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Abstract— This paper proposes a nonlinear system identifi-
cation method for constructing models that provide not only
point estimates but also distribution. The method is based on
a nonlinear system identification method using the concepts
of bottleneck structured neural networks and subspace system
identification, and further applies the concept of variational
autoencoders. The validity of the proposed method is confirmed
through numerical examples.

I. Introduction
System identification is crucial in control system design

when there is limited prior knowledge on the target system.
While various identification methods exist for linear sys-
tems [1], nonlinear system identification remains an active
area of research with techniques like Koopman Operator [2]
and neural networks [3]. Among the linear system identifica-
tion methods, the subspace identification method [4] is one
of the most popular methods as it can directly obtain multi-
input, multi-output state-space models. Building upon the
subspace identification method and autoencoder concepts, the
authors previously proposed an extended subspace identifica-
tion method for nonlinear systems using neural networks [5].

The method performs well for nonlinear multi-input, multi-
output systems of a practical scale and gives a model
consisting of a state estimator and an output predictor that is
particularly useful in model predictive control. Nonetheless,
it is important to acknowledge that, akin to most nonlinear
system identification techniques, this method does not yield
explicit insights into the uncertainty of the predicted output
and the state estimate caused by noise or disturbances.
This is a notable consideration, especially given that there
are control approaches utilizing such information, such as
probabilistically constrained model predictive controller [6]
and scenario-based approach [7].

On the other hand, probabilistic models are also frequently
used in the field of machine learning. Variational Auto-
Encoder (VAE) [8] is one of them, which estimates the distri-
bution of latent variables based on variational inference using
neural networks. So far, some research has been conducted
on estimating dynamics using VAEs, and several methods
have been proposed for estimating the state of time series
data and the distribution of outputs by combining recurrent
neural networks (RNN) [9], [10], [11], [12]. However, these
methods require large amounts of sampling or recursive

This work was supported by JSPS KAKENHI Grant Number JP20H02170.
K. Yamada, I. Maruta and K. Fujimoto is with Department of

Aeronautics and Astronautics, Graduate School of Engineering, Ky-
oto University, Kyotodaigaku-katsura, Nishikyo Ward, Kyoto City, Ky-
oto, 615-8540, Japan yamada.keito.33w@st.kyoto-u.ac.jp,
{maruta,fujimoto}@kuaero.kyoto-u.ac.jp

DecoderEncoder

Sampling
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calculations to evaluate output uncertainties in multiple steps,
which can be computationally time-consuming. This is par-
ticularly undesirable in applications such as model predictive
control [13], where predictions must be made in a short
period of time.

In this paper, we propose a method for estimating the dis-
tribution of states and outputs by applying the VAE concept
to the extended subspace identification method [5]. By using
a probabilistic model, we can estimate the uncertainty of the
output, and since recursion is not required, we can make
predictions faster than in previous studies.

This paper is organized as follows. Section II provides
an explanation of VAE. Section III briefly describes the
nonlinear system identification proposed by the authors [5].
Section IV describes the nonlinear system identification with
uncertainty, which is an application of the VAE concept, and
Section V confirms the validness of the proposed method
using numerical examples. Finally, Section VI presents the
conclusions.

In this paper, the probability density at 𝑥 of a random
variable that follows the normal distribution with mean 𝜇
and covariance matrix Σ is denoted by N(𝑥 | 𝜇, Σ). The (𝑖, 𝑗)
element of matrix 𝑋 is denoted by (𝑋)𝑖 𝑗 .

II. Variational Auto-Encoder (VAE) [8]

Let 𝑦 ∈ R𝑛𝑦 be an observed variable and 𝑥 ∈ R𝑛𝑥 be a latent
variable. VAE models the distribution of 𝑥 when 𝑦 is observed
via the encoder, and the distribution of 𝑦when 𝑥 is given via the
decoder. Fig. 1 illustrates the concept of VAE. In VAE, we can
assume various types of the distribution of the decoder output,
but in this paper we assume a normal distribution. In this case,
the distribution of the decoder output can be expressed as

𝑝𝜃 (𝑦 | 𝑥) = N(𝑦 | 𝜇𝜃 (𝑥), Σ𝜃 (𝑥)), (1)

where 𝜇𝜃 and Σ𝜃 are implemented by neural networks, and 𝜃
is a parameter of them. On the other hand, since the posterior
distribution 𝑝(𝑥 | 𝑦) is generally complex, variational infer-
ence is performed using the approximate posterior distribution
𝑞𝜙 (𝑥 | 𝑦). If the encoder outputs are normally distributed as
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well as decoders, 𝑞𝜙 (𝑥 | 𝑦) = N(𝑥 | 𝜇𝜙 (𝑦), Σ𝜙 (𝑦)). 𝜙 denotes
their parameters.

Given data {𝑦1, 𝑦2, . . . , } is independent and identically
distributed (i.i.d.), it is desirable to estimate the parame-
ters of VAE by maximizing the marginal log likelihood
log 𝑝𝜃 (𝑦1, 𝑦2, . . . , ) =

∑
log 𝑝𝜃 (𝑦𝑖). Unfortunately, 𝑝𝜃 (𝑦) is

often a complicated distribution that is difficult to compute,
so we consider maximizing the evidence lower bound (ELBO)
L(𝑦; 𝜃, 𝜙) instead, which is defined as follows:

log 𝑝𝜃 (𝑦) = log
∫

𝑝𝜃 (𝑦 | 𝑥)𝑝𝜃 (𝑥)𝑑𝑥

= log
∫

𝑝𝜃 (𝑦 | 𝑥)𝑝𝜃 (𝑥)
𝑞𝜙 (𝑥 | 𝑦) 𝑞𝜙 (𝑥 | 𝑦)𝑑𝑥

= logE𝑞𝜙 (𝑥 |𝑦)
[
𝑝𝜃 (𝑦 | 𝑥)𝑝𝜃 (𝑥)
𝑞𝜙 (𝑥 | 𝑦)

]

≥ E𝑞𝜙 (𝑥 |𝑦)
[
log

(
𝑝𝜃 (𝑦 | 𝑥)𝑝𝜃 (𝑥)
𝑞𝜙 (𝑥 | 𝑦)

)]
= E𝑞𝜙 (𝑥 |𝑦) [log 𝑝𝜃 (𝑦 | 𝑥)]
− DKL [𝑞𝜙 (𝑥 | 𝑦) ∥ 𝑝𝜃 (𝑥)] (2)

:= L(𝑦; 𝜃, 𝜙) (3)

The inequalities between the third and fourth lines are derived
from Jensen’s inequality. Also, DKL [ · ∥ · ] is the Kullback-
Leibler (KL) divergence defined as

DKL [𝑝(𝑥) ∥ 𝑞(𝑥)] =
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥. (4)

ELBO can be decomposed into the first term related to the
reconstruction error and the second regularization term as in
(2). The first term is difficult to compute analytically, so it can
be approximated by the Monte Carlo method as follows:

E𝑞𝜙 (𝑥 |𝑦) [log 𝑝𝜃 (𝑦 | 𝑥)] = 1
𝐾

𝐾∑︁
𝑘=1

[
log 𝑝𝜃 (𝑦 | 𝑥 (𝑘 ) )

]
,

𝑥 (𝑘 ) ∼ 𝑞𝜙 (𝑥 | 𝑦) (5)

If 𝑞𝜙 (𝑥 | 𝑦) is normally distributed, then the sampling of 𝑥 (𝑘 )
can be easily performed as follows:

𝑥 (𝑘 ) = 𝜇𝜙 (𝑦) + Σ1/2
𝜙 (𝑦)𝜀 (𝑘 ) , (6)

where the random variable 𝜀 (𝑘 ) ∼ N(0, 𝐼) and Σ1/2 represents
the Cholesky decomposition ofΣ. By replacing 𝑥 (𝑘 ) in (5) with
the expression (6), it is possible to update the parameters of the
neural network by back propagation. When the dataset is large,
𝐾 = 1 is usually selected. On the other hand, the second term
can be calculated analytically when 𝑞𝜙 (𝑥 | 𝑦), 𝑝𝜃 (𝑥) are both
normal distribution. In particular, when 𝑝𝜃 (𝑥) = N(𝑥 | 0, 𝐼),

DKL [𝑞𝜙 (𝑥 | 𝑦) ∥ 𝑝𝜃 (𝑥)]
=

1
2
[
tr(Σ𝜙 (𝑦)) + ∥𝜇𝜙 (𝑦)∥2 − log |Σ𝜙 (𝑦) | − 𝑛𝑥

]
. (7)

The ELBO can be maximized for the parameter(𝜃, 𝜙) to train
VAE.

III. Deterministic Nonlinear System Identification
with Neural Networks

In this section, we briefly introduce nonlinear system iden-
tification for deterministic systems proposed in our work [5].

We consider the following deterministic discrete-time non-
linear dynamical system in this section:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 ), 𝑦𝑡 = ℎ(𝑥𝑡 ) (8)

with 𝑡 ∈ Z the time index, 𝑥𝑡 ∈ R𝑛𝑥 the state, 𝑦𝑡 ∈ R𝑛𝑦 the
output, 𝑢𝑡 ∈ R𝑛𝑢 the input, 𝑓 : R𝑛𝑥 × R𝑛𝑢 → R𝑛𝑥 the state-
transition map and ℎ : R𝑛𝑥 → R𝑛𝑦 the output map. As in the
usual setting for system identification, 𝑥𝑡 is a latent variable.
In the following discussion, the fundamental properties of the
proposed method for nonlinear target systems are presented in
the absence of measurement noise and disturbances.

For convenience, we define the sequence of input and output
signals in the past and future from a certain time 𝑡 as follows:

𝑢
p
𝑡 :=



𝑢𝑡−hp

𝑢𝑡−hp+1
...

𝑢𝑡−1


, 𝑦

p
𝑡 :=



𝑦𝑡−hp

𝑦𝑡−hp+1
...

𝑦𝑡−1


,

𝑢f
𝑡 :=



𝑢𝑡
𝑢𝑡+1
...

𝑢𝑡+hf−1


, 𝑦f

𝑡 :=



𝑦𝑡
𝑦𝑡+1
...

𝑦𝑡+hf−1



(9)

where the superscripts p and f indicate past and future, and
hp ∈ N and hf ∈ N are horizons for corresponding directions,
respectively. Using these notations, we formulate the problem
as follows.

Problem 1. Given the measured input-output data
{(𝑢𝑡 , 𝑦𝑡 )}𝑇+hf−1

𝑡=−hp+1, and the design parameters hp, hf , 𝑛 𝑥̂ ∈ N,
construct a model that consists of a state estimator 𝐸𝜙 ,
which maps (𝑢p

𝑡 , 𝑦
p
𝑡 ) ↦→ 𝑥𝑡 , and a predictor 𝑃𝜃 , which maps

(𝑥𝑡 , 𝑢f
𝑡 ) ↦→ 𝑦f

𝑡 . Here, 𝑥𝑡 ∈ R𝑛𝑥̂ is a state equivalent to 𝑥𝑡 but in
an arbitrary coordinate system and 𝑇 ∈ N indicates the size of
the dataset.

Remark 2. In the usual state-space system identification,
the goal is to construct a model of 𝑓 and ℎ, i.e., a state-
space model. However, in many applications, including model
predictive control, the state estimator and multi-step ahead
predictor are often reconstructed from the resulting state-space
model. In particular, for nonlinear systems that are difficult to
analyze, the merits of going through state-space models are
questionable. Therefore, we focus here on the construction
of the state estimator 𝐸𝜙 and predictor 𝑃𝜃 . Once the state
estimator is obtained, however, it is easy to estimate the state
and construct the state-space model.

Then, we make assumptions to guarantee the existence of
the solution of Problem 1.
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Definition 3 (uniform 𝑘-observability). If the mapping

R𝑛𝑥 × (R𝑛𝑢 )𝑘 → (R𝑛𝑦 )𝑘 × (R𝑛𝑢 )𝑘

by (𝑥, 𝑢) ↦→
(
ℎ𝑘 (𝑥, 𝑢), 𝑢

)
(10)

is injective, the system (8) is said to be uniformly 𝑘-observable
[14].

Assumption 4. The system (8) is uniformly 𝑘-observable,
where 𝑘 = min

(
hp, hf

)
.

Remark 5. According to [15], typical dynamical systems are
𝑘-observable for 𝑘 ≥ 2𝑛𝑥 + 1.

Assumption 6. The dimension of the state estimate is large
enough, that is, 𝑛 𝑥̂ ≥ 𝑛𝑥 .

In this method, we train the neural network which has the
structure of Fig. 2, where the state estimator 𝐸𝜙 : (R𝑛𝑢 )hp ×
(R𝑛𝑦 )hp → R𝑛𝑥̂ maps the past input and output to the current
state, and the predictor 𝑃𝜃 : R𝑛𝑥̂ × (R𝑛𝑢 )hf → (R𝑛𝑦 )hf maps
the current state and the future input to the future output, and
𝜃 and 𝜙 are parameters of the respective neural networks.

We set 𝑛 𝑥̂ < hp𝑛𝑦 for the bottleneck structure of the network
to take a lower-dimensional state, and the training problem is
formulated as the following minimization problem

min
𝜃,𝜙

1
𝑇

𝑇∑︁
𝑡=1




𝑦f
𝑡 − 𝑃𝜙

(
𝐸𝜃

(
𝑢

p
𝑡 , 𝑦

p
𝑡

)
︸       ︷︷       ︸
estimate of 𝑥𝑡

, 𝑢f
𝑡

)
︸                   ︷︷                   ︸

prediction of 𝑦f
𝑡




2
. (11)

Since the state 𝑥𝑡 cannot be measured, the state estimator 𝐸𝜙
and predictor 𝑃𝜃 are coupled in series and trained in the same
way as the encoder and decoder in autoencoder. To solve (11),
we can utilize modern batch optimization algorithms for deep
learning (e.g. Adam [16]). This method can be interpreted
as nonlinear extension of classical subspace identification for
linear systems. For more detail, see [5].

IV. Nonlinear System Identification with Uncertainty
The method presented in the previous section treats the

target system as a deterministic entity and does not account
for stochastic uncertainties arising from noise and modeling
errors. In this paper, we introduce an identification approach
that considers uncertainties by incorporating the principles of
VAE.

In this section, we consider stochastic discrete-time nonlin-
ear system

𝑥𝑡+1 ∼ 𝑝(𝑥𝑡+1 |𝑥𝑡 , 𝑢𝑡 ), 𝑦𝑡 ∼ 𝑝(𝑦𝑡 |𝑥𝑡 ) (12)

and introduce an assumption.

Assumption 7. The system is not embedded in a closed-
loop. That is, future inputs are independent of the current state
𝑝(𝑢𝜏 | 𝑥𝑡 ) = 𝑝(𝑢𝜏) for 𝜏 ≥ 𝑡.

Let’s modify the state estimator and the output predictor
so that they outputs an approximate posterior distribution
𝑞 𝑥̂𝜙 (𝑥𝑡 |𝑢

p
𝑡 , 𝑦

p
𝑡 ) and a predictive distribution of future output

sequence 𝑝
𝑦f

𝜃 (𝑦f
𝑡 |𝑥𝑡 , 𝑢f

𝑡 ), respectively, instead of a point es-
timate. Note that we introduce the approximated posterior
(in this paper, we use a normal distribution) since the exact
posterior distribution is generally complicated by nonlinearity.
Restricting these distributions to normal distributions makes
it possible to represent the distributions using only mean and
covariance, and we can parameterize them as

𝑞 𝑥̂𝜙
(
𝑥𝑡
�� 𝑢p
𝑡 , 𝑦

p
𝑡

)
= N

(
𝑥𝑡

��� 𝜇 𝑥̂𝜙 (𝑢p
𝑡 , 𝑦

p
𝑡 ), Σ 𝑥̂𝜙 (𝑢p

𝑡 , 𝑦
p
𝑡 )
)
, (13)

𝑝
𝑦f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)
= N

(
𝑦f
𝑡

��� 𝜇𝑦f

𝜃 (𝑥𝑡 , 𝑢f
𝑡 ), Σ𝑦

f

𝜃 (𝑥𝑡 , 𝑢f
𝑡 )
)
. (14)

by using neural networks

𝜇 𝑥̂𝜙 : (R𝑛𝑢 )hp × (R𝑛𝑦 )hp → R𝑛𝑥̂ ,
Σ 𝑥̂𝜙 : (R𝑛𝑢 )hp × (R𝑛𝑦 )hp → R𝑛𝑥̂×𝑛𝑥̂ ,
𝜇
𝑦f

𝜃 :R𝑛𝑥̂ × (R𝑛𝑢 )hf → (R𝑛𝑦 )hf ,

Σ𝑦
f

𝜃 :R𝑛𝑥̂ × (R𝑛𝑢 )hf → (
R𝑛𝑦×𝑛𝑦

)hf×hf

(15)

with parameters 𝜙 and 𝜃.
Then, the problem can be stated as follows.

Problem 8. Given the measured input-output data
{(𝑢𝑡 , 𝑦𝑡 )}𝑇+hf−1

𝑡=−hp+1, and the design parameters hp, hf , 𝑛 𝑥̂ ∈ N,
construct neural networks (15) that model the distributions
of current state 𝑥 and future output 𝑦f as in (13) and (14).
Here, 𝑥𝑡 ∈ R𝑛𝑥̂ is a state equivalent to 𝑥𝑡 but in an arbitrary
coordinate system and 𝑇 ∈ N indicates the size of the dataset.

To solve this problem, the ELBO of the marginal log
likelihood log 𝑝𝑦

f

𝜃 (𝑦f
𝑡 | 𝑢f

𝑡 ) is calculated in the same way as
the VAE, as

log 𝑝
(
𝑦f
𝑡

�� 𝑢f
𝑡

)
= log

∫
𝑝
𝑦f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)
𝑝
(
𝑥𝑡
�� 𝑢f
𝑡

)
𝑑𝑥𝑡

(since 𝑥𝑡 and 𝑢f
𝑡 are independent from Assumption 7)

= log
∫

𝑝
𝑦f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)
𝑝(𝑥𝑡 )𝑑𝑥𝑡

= log
∫

𝑝
𝑦f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)
𝑝(𝑥𝑡 )

𝑞 𝑥̂𝜙
(
𝑥𝑡
�� 𝑢p
𝑡 , 𝑦

p
𝑡

) 𝑞 𝑥̂𝜙
(
𝑥𝑡
�� 𝑢p
𝑡 , 𝑦

p
𝑡

)
𝑑𝑥𝑡

= logE𝑞 𝑥̂
𝜙 ( 𝑥̂𝑡 | 𝑢p

𝑡 ,𝑦
p
𝑡 )


𝑝
𝑦f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)
𝑝(𝑥𝑡 )

𝑞 𝑥̂𝜙
(
𝑥𝑡
�� 𝑢p
𝑡 , 𝑦

p
𝑡

)


≥ E𝑞 𝑥̂
𝜙 ( 𝑥̂𝑡 | 𝑢p

𝑡 ,𝑦
p
𝑡 )


log

𝑝
𝑦f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)
𝑝(𝑥𝑡 )

𝑞 𝑥̂𝜙
(
𝑥𝑡
�� 𝑢p
𝑡 , 𝑦

p
𝑡

)


= E𝑞 𝑥̂
𝜙 ( 𝑥̂𝑡 | 𝑢p

𝑡 ,𝑦
p
𝑡 )

[
log 𝑝𝑦

f

𝜃

(
𝑦f
𝑡

�� 𝑥𝑡 , 𝑢f
𝑡

)]
− DKL [𝑞 𝑥̂𝜙

(
𝑥𝑡
�� 𝑢p
𝑡 , 𝑦

p
𝑡

) ∥ 𝑝(𝑥𝑡 )]
:= L

(
𝑢

p
𝑡 , 𝑦

p
𝑡 , 𝑢

f
𝑡 , 𝑦

f
𝑡 ; 𝜃, 𝜙

)
. (16)

And the parameters 𝜙 and 𝜃 are designed by maximizing
the ELBO (16) using stochastic gradient descent method to
obtain 𝜇 𝑥̂𝜙 and Σ 𝑥̂𝜙 , which constitute the state estimator, and
𝜇
𝑦f

𝜃 and Σ𝑦
f

𝜃 , which constitute the output predictor. Similar to
the VAE described in Section II, the stochastic gradient of the
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Past Input Sequence

Past Output Sequence

Current
State

Future Input Sequence

Future Output Sequence

State
Estimator Predictor

Fig. 2. Network structure. The sequences of past inputs 𝑢p
𝑡 and outputs 𝑦p

𝑡 are once compressed into state variables 𝑥̂𝑡 , and then reflected in the prediction of
the sequence of future outputs 𝑦f

𝑡 .

expectation term of the ELBO is calculated by a single sample
Monte Carlo estimate.

The obtained state estimator and output predictor can be
used to predict the mean and the variance of the state and
future output (see Fig. 3). For example, the mean of the future
output is evaluated as

E𝑞 𝑥̂
𝜙 ( 𝑥̂𝑡 | 𝑢p

𝑡 ,𝑦
p
𝑡 )

[
𝜇
𝑦f

𝜃 (𝑥𝑡 , 𝑢f
𝑡 )
]
, (17)

and the variance of future output is evaluated as

E𝑞 𝑥̂
𝜙
( 𝑥̂𝑡 | 𝑢p

𝑡 ,𝑦
p
𝑡 )

[
Σ𝑦

f

𝜃 (𝑥𝑡 , 𝑢f
𝑡 )
]
. (18)

Of course, it is difficult to calculate the expectations analyti-
cally, so for practical use, it is necessary to approximate the
expected value using the Monte Carlo method. In contract,
the mean and variance of the state can be directly obtained
by 𝜇 𝑥̂𝜙 (𝑢

p
𝑡 , 𝑦

p
𝑡 ) and Σ 𝑥̂𝜙 (𝑢

p
𝑡 , 𝑦

p
𝑡 ). Note, however, that there are

degrees of freedom in how the coordinate system is taken in
the state space, and it is not known what coordinate system
will be chosen.

V. Numerical Examples
In this section, the proposed method is validated through

numerical examples.

A. Linear System
First, a linear system is identified by the proposed method.

Since the optimal state estimator for linear system is known to
be Kalman filter, we can evaluate the state estimator obtained
by the proposed method by comparing it with Kalman filter.
It is also easy to evaluate the output predictor by computing
the distribution of future output according to the distribution
of states obtained by Kalman filter and the exact model.

The state-space equation of the target system is as follows:

𝑥𝑡+1 =

[
0.9 0.8
0 0.1

]
𝑥𝑡 +

[−1
0.1

]
𝑢𝑡 + 𝑤𝑡 (19)

𝑦𝑡 =
[
1 0

]
𝑥𝑡 + 𝑣𝑡 (20)

where 𝑤𝑡 ∼ N(0, 0.5𝐼) and 𝑣𝑡 ∼ N(0, 1). Here, we
set hyperparameters as hp = hf = 20 and 𝑛 𝑥̂ = 2. All
𝜇 𝑥̂𝜙 , Σ

𝑥̂
𝜙 , 𝜇

𝑦f

𝜃 , Σ
𝑦f

𝜃 are neural networks with 2 hidden layers, 64
neurons and Rectified Linear Unit (ReLU) activation function.
The neural networks were trained using Adam [16]. In this
experiment, we constructed the neural network so that the
values of Σ 𝑥̂𝜙 and Σ𝑦

f

𝜃 are diagonal matrices, as often seen in
VAE studies. The input for the system is generated by sampling
𝑢𝑡 from N(0, 1). In addition to 𝑇 = 90 000 data for training,

10 000 data were prepared for validation, and optimization was
performed until the ELBO calculated for the validation data
did not improve for 100 successive iterations.

For testing the obtained model, we generated data for
different random realizations. Fig. 4 show the mean and
variance of the predicted output, calculated as in (17) and (18)
at time 𝑡. In the figure, the blue crosses indicate the predicted
distribution of the 𝑘-step ahead prediction

(
𝑦f
𝑡

)
𝑘 at time 𝑡. For

comparison, the distribution of states at time 𝑡 is estimated with
the stationary Kalman filter, which is known to be optimal, and
the distribution of 𝑦f

𝑡 computed from this distribution using the
exact model is shown by the black dashed line in the figure.

As seen in the figure, the state estimator and output predictor
obtained by the proposed method in this example are in close
agreement with the Kalman filter and the correct model, and
the proposed approach is promising.

B. Nonlinear System
Next, to demonstrate the validity of the proposed method

in nonlinear systems, we apply the proposed method to a
nonlinear system based on the cascaded tanks example in [17].
The state-space equation of the system is[
𝑥𝑡+1,1
𝑥𝑡+1,2

]
=

[
max

(
𝑥𝑡 ,1 − 𝑘1

√
𝑥𝑡 ,1 + 𝑘2

(
𝑢𝑡 +

√︁
0.1𝑥𝑡 ,1𝑤𝑡

)
, 0

)
max

(
𝑥𝑡 ,2 + 𝑘3

√
𝑥𝑡 ,1 − 𝑘4

√
𝑥𝑡 ,2, 0

)
]
,

(21)
𝑦𝑡 = 𝑥𝑡 ,2 + 𝑣𝑡 . (22)

where 𝑘1 = 0.5, 𝑘2 = 0.4, 𝑘3 = 0.2, 𝑘4 = 0.3; 𝑥𝑡 ,1, 𝑥𝑡 ,2 are
the water levels in the upper and lower tanks, respectively;
𝑢𝑡 represents the pump voltage; and 𝑤𝑡 ∼ N (

0, 22) and
𝑣𝑡 ∼ N (

0, 0.12) are process noise and measurement noise,
respectively. Note in particular that the process noise 𝑤𝑡 is
scaled by

√︁
0.1𝑥𝑡 ,1 to add dynamic variation to the distribution.

The hyperparameters are set as hp = hf = 20 and 𝑛 𝑥̂ = 2. These
are the same as in the example in Section V-A, and also let the
neural networks 𝜇 𝑥̂𝜙 , Σ

𝑥̂
𝜙 , 𝜇

𝑦f

𝜃 , Σ
𝑦f

𝜃 to have the same structure.
The inputs to the system for generating training data are as
follows:

𝑢𝑡 = min
(
max

(
𝑢0
𝑡 , 0

)
, 5
)
, 𝑢0

𝑡 ∼ N(2, 52), (23)

The size of the dataset for training is 900 000. 100 000 data
points were prepared for validation, and optimization was
performed until the ELBO calculated for the validation data
did not improve for 100 successive iterations.

For testing the obtained model, 𝑢𝑡 is generated in the same
way as for the training data. Since an exact solution cannot
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Fig. 3. Diagram of the model constructed by the proposed method. The distribution of states and future outputs are estimated instead of point estimates.
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Fig. 4. Estimated distribution of future output

be obtained in the case of nonlinear systems, the validity of
the model is confirmed by comparing the distribution of the
prediction by the model and the output from the system. More
specifically, 𝑢p

𝑡 , 𝑦
p
𝑡 , and 𝑢f

𝑡 at a certain time 𝑡 were input to
the model, and the operation of sampling a single 𝑥𝑡 from
(13) and 𝑦̂f

𝑡 from (14) was performed 1000 times, changing
the random realization in sampling 𝑥𝑡 and 𝑦̂f

𝑡 and the noise in
𝑦

p
𝑡 , while the input realization 𝑢p

𝑡 and 𝑢f
𝑡 is unchanged. The

distribution of obtained 𝑦f
𝑡 and 𝑦̂f

𝑡 are summarized in Fig. 5.
Since the target system is nonlinear, the results at four different
operating points (for various random realizations of the input)
are summarized in four subfigures. In the figure, the blue curve
and the orange band show the median and the upper and lower
quartiles (25%−75%) of the prediction from the model 𝑦̂f

𝑡 . On
the other hand, the box plots in the figure show the distribution

of the output from the system 𝑦f
𝑡 .

As can be seen in the figure, the quartiles and medians
are in general agreement, indicating that the proposed method
provides a reasonable model for the dynamics and uncertainty
of the nonlinear target system, including the changes in
variance that depend on the operating point. Because the
proposed method models the states and outputs with a normal
distribution, the deviation tends to be larger in regions where
there are many outliers and the actual distribution is considered
to be far from the normal distribution (the upper two figures).

VI. Conclusion
In this paper, we proposed a nonlinear system identification

method for constructing models that estimate the distribution
of states and outputs. The method is based on a nonlinear
subspace identification method using a neural network with a
bottleneck structure and applies the concept of a variational
autoencoder. The validity of the proposed method was verified
through numerical examples by comparing the obtained model
with the optimal Kalman filter for a linear system and by
comparing the distribution of the model output with the actual
output for a nonlinear system.

In future work, we plan to verify this approach in combina-
tion with control approaches that can utilize stochastic infor-
mation, such as probabilistically constrained model predictive
controller [6] and scenario-based approach [7].
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