D(A) is C. We suppose that the
triple (A,B,C) is regular, so that the plant (2.1)-(2.2) is a
regular linear system. For more details regarding the notions
of admissibility and regularity, see [19] and [21].

For any initial state z(0) ∈ Z, input u ∈ L2
loc([0,∞);Rm)

and disturbance d ∈ L2
loc([0,∞);Rm), the state trajectory of

(2.1) is the continuous function from [0,∞) to Z defined as
follows:

z(t) = Ttz(0) +

∫ t

0

Tt−τB[u(τ) + d(τ)]dτ ∀ t ≥ 0.

For almost all t ≥ 0, the state trajectory z satisfies the
state equation (2.1) in Z−1 and z(t) ∈ D(CΛ). The output
equation (2.2) determines the output y ∈ L2

loc([0,∞);Rp).
The regularity of the triple (A,B,C) implies that CΛ(sI −
A)−1B exists for each s ∈ ρ(A).

We suppose that the unknown disturbance d satisfies the
following assumption.

Assumption 2.1: The disturbance d : [0,∞) → Rm is a
continuous function such that any finite time interval can be
partitioned into finitely many disjoint subintervals on each
of which d is continuously differentiable. Furthermore, there
exists a known constant R > 0 such that ‖ḋ(t)‖Rm ≤ R for
all t at which d is differentiable.

We now state the disturbance estimation problem ad-
dressed in this paper.

Problem 2.2: Design a disturbance observer for the reg-
ular linear system (2.1)-(2.2) such that the disturbance esti-
mate d̂ generated by the observer satisfies

lim
t→∞

‖d(t)− d̂(t)‖Rm = 0.

We first address this problem in Section III by assuming
that the full-state of the plant can be measured. Then,
under an additional assumption regarding the existence of
an observer for the plant state, we address this problem
in Section IV by supposing that only the plant output can
be measured. Taking u = v + d̂ in (2.1), where d̂ is the
estimate generated by the disturbance observer and v is a
stabilizing state/output feedback control law designed for
(2.1) by assuming that d = 0, we can cancel the effect of the
disturbance d and ensure that the state trajectory converges
to zero asymptotically, see Remarks 3.5 and 4.4.

III. DISTURBANCE OBSERVER USING FULL-STATE
MEASUREMENT

In this section, we address Problem 2.2 by designing a
disturbance observer for the plant (2.1)-(2.2) using full-state
measurement, see Theorem 3.3. In our design approach, we
introduce the following exponentially stable ODE system
driven by the plant output y in (2.2):

ẇ(t) = Ew(t) + FCΛz(t). (3.3)

Here w(t) ∈ Rm is the state of the ODE system, E ∈ Rm×m
is a diagonal matrix whose eigenvalues have a negative real
part and F ∈ Rm×p. Using the solution to a Sylvester
equation, we diagonalize the state operator of the cascade
interconnection of the plant (2.1)-(2.2) and the ODE system
(3.3) to obtain an auxiliary ODE system in which the
input u and the disturbance d are matched. We then obtain
estimates d̂ for d by building a disturbance observer for the
auxiliary ODE system using the super-twisting sliding mode
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algorithm, which has been widely employed in the finite-
dimensional literature.

We first recall a lemma from our paper [10] regarding the
existence of solutions to Sylvester equations.

Lemma 3.1: Let the operators A, B and C be as intro-
duced in (2.1)-(2.2) and let the matrices E and F be as
defined in (3.3). Suppose that σ(A)∩ σ(E) = ∅. Then there
exists a linear map Π : AD(CΛ)→ Rm with Π ∈ L(Z,Rm)
such that

EΠz = ΠAz + FCΛz ∀ z ∈ D(CΛ). (3.4)

Furthermore ΠB ∈ Rm×m.
Proof: Recall that E is an exponentially stable diagonal

matrix. So e−Et can be written as follows:

e−Et =

m∑
k=1

e−λktEk,

where λk < 0 is the kth diagonal entry of E and Ek ∈
Rm×m is a matrix whose kth diagonal entry is 1 and all
other entries are 0. Then

Π =

m∑
k=1

EkFCΛ(λkI −A)−1 (3.5)

is the required linear map, see the proof of Lemma 3.6 in
[10] for details.

Assumption 3.2: There exists matrices E ∈ Rm×m and
F ∈ Rm×p such that

(i) E is a diagonal matrix whose eigenvalues have a
negative real part and σ(A) ∩ σ(E) = ∅,

(ii) for Π given in (3.5), the matrix ΠB ∈ Rm×m is
invertible.

Note that Item (i) in the assumption can be satisfied
easily and Item (ii) is the non-trivial requirement. The
above assumption is a sufficient condition for designing
a disturbance observer for the regular linear system (2.1)-
(2.2) (see Theorem 3.3). It also appears to be a necessary
condition. Indeed, when m = 1 the above assumption is
equivalent to the requirement that the transfer function of
(2.1)-(2.2), given by CΛ(sI − A)−1B, exists and does not
vanish at at least one point on the negative real-axis which,
for most operators A, is equivalent to the requirement that
B 6= 0 and C 6= 0.

The following theorem presents a disturbance observer
which solves Problem 2.2. Recall the notation sign(v) and
|v| 12 for v ∈ Rn introduced at the end of Section I.

Theorem 3.3: Consider the infinite-dimensional plant
(2.1)-(2.2) and the ODE system (3.3) driven by the plant
output. Let Assumptions 2.1 and 3.2 hold. Define

p = Πz + w, (3.6)

where Π is the linear operator in (3.5), z is the state
trajectory of (2.1) for some initial state z(0) ∈ Z, input
u ∈ L2

loc([0,∞);Rm) and disturbance d ∈ L2
loc([0,∞);Rm)

and w is the state trajectory of (3.3) for some initial state
w(0) ∈ Rm. Let k1 = 14

√
R‖ΠB‖Rm×m and k2 =

9R‖ΠB‖Rm×m with R being the constant in Assumption 2.1.
Then the estimate d̂ provided by the disturbance observer

˙̂p(t) = Ep(t) + k1|p(t)− p̂(t)|
1
2 sign(p(t)− p̂(t))

+ ΠBu(t) + k2

∫ t

0

sign(p(τ)− p̂(τ))dτ, (3.7)

d̂(t) = k2(ΠB)−1

∫ t

0

sign(p(τ)− p̂(τ))dτ (3.8)

satisfies

‖d(t)− d̂(t)‖Rm = 0 ∀ t > T (3.9)

and some finite time T > 0.
Remark 3.4: The solution to (3.7), and other differential

equations with non-smooth right-hand sides encountered in
this paper, are to be understood in the sense of Filippov
[3]. The differential equations with discontinuous right-
hand sides studied in this paper are very similar to those
considered in [9].

Proof: Taking the time derivative of p in (3.6) and using
(2.1)-(2.2) and (3.3), it follows after a simple calculation
based on the properties of Π mentioned in Lemma 3.1 that

ṗ(t) = Ep(t) + ΠB(u(t) + d(t)). (3.10)

(An alternate derivation for the above expression using
Laplace transforms is shown above Eq. (3.19) in [10].)
Unlike the ODE in (3.3), the above ODE is decoupled from
the infinite-dimensional dynamics (2.1)-(2.2). Define

ep(t) = p(t)− p̂(t),

qp(t) = ΠBd(t)− k2

∫ t

0

sign(p(τ)− p̂(τ))dτ.

Using (3.7) and (3.10) we get

ėp(t) = −k1|ep(t)|
1
2 sign(ep(t)) + qp(t), (3.11)

q̇p(t) = −k2sign(ep(t)) + ΠBḋ(t). (3.12)

Applying [9, Theorem 2] to the above equation we get that
there exists a finite time T > 0 such that qp(t) = 0 for all
t > T . The claim in (3.9) now follows directly using the
definitions of qp and d̂ in (3.8).

We remark that [9, Theorem 2] has been derived for scalar
equations of the form (3.11)-(3.12), i.e. ep(t) and qp(t) are
scalars in [9, Theorem 2]. We could use this result in the
above proof since (3.11)-(3.12) with ep(t) ∈ Rm and qp(t) ∈
Rm can be regarded as m scalar equations of the form (3.11)-
(3.12) which are not coupled to one another.

Remark 3.5: Suppose that the pair (A,B) is stabilizable
and there exists a state-feedback control law u = Kz such
that A + BK is the generator of an exponentially stable
semigroup (for a formal definition of the stabilizability of
the pair (A,B), see [21]). Then taking u = Kz − d̂, where
d̂ is given in (3.8), ensures that the state trajectory of (2.1)
converges to zero exponentially for any initial state z(0).

IV. DISTURBANCE OBSERVER USING OUTPUT
MEASUREMENT

For implementing the disturbance observer (3.7)-(3.8)
proposed in Section III, the full-state z(t) of the infinite-
dimensional plant (2.1)-(2.2) must be measured. Indeed, note
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that z(t) is required for computing p(t) which is used in
(3.7)-(3.8), see also (3.6). In this section, we extend the
results in Section III by designing a disturbance observer
for (2.1)-(2.2) using only output measurement.

We will need the following assumption regarding the
existence of a state observer for (2.1)-(2.2).

Assumption 4.1: There exists a state observer for the
infinite-dimensional plant (2.1)-(2.2) which, using only the
input to the plant and the plant output, generates a trajectory
ẑ : [0,∞)→ Z which converges to the state trajectory z of
the plant in the following sense:

lim
t→∞

‖z(t)− ẑ(t)‖Z = 0, (4.13)

lim
t→∞

‖Πż(t)−Π ˙̂z(t)‖Rm = 0, (4.14)

with both the above convergences being exponential.
Remark 4.2: The observer in the above assumption is not

a typical state observer since it must ensure that the limits
in (4.13)-(4.14) hold even in the presence of an unknown
disturbance. Such observers have been proposed for the
wave equation in [4], [22] by assuming that the initial error
between the plant state and the observer state satisfies certain
compatibility conditions. These observers guarantee only the
limit in (4.13). While preliminary analysis indicates that
(4.13) should imply (4.14) (at least when C is a bounded
operator), it is hard to prove. Furthermore, it is also difficult
to verify in examples that (4.14) holds. We remark that it
may be possible to completely drop (4.14) from Assumption
4.1 by strengthening the results in [9] so as to include
exponentially decaying measurement noise in their analysis.

The following theorem presents a disturbance observer
which solves Problem 2.2 using output measurement.

Theorem 4.3: Consider the infinite-dimensional plant
(2.1)-(2.2) and the ODE (3.3) driven by the plant output.
Let Assumptions 2.1, 3.2 and 4.1 hold. Define

P = Πẑ + w, (4.15)

where Π is the linear operator in (3.5), ẑ is the observer
trajectory for some observer initial state ẑ(0) ∈ Z, plant
initial state z(0) ∈ Z, input u ∈ L2

loc([0,∞);Rm) and dis-
turbance d ∈ L2

loc([0,∞);Rm) and w is the state trajectory
of (3.3) for some initial state w(0) ∈ Rm. Let k1 and k2

be as in Theorem 3.3. Then the estimate d̂ provided by the
disturbance observer

˙̂
P (t) =Ew(t) + EΠẑ(t) + k1|P (t)− P̂ (t)| 12

+ sign(P (t)− P̂ (t)) + ΠBu(t)

+ k2

∫ t

0

sign(P (τ)− P̂ (τ))dτ, (4.16)

d̂(t) =k2(ΠB)−1

∫ t

0

sign(P (τ)− P̂ (τ))dτ (4.17)

satisfies
lim
t→∞

‖d(t)− d̂(t)‖Rm = 0. (4.18)

Proof: Define ez = z− ẑ. Taking the time derivative of
P in (4.15) and using (2.1)-(2.2) and (3.3), it follows after
a simple calculation based on the properties of Π mentioned
in Lemma 3.1 that

Ṗ (t) = EP (t) + ΠB(u(t) + d(t))−Πėz(t). (4.19)

Let

eP (t) = P (t)− P̂ (t),

qP (t) = ΠBd(t)− k2

∫ t

0

sign(P (τ)− P̂ (τ))dτ.

Using (4.16) and (4.19) we get

ėP (t) = µ(t)− k1|eP (t)| 12 sign(eP (t)) + qP (t), (4.20)

q̇P (t) = −k2sign(eP (t)) + ΠBḋ(t), (4.21)

where µ(t) = −Πėz(t). For each τ ≥ 0, let

δ(τ) = sup
s∈[τ,∞)

‖µ(s)‖Rm .

It follows from Assumption 4.1 that there exist M,ω > 0
such that

δ(τ) ≤Me−ωτ ∀ τ ≥ 0. (4.22)

Define

ζ(t) =

[
|eP (t)| 12 sign(eP (t))

qP (t)

]
.

Applying [9, Theorem 3] to (4.20)-(4.21) it follows that
there exist positive constants c1, c2 and c3 independent of the
initial conditions eP (0) and qP (0) such that the trajectory of
(4.20)-(4.21) satisfies

‖ζ(t)‖R2m ≤ c1δ(0) ∀ t ≥ c2‖ζ(0)‖R2m + c3δ(0),

see the proof of Theorem 3 in [9] and also see the remark
after this proof. Using this result, by considering the initial
time for the differential equation (4.20)-(4.21) to be some
τ ≥ 0, we can infer that

‖ζ(t)‖R2m ≤ c1δ(τ) ∀ t ≥ τ + c2‖ζ(τ)‖R2m + c3δ(τ).
(4.23)

Let T = c2‖ζ(0)‖R2m + (c1c2 + c3)δ(0). We claim that
the following estimate holds for all integers k ≥ 1:

‖ζ(t)‖R2m ≤ c1δ(kT − T ) ∀ t ∈ [kT, kT + T ]. (4.24)

Indeed, taking τ = 0 in (4.23) it follows that (4.24) holds for
k = 1. Suppose that (4.24) holds for some integer k = j ≥ 1.
Then letting k = j and t = jT in (4.24) and using the fact
that δ is a non-increasing function we get

‖ζ(jT )‖R2m ≤ c1δ(jT − T ) ≤ c1δ(0).

Now taking τ = jT in (4.23) and using the above inequality
and the fact that δ is a non-increasing function we get

‖ζ(t)‖R2m ≤ c1δ(jT ) ∀ t ≥ jT + c1c2δ(0) + c3δ(0)

which, using the definition of T implies that (4.24) holds for
k = j + 1. It now follows via the principle of mathematical
induction that (4.24) holds for all k ≥ 1.

Combining (4.22) and (4.24) we get

‖ζ(t)‖R2m ≤ c1Me2ωT e−ωt ∀ t ≥ T.

Hence qP converges to 0 exponentially which along with the
definitions of qP and d̂ in (4.17), implies the limit in (4.18).
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We remark that [9, Theorem 3] has been derived for scalar
equations of the form (4.20)-(4.21), i.e. eP (t) and qP (t)
are scalars in [9, Theorem 3]. We could use this result in
the above proof since (4.20)-(4.21) with eP (t) ∈ Rm and
qP (t) ∈ Rm can be regarded as m scalar equations of the
form (4.20)-(4.21) which are not coupled to one another.

Remark 4.4: Suppose that A, B and K are as in Remark
3.5 and suppose that there exists a state observer for (2.1)-
(2.2) as described in Assumption 4.1. Then taking u = Kẑ−
d̂, where ẑ is the observer trajectory and d̂ is given in (4.17)
will ensure that the state trajectory of (2.1) converges to zero
exponentially for any initial state z(0).

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the disturbance observer
design proposed in Theorem 4.3 using a 1D anti-stable
wave equation with matched disturbance. We implement
our disturbance observer and a stabilizing output-feedback
controller from [4] on the wave equation numerically and
show that its state converges to zero asymptotically.

Consider the following 1D anti-stable wave equation: for
all t > 0,

vtt(x, t) = vxx(x, t) ∀ x ∈ (0, 1), (5.25)
vx(0, t) = −0.5vt(0, t), vx(1, t) = u(t) + d(t), (5.26)
y(t) = v(1, t), (5.27)

ym(t) = [vt(0, t) vt(1, t) v(1, t)]>. (5.28)

Here z(t) =
[
v(·,t)
vt(·,t)

]
is the state of the wave equation,

u(t) ∈ R is the control input, d(t) ∈ R is the matched dis-
turbance, y(t) is the output used in the disturbance observer
and ym(t) is the measured output used in the state observer.

The wave equation (5.25)-(5.27) can be written as an ab-
stract evolution equation on the state space Z = H1(0, 1)×
L2(0, 1) as follows:

ż(t) = Az(t) +B(u(t) + d(t)),

y(t) = Cz(t).

The state operator A is defined as follows: D(A) =
{ [

f
g

]
∈

H2(0, 1) × H1(0, 1)
∣∣fx(0) = −0.5g(0), fx(1) = 0

}
and

A
[
f
g

]
=
[ g
fxx

]
for all

[
f
g

]
∈ D(A). The control operator

B =
[

0
δ1

]
, where δ1 is the Dirac pulse at x = 1 and the

observation operator C is defined as C
[
f
g

]
= f(1) for all[

f
g

]
∈ Z. Note that A is a Riesz spectral operator which gen-

erates an invertible C0-semigroup T on Z, B ∈ L(R, Z−1)
is an admissible control operator for T, C ∈ L(Z,R) and
the triple (A,B,C) is regular. All this can be established
by mimicking the arguments in [16, Section VI] where the
constant in the boundary condition is 2.5 instead of -0.5.

We take the disturbance to be a continuous periodic func-
tion of unit period determined by the following expression:

d(t) =


1 + 4t if t ∈ [0, 0.25),

3− 4t if t ∈ [0.25, 0.75],

4t− 3 if t ∈ [0.75, 1].

(5.29)

Clearly d satisfies Assumption 2.1 with R = 4.

We take E = −1 and F = 1 in (3.3). We have computed
the expression for (I +A)−1 explicitly by solving the ODE[

α+β
αxx+β

]
=
[
f
g

]
for [ αβ ] ∈ D(A) and then verified that −1 /∈

σ(A). Substituting the computed expression for (I + A)−1

in the formula (3.5) we obtain

Π

[
f
g

]
=

e

3e2 − 1

[
3

∫ 1

0

ey[g(y)− f(y)]dy

+

∫ 1

0

e−y[g(y)− f(y)]dy − 2f(0)

]
for all

[
f
g

]
∈ Z. Using the above formula, we get ΠB =

1.09. So Assumption 3.2 also holds.
We use the following sliding mode observer presented in

[4, Theorem 1] for estimating the state of the wave equation
(5.25)-(5.26) using the measured output ym in (5.28): for
t > 0,

v̂tt(x, t)= v̂xx(x, t) ∀ x ∈ (0, 1), (5.30)
v̂x(0, t)=(c− 0.5)[v̂t(0, t)− vt(0, t)] + 0.5v̂t(0, t), (5.31)
v̂x(1, t)=u(t)−c1[v̂t(1, t)− vt(1, t)]−c2[v̂(1, t)− v(1, t)]

−M1sign[vt(1, t)− vt(1, t)]
−M2sign[v̂(1, t)− v(1, t)], (5.32)

where M1 = 4, M2 = 8, c = 1 and c1 = c2 = 1 are the
gains. It is shown in [4, Theorem 1] that along any solution
of the above observer we have

lim
t→∞

‖v(·, t)− v̂(·, t)‖H1 + ‖vt(·, t)− v̂t(·, t)‖L2 = 0

provided
[
v(·,0)
vt(·,0)

]
and

[
v̂(·,0)
v̂t(·,0)

]
satisfy some compatibility

conditions. Moreover, the above convergence is exponential.
So all the claims in Assumption 4.1, except the limit in
(4.14), have been verified (see Remark 4.2). Our simulation
results appear to indicate that (4.14) also holds.

We have performed numerical simulations of the closed-
loop system consisting of the wave equation (5.25)-(5.28),
the state observer (5.30)-(5.32) and the disturbance observer
(4.16)-(4.17) by taking u in (5.26), (5.32) and (4.16) to be the
following observer-based output-feedback stabilizing control
law in [4, Eq. (58)] with q = 0.5, k = 1.4 and M = 5:

u(t) = −0.89vt(1, t)− 4.45v(1, t) + 2.48v̂(0, t)

+ 4.98

∫ 1

0

v̂t(x, t)dx− d̂(t).

Here d̂ is the estimate generated by our disturbance observer
(4.16)-(4.17) (and not the d̂ generated using ADRC in [4]).
In our simulations, we have chosen the initial states for the
wave equation to be v(x, 0) = −3x2(1− x) and vt(x, 0) =
0 and for the observer to be v̂(x, 0) = 0 and v̂t(x, 0) =
0. These initial states satisfy the compatibility conditions in
[4, Theorem 1]. We take k1 = 29.3 and k2 = 39.4 in the
disturbance observer (4.16)-(4.17) and choose P̂ (0) = 0.

We have used the finite-difference scheme for our closed-
loop simulations and the results are shown in Figures 1, 2, 3
and 4. Let z(t) =

[
v(·,t)
vt(·,t)

]
and ẑ(t) =

[
v̂(·,t)
v̂t(·,t)

]
be the states

of the wave equation (5.25)-(5.26) and the observer (5.30)-
(5.32), respectively. Figure 1 shows that ‖z(t) − ẑ(t)‖Z
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converges to zero. Figure 2 shows that the disturbance
estimate generated by the disturbance observer converges to
the disturbance d determined by (5.29). Figure 3 shows that
the proposed control law u has stabilized the wave equation
and its state trajectory converges to zero.
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Figure 1. The error between the state trajctory z of the
wave equation and its estimate ẑ generated by the state
observer converges to zero asymptotically.
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Figure 2. The estimated value of the disturbance converges
to the true value asymptotically.
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Figure 3. The state trajectory of the stabilized wave equa-
tion converges to zero asymptotically.
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