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Abstract— This paper studies cyberattack detection in
discrete-time, leader-following, nonlinear, multi-agent systems
subject to unknown but bounded (UBB) system noise. The
Takagi–Sugeno (T-S) fuzzy model is used to approximate the
nonlinear systems over the true value of the state. A new
method is developed for simultaneous distributed cyberattack
detection and leader-following consensus control. The approach
is based on a fuzzy set-membership filtering technique that
consists of two steps: a prediction step and a measurement
update step. An estimation ellipsoid set is found by updating
the prediction ellipsoid set with the current sensor measurement
data. A criterion is provided to detect cyberattacks that inject
malicious signals into sensor data. The criterion is based on the
intersection between the ellipsoid sets. If there is no intersection
between the prediction set and the estimation set of an agent at
the current time instant, a cyberattack on its sensors is declared.
Recursive algorithms for solving the consensus protocol and
calculating the two ellipsoid sets for detecting attacks are
proposed. Moreover, a recovery mechanism that can mitigate
the adversarial effects of cyberattacks is introduced. Simulation
results are provided to demonstrate the effectiveness of the
proposed method when replay attacks occur on the sensor data.

I. INTRODUCTION

Multi-agent systems (MAS) have a wide range of appli-
cations, including the Internet of Things (IoT), electrical
grids, water distribution systems, transportation systems,
Unmanned Aerial Vehicles (UAVs), and autonomous vehicles
[1], [2]. Reaching consensus in a distributed manner is a
fundamental problem in MAS. The agents transmit their
data to neighboring agents through communication channels
in distributed consensus protocols, which are vulnerable to
cyberattacks. Some distributed and decentralized methods for
cyberattack detection have been proposed in [3]–[5].

Recent research has extensively investigated the utilization
of a commonly employed state estimation method (i.e.,
Kalman filter), and attack detector (i.e., performance index
test) [6]–[8]. Cyberattack detection methods that are based
on state estimation necessitate system noise in a stochastic
framework, leading to probabilistic state estimation. For
many real-world applications, accuracy in state estimation
is crucial. However, estimation based on a probabilistic
approach, such as the Kalman filtering method, necessitates
using mean and variance to describe the state distributions
modeled as random variables. Consequently, considering un-
known but bounded (UBB) noise is a more suitable approach
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for modeling state distributions [9].
Due to the nature of the Kalman filtering technique,

the estimated and predicted states are single vectors, and
accordingly, it cannot be guaranteed that a state belongs to
a certain region. Also, the attack detection is unreliable due
to the sub-optimal performance of Kalman-type filtering in
the presence of UBB noises. The ellipsoidal state estimation
technique was developed in [10]. This method, known as
the set-membership or set-valued state estimation filtering
approach, has been extensively studied in filtering problems
[11], [12] and provides a set of state estimates in the state-
space that contains the system’s true state [13], [14]. By
using convex optimization, an optimal ellipsoid with minimal
size can be determined for set-membership estimation, thus
improving state estimation and detection performance.

The authors in [9] have studied a cyberattack detection
method for linear networked control systems using set-
membership filtering. However, they considered the attack
detection problem without the control of the system, and the
system is not a multi-agent system.

There are few works on the detection of replay attacks,
mainly focusing on linear systems [9], [15]. The detection
of these attacks for nonlinear systems is of prime importance
as they affect the system’s performance. Replay attacks are
a special kind of deception attack and take place in two
phases: (i) recording data from the system and (ii) replaying
the recorded data.

Except a few results [16], [17], most research on set-
membership filtering considers linear systems [9], [18], [19].
Linearization should best fit the nonlinear functions over a
state estimate set rather than a state estimate point when
we use the set-membership framework. Due to linearization
around the estimated value of the state rather than the true
value, the approximations in [16] bring a base point error
[20].

The fuzzy model of Takagi-Sugeno (T-S) is an effective
and universal approximator for a certain class of nonlinear
dynamical systems [21], [22]. There are several advantages
of the T-S fuzzy model over neural networks when it comes
to approximating nonlinear systems. T-S fuzzy models are
often more robust to noise and uncertainty in the input
data than neural networks, which can be sensitive to small
variations in the input. Moreover, T-S fuzzy models are
simpler to train and implement than neural networks and are,
therefore, faster and easier to use in real-world applications.

In this paper, we use T-S to approximate a class of non-
linear systems. We linearize the nonlinear systems over the
true value of the state and eliminate the base point error. Our
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objective is to design a simultaneous distributed cyberattack
detection strategy and leader-following consensus control
based on a new, two-step fuzzy set-membership filtering
approach. By utilizing the fuzzy modeling approach and the
S-procedure technique [23], we determine bounding ellip-
soidal sets for each agent. We apply a recursive algorithm in
the state-space, which guarantees enclosing of the system’s
true state [13], [14], regardless of UBB noise, assuming no
attacks are being made on the agent.

Each agent has a prediction and a measurement update
step in its state estimation algorithm. While our method is
designed to detect cyberattacks that inject malicious signals
into the sensor data, we specifically focus on detecting replay
attacks, given the need for more research in this area for
nonlinear systems. Replay attacks are often detected using
active detection methods with watermarking injection [15],
but these methods can reduce control performance. A key
benefit of the proposed approach is the ability to detect replay
attacks without signal injection.

Compared with the previous works, the contributions of
this paper are as follows:
• We developed a cyberattack detection method for a class

of nonlinear multi-agent systems.
• We developed the fuzzy set-membership filtering ap-

proach for cyberattack detection on a class of nonlinear
multi-agent systems.

• We are able to mitigate the effects of the attack and
recover system performance.

• In the presence of an attack, the method still achieves
the control goal – the leader-following consensus.

II. PROBLEM FORMULATION

Interaction and communication are modeled as a con-
nected directed graph G = {V ,E ,A }, V = {1,2, ...,N}, E =
{(i, j), i, j ∈V }, and A =(ai j)∈RN×N , which are the vertex
set, the directed edge set and the weighted adjacency matrix
of G , respectively. The weights are defined as ai j = 1, if
( j, i)∈ E and ai j = 0, otherwise. An agent (node) from which
an edge is connected to the node i is a neighbor of node i.
The set of the neighbors Ni of node i is Ni = { j|( j, i) ∈ E }.
Moreover, the Laplacian matrix L = [li, j]∈RN×N is defined
as L = D−A , and D = diagN

i=1 {di}, with di = ∑
N
j=1 ai j.

Consider a discrete-time nonlinear multi-agent system of
N agents and the dynamics of the i-th agent that is given by

xi(k+1) = fi(xi(k))+Giui(k)+ Ii(xi(k))ωi(k)
yi(k) = hi(xi(k))+Fi(xi(k))vi(k),

(1)

i∈ {1, ...,N}, where xi(k)∈Rnx , ui(k)∈Rnu , and yi(k)∈Rny

represent state variables, control input, and measurable out-
put, respectively. The functions fi (xi(k)), Ii (xi(k)), hi (xi(k)),
and Fi (xi(k)) are the nonlinear functions of xi(k), with
fi(0) = 0, Ii(0) = 0, hi(0) = 0, Fi(0) = 0, and Gi’s are known
matrices. A process uncertainty is denoted by ωi(k) ∈ Rnω ,
and a measurement noise by vi(k)∈Rnv , which are assumed
to be confined to specified ellipsoidal sets.

Ellipsoid: An ellipsoidal set has the form X ≜ {ζ :
ζ = c + Ξz,∥z∥ ≤ 1}, where c ∈ Rnx is the center, and

Ξ ∈ Rnx×m is the shape matrix, with rank(Ξ) = m ≤ nx.
Alternatively, the ellipsoidal set can be represented as X ≜{

ζ : (ζ − c)TP−1(ζ − c)≤ 1
}

, where P = ΞΞT > 0. The size
of the ellipsoid is dependent on matrix P and can be
calculated as tr(P), which is the sum of the squared semi-
axes lengths [19].

Assumption 1. The process noise ωi(k), and the measurement
noise vi(k) are UBB, belonging to the ellipsoidal sets:

Wi(k)≜
{

ωi(k) : ωi(k)TQi(k)−1
ωi(k)≤ 1

}
Vi(k)≜

{
vi(k) : vT

i (k)R
−1
i (k)vi(k)≤ 1

}
,

(2)

where Qi(k) = Qi(k)T > 0, Ri(k) = Ri(k)T > 0 are known
matrices with compatible dimensions.

To design an appropriate filter for the i-th agent of the
nonlinear discrete-time system (1), the following T-S fuzzy
model is given [17]:

Plant Rule li : IF θi,1(k) is µli,1 and θi,2(k) is µli,2 . . . and
θi,q(k) is µli,q, THEN

xi(k+1) = Ali xi(k)+Bli ui(k)+Mli ωi(k)
yi(k) =Cli xi(k)+Dlivi(k),

(3)

where li = 1, . . . ,r (r stands for the total number of
plant IF-THEN rules), µli,1, . . . ,µli,q are fuzzy sets, θi(k) =[
θ T

i,1(k)θ
T
i,2(k) · · ·θ T

i,q(k)
]T

denotes the premise variable, and
Ali , Bli , Mli , Cli , and Dli are the system matrices with
appropriate dimensions. The nonlinear multi-agent dynamics
is given by

xi(k+1) =
r

∑
li=1

gli (θi(k))Alixi(k)+∆ fi (xi(k))+
r

∑
li=1

gli (θi(k))Bliui(k)

+
r

∑
li=1

gli (θi(k))Mliωi(k)+∆Ii (xi(k))ωi(k)

yi(k) =
r

∑
li=1

gli (θi(k))Clixi(k)+∆hi (xi(k))

+
r

∑
li=1

gli (θi(k))Dlivi(k)+∆Fi (xi(k))vi(k),

(4)
where gli (θi(k)) = ψli (θi(k))/∑

r
li=1 ψli (θi(k)) is the

normalized weight for each rule with ψli (θi(k)) =
Π

q
v=1µliv (θiv(k)) ⩾ 0 and ∑

r
li=1 gli (θi(k)) = 1, where

µliv (θiv(k)) is the grade of membership of θiv(k) in µliq and

∆ fi (xi(k)) = fi (xi(k))−
r

∑
li=1

gli (θi(k))Ali xi(k)

∆Ii (xi(k)) =Ii (xi(k))−
r

∑
li=1

gli (θi(k))Mli

∆hi (xi(k)) =hi (xi(k))−
r

∑
li=1

gli (θi(k))Clixi(k)

∆Fi (xi(k)) =Fi (xi(k))−
r

∑
li=1

gli (θi(k))Dli

(5)

denote the approximation (or interpolation) errors between
the nonlinear system and the fuzzy model.

Assumption 2. In order to fully use the advantage of em-
ploying the fuzzy model [17] for the nonlinear system, we
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assume
∆ fi (xi(k)) = Hi,1∆i,1Ei,1xi(k), ∆Ii (xi(k)) = Hi,2∆i,2Ei,2

∆hi (xi(k)) = Hi,3∆i,3Ei,3xi(k), ∆Fi (xi(k)) = Hi,4∆i,4Ei,4,
(6)

where for d = 1, ...,4, Hi,d and Ei,d are known matrices, and
∆i,d are unknown, but bounded, with

∥∥∆i,d
∥∥≤ 1.

In this paper, we developed the fuzzy-based leader-
following consensus protocol that utilizes the estimated state
instead of the full system state. Consider the leader agent’s
dynamics that is given by the following IF-THEN rules:
Plant Rule li : IF θi,1(k) is µli,1 and θi,2(k) is µli,2 . . . and
θi,q(k) is µli,q, THEN

xl(k+1) = Al
li x

l(k), (7)

where xl(k) ∈ Rnx is the state of the leader, and Al
li

are
the system matrices with appropriate dimensions. The leader
often acts as a command generator, providing followers with
a reference state. Consequently, the state of the leader may
change irrespective of the state of the followers. It can
be assumed, without loss of generality, that the leader’s
movement is not affected by UBB process noise, but it is
deterministic to the followers since some of them receive
information from the leader. Also, it is assumed that the
leader does not have any inputs in order to reduce the
complexity of the method. The above-mentioned system can
be inferred as:

xl(k+1) =
r

∑
li=1

gli (θi(k))Al
li x

l(k). (8)

Assumption 3. The initial states xi(0) and xl(0) belong to a
given ellipsoid

Xi(0 | 0)≜ {x i (0) :(xi(0)− x̂i(0 | 0))T Pi(0 | 0)−1 (xi(0)− x̂i(0 | 0))≤ 1}

Ui(0)≜ {x i (0) :
(

xi(0)− xl(0)
)T

Ui(0)−1
(

xi(0)− xl(0)
)
≤ 1
}
,

(9)
where x̂i(0 | 0) is the given estimate of xi(0), and Pi(0 |
0) = Pi(0 | 0)T ≻ 0 and Ui(0 | 0) =Ui(0 | 0)T ≻ 0 are known
matrices.

We propose a distributed attack detector using set-
membership fuzzy filtering to detect cyberattacks on a class
of nonlinear multi-agent systems. The modules are tasked to
detect attacks, as well as to ensure that the desired control
specifications are satisfied. Also, the method can recover the
system’s performance and mitigate the effects of the attacks.
The structure of the system with the detector is shown in
Fig. 1.

III. CONSENSUS PROTOCOL AND FUZZY-BASED
SET-MEMBERSHIP ESTIMATION

A. Prediction Step

The prediction filter is considered in the following form:
Plant Rule li : IF θ̂i,1(k) is µli,1 and θ̂i,2(k) is µli,2 . . . and
θ̂i,q(k) is µli,q, THEN

x̂i(k+1 | k) = Âli x̂i(k | k), (10)

where x̂i(k | k) is the estimation of the state xi(k), Âli is
the fuzzy filter parameter to be determined, and θ̂i(k) =

Measurement
update step

Prediction
step

Sensor iAgent i

Controller i

Attack detection

Alarm

Fuzzy-based two-step set-membership 
filter for agent i

Leader

Process noise Sensor noise

Fig. 1. The structure of a leader-following MAS with a fuzzy-based set-
membership filtering detection method.

{
θ̂i,1(k), θ̂i,2(k), . . . , θ̂i,q(k)

}
are premise variables, which are

functions of the state estimates. The overall fuzzy filter can
be written as [24], [25]

x̂i(k+1 | k) =
r

∑
li=1

gli
(
θ̂i(k)

)
Âli x̂i(k | k). (11)

For the given state estimation ellipsoid set Xi(k | k), with
the center x̂i(k | k) and the shape matrix Ξi(k | k), the state
xi(k) is given by

xi(k) = x̂i(k | k)+Ξi(k | k)zi. (12)

Our goal is to obtain the prediction ellipsoid set

Xi(k+1 | k)≜
{

xi(k+1) : (xi(k+1)− x̂i(k+1 | k))T P−1
i (k+1 | k)

× (xi(k+1)− x̂i(k+1 | k))≤ 1} .
(13)

Note that the state xi(k+1) belongs to such an ellipsoid set
for any value of the system noise in their specified sets.

B. Measurement Update Step

The update, based on the current measurement, for the
system (4) is given by
Plant Rule li : IF θ̂i,1(k) is µli,1 and θ̂i,2(k) is µli,2 . . . and
θ̂i,q(k) is µli,q, THEN

x̂i(k+1 | k+1) =x̂i(k+1 | k)+Lli (yi(k+1) −ŷi(k+1 | k)) , (14)

where Lli is the filter parameter to be determined. The overall
fuzzy update can be written as

x̂i(k+1 | k+1) =x̂i(k+1 | k)+
r

∑
li=1

gli

(
θ̂i(k)

)
Lli

× (yi(k+1)− ŷi(k+1 | k)) .
(15)

According to the prediction ellipsoid set Xi(k+1 | k), given
by (13), the state xi(k+1) is given by

xi(k+1) = x̂i(k+1 | k)+Ξi(k+1 | k)zi. (16)
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The objective is to update this prediction set with the one
yielding from the current measurement yi(k + 1). In other
words, we look for an updated ellipsoid set Xi(k+ 1 | k+
1), with the center x̂i(k + 1 | k + 1) and the shape matrix
Ξi(k+1 | k+1) for the state xi(k+1), given by the current
measurement information at the time instant k+1. Thus, the
updated ellipsoid set satisfies the following

(xi(k+1)− x̂i(k+1 | k+1))TP−1
i (k+1 | k+1)

× (xi(k+1)− x̂i(k+1 | k+1))≤ 1,
(17)

whenever the output constraint

yi(k+1) =
r

∑
li=1

gli (θi(k))Cli (x̂i(k+1 | k)+Ξi(k+1 | k)zi)

+Hi,3∆i,3Ei,3 (x̂i(k+1 | k)+Ξi(k+1 | k)zi)

+

(
r

∑
li=1

gli (θi(k))Dli +Hi,4∆i,4Ei,4

)
vi(k+1)

(18)

holds for some ∥zi∥ ≤ 1.

C. Leader-Following Consensus Protocol

The distributed, observer-based, leader-following consen-
sus protocol [26] in which the estimated states instead of the
full system states are used can be expressed as

ui(k) = Kli

(
∑

j∈Ni

ai j (x̂i(k | k)− x̂ j(k | k))+λi

(
x̂i(k | k)− xl(k)

))
,

(19)
where Kli are constant matrices to be designed and λi >= 0
are pinning gains of protocol i in which λi > 0 if follower i
receives information from the leader, otherwise λi = 0.

The leader-following multi-agent system (1), (7) achieves
set-membership leader-following consensus under protocol
(19) and two-step filter (11), (15), if the existence of desired
gain sequences Kli , Âli , and Lli can guarantee that the one step
ahead states xi(k+1),∀i∈ ν for all the followers, reside in a
leader state ellipsoid Ui(k+1), enclosing all the followers’
true states

Ui(k+1)≜
{

xi(k+1) :
(

xi(k+1)− xl(k+1)
)T

U−1(k+1)

×
(

xi(k+1)− xl(k+1)
)
≤ 1
}
.

(20)

For the given leader ellipsoid set Ui(k), with the center xl(k)
and the shape matrix ξi(k), the state xi(k) can be described
by

xi(k) = xl(k)+ξi(k)zi. (21)

IV. ATTACK DETECTION USING SET-MEMBERSHIP
FUZZY FILTERING

Here we describe the proposed cyberattack detection using
a set-membership filter.

A. The Prediction Ellipsoid Set Design Based on Leader-
Following Consensus

First, we developed the prediction ellipsoidal sets and
the leader ellipsoidal sets based on the leader-following
consensus protocol (19).
Theorem 1. Consider the leader-following multi-agent
system (1), (7) that satisfies Assumptions 1 – 3. Suppose

that the state xi(k) belongs to its state estimation ellipsoid
(xi(k)− x̂i(k | k))T P−1

i (k | k)(xi(k)− x̂i(k | k))≤ 1 and leader
state ellipsoid

(
xi(k)− xl(k)

)T U−1
i (k)

(
xi(k)− xl(k)

)
≤ 1.

Then, the one-step ahead state xi(k+ 1) resides in its state
prediction ellipsoid (xi(k+1)− x̂i(k+1 | k))T P−1

i (k + 1 |
k)(xi(k+1)− x̂i(k+1 | k)) ≤ 1 as well as leader
state ellipsoid

(
xi(k+1)− xl(k+1)

)T U−1
i (k +

1)
(
xi(k+1)− xl(k+1)

)
≤ 1, if there exist Pi(k + 1 |

k) > 0,Ui(k+ 1) > 0, Âli ,Kli,τi,m(k) ≥ 0, for m = 1, . . . ,10,
such that the linear matrix inequalities (LMI)[
−Pi(k+1 | k) Γi,1,li ji

ΓT
i,1,li ji −Θi,1(k)

]
≤ 0,

[
−Ui(k+1) Γi,2,li

ΓT
i,2,li −Θi,2(k)

]
≤ 0

(22)
hold for all li, ji = 1, . . . ,r, where

Γi,1,li ji =
[
Pi,1,li, ji AliΞi(k | k) Mli Hi,1 Hi,1 Hi,2

]
Pi,1,li, ji =

(
Ali − Â ji

)
x̂i(k | k)−BliKliλixl(k)+BliKli

N

∑
j=1

l̃i j x̂ j(k | k)

Θi,1(k) = diag{1− τi,1(k)− τi,2(k)− τi,3(k)x̂T
i (k | k)ET

i,1Ei,1x̂i(k | k),
τi,1(k)I− τi,4(k)ΞT

i (k | k)ET
i,1Ei,1Ξi(k | k),τi,2(k)Q−1

i (k)

− τi,5(k)ET
i,2Ei,2,τi,3(k)I,τi,4(k)I,τi,5(k)I}

Γi,2,li =
[
Pi,2,li Aliξi(k) Mli Hi,1 Hi,1 Hi,2

]
Pi,2,li =

(
Ali +Al

li−BliKliλi

)
xl(k)+BliKli

N

∑
j=1

l̃i j x̂ j(k | k)

Θi,2(k) = diag{1− τi,6(k)− τi,7(k)− τi,8(k)x̂T
i (k | k)ET

i,1Ei,1x̂i(k | k),
τi,6(k)I− τi,9(k)ΞT

i (k | k)ET
i,1Ei,1Ξi(k | k),τi,7(k)Q−1

i (k)

− τi,10(k)ET
i,2Ei,2,τi,8(k)I,τi,9(k)I,τi,10(k)I}

L̃ = L +Λ =
[
l̃i j
]

N×N , Λ = diag{λ1,λ2, . . . ,λN} .
(23)

Proof. For the detailed proof, please see Appendix A.

According to Theorem 1, in order to find the optimal
state prediction ellipsoid containing xi(k + 1), the convex
optimization is carried out:

min
Pi(k+1|k),Ui(k+1),Âli(k),Kli,

τi,1(k),τi,2(k),τi,3(k),τi,4(k),τi,5(k),
τi,6(k),τi,7(k),τi,8(k),τi,9(k),τi,10(k)

Tr(Ti(k+1 | k))
(24)

subject to (22), for all li, ji = 1, . . . ,r in which the trace of
Ti(k+1 | k) = diag{Ui(k+1),Pi(k+1 | k)}.

B. Update Prediction Ellipsoid Set With Current Measure-
ment

Here, we present a scheme to determine the shape matrix
Ξi(k+1 | k+1) and the filter gain Lli(k+1) with the output
constraint (18).
Theorem 2. Consider the leader-following multi-
agent system (1), (7) that satisfies Assumptions
1-3. If the state xi(k + 1) belongs to its state
prediction ellipsoid (xi(k+1)− x̂i(k+1 | k))T P−1

i (k +
1 | k)(xi(k+1)− x̂i(k+1 | k)) ≤ 1, then such a
state also resides in its updated state estimation
ellipsoid

(
xi(k+1)− x̂T

i (k+1 | k+1)
)

P−1
i (k + 1 |

k + 1)(xi(k+1)− x̂i(k+1 | k+1)) ≤ 1, with the center
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determined by (14), where Pi(k+1 | k+1) > 0 satisfies the
matrix inequality[

−Pi(k+1 | k+1) Γi,3,li ji
ΓT

i,3,li ji −Θi,4(k)

]
≤ 0, (25)

Γi,3,li ji =
[
0 Pi,2,li, ji −L jiDli −L jiHi,3 −L jiHi,3 −L jiHi,4

]
Pi,2,li, ji = (I−L jiCli)Ξi(k+1 | k)
Θi,4(k) = Θi,3(k)−ZT

i (k+1)Γliyi (x̂i(k+1 | k))
−Γ

T
liyi

(x̂i(k+1 | k))Zi(k+1)

Θi,3(k) = diag{1− τi,11(k)− τi,12(k)− τi,13(k)x̂T
i (k+1 | k)ET

i,3

×Ei,3x̂i(k+1 | k),τi,11(k)I− τi,14(k)ΞT
i (k+1 | k)ET

i,3

×Ei,3Ξi(k+1 | k),τi,12(k)R−1
i (k+1)− τi,15(k)ET

i,4Ei,4,

τi,13(k)I,τi,14(k)I,τi,15(k)I}
Γliyi(x̂i(k+1 | k)) =

[
Pliyi,1 Pliyi,2 Dli Hi,3 Hi,3 Hi,4

]
Pliyi,1 =Cli x̂i(k+1 | k)− yi(k+1), Pliyi,2 =CliΞi(k+1 | k).

(26)

Proof. For detailed proof, see Appendix B.

The convex optimization approach is applied to determine
an optimal ellipsoid with a minimal size, and Pi(k+1 | k+1)
is obtained by solving the following optimization problem:

min
Pi(k+1|k+1),Lli(k+1),
τi,11(k),τi,12(k),τi,13(k),
τi,14(k),τi,15(k),Zi(k+1)

Tr(Pi(k+1 | k+1))
(27)

subject to (25).

C. Recursive Algorithm For Attack Detection

The recursive algorithm, based on the set-membership
filtering, which computes the state ellipsoids such that a
cyberattack can be detected, is summarized below. Algorithm
1 recursively computes the prediction ellipsoid Xi(k+1 | k)
and its update Xi(k+1 | k+1) with the current measurement
yi(k + 1). Step 4 of the algorithm is proposed to detect
cyberattacks that affect sensor measurements.

Remark 1. The optimization problems specified by (24)
and (27) are based on linear matrix inequalities (LMIs)
(22) and (25), as described in Theorem 1 and Theorem
2. These LMIs are linear with respect to variables such
as Pi(k + 1 | k), Ui(k + 1), Pi(K + 1 | K + 1), Âli(k), Kli ,
Lli(k + 1), Zi(k + 1), and τi,m(k), where m ranges from 1
to 15. To solve these optimization problems, semidefinite
programming and an interior-point algorithm can be utilized
at each time step. The interior-point algorithm used in this
process has a computational complexity of O

(
ℓM 3

)
, where

ℓ is the total row size of the main LMIs and M is the number
of scalar decision variables in the main LMIs ((22) and (25)).
The complexity of the solution depends on variables such as
nx,nu,ny,nw, nv, which correspond to the number of elements
in each subscript.

Remark 2. We have shown that the optimal ellipsoidal sets
can be determined by the feasibility problem of recursive
LMIs, (22) and (25). A system not under attack has an
intersection of the two sets, which means that the resulting
intersection set is not empty since they both contain the true
state x(k+ 1). However, if there is an attack on the sensor

measurement, the sensor y(k+1) is affected. As a result, the
center of the estimation ellipsoid set has been affected by the
attack, and this set may not contain the true state. Because of
the attacks impacting the center of the estimation ellipsoid
set, it follows that the ellipsoidal sets do not intersect,
which means that the resulting intersection set is empty,
and Theorem 1 and Theorem 2 may be infeasible. This
situation can be overcome by taking step 5. By modifying
the ellipsoidal sets, they become free of attacks for their
subsequent steps in Algorithm 1. As a result, the proposed
LMI problems are kept feasible at each time step.

Remark 3. Note that if an attacker causes a relatively small
abrupt change, then a proposed detection algorithm cannot
detect it since an intersection may occur between the two
ellipsoidal sets until the measurement output deviates enough
and reaches a threshold such that there is no intersection
between the two ellipsoid sets. However, the size of the
ellipsoid sets, and thus the threshold of the attack detection
algorithm, is minimized by solving optimization problems
(24) and (27). Hence, our proposed attack detection algo-
rithm is optimized to minimize the damages inflicted by
attacks that a resilient control algorithm may tolerate.

V. SIMULATION RESULTS

We consider the following multi-agent, discrete-time, non-
linear system:

x1,1(k+1) = 0.2x1,1(k)−0.3
(
x1,2(k)− (x1,1(k))2)+u1(k)+ω1(k)

x1,2(k+1) = 0.3x1,1(k)+0.2
(
x1,2(k)− (x1,1(k))2)+u1(k)+ω1(k)

y1(k) = x1,1(k)+0.1(x1,1(k))2 + x1,2(k)+ v1(k)

x2,1(k+1) = 0.5x2,1(k)−0.1
(
x2,2(k)− (x2,1(k))2)+u2(k)+ω2(k)

x2,2(k+1) = 0.9x2,1(k)+0.5
(
x2,2(k)− (x2,1(k))2)+u2(k)+ω2(k)

y2(k) = x2,1(k)+0.1(x2,1(k))2 + x2,2(k)+ v2(k),

x3,1(k+1) = 0.4x3,1(k)−0.6
(
x3,2(k)− (x3,1(k))2)+u1(k)+ω1(k)

x3,2(k+1) = 0.5x3,1(k)+0.3
(
x3,2(k)− (x3,1(k))2)+u3(k)+ω1(k)

y3(k) = x3,1(k)+0.1(x3,1(k))2 + x3,2(k)+ v3(k)

(28)

where for i ∈ {1,2,3}, the state is xi(k) = [xi,1(k) xi,2(k)]
T .

We construct the following fuzzy models to approximate the
above nonlinear multi-agent system for each agent:
Agent i:
- Rule 1: IF xi,1(k) is about 1,THEN

xi(k+1) = Ai,1xi(k)+Bi,1ui(k)+Mi,1ωi(k)
yi(k) =Ci,1xi(k)+Di,1vi(k),

(29)

- Rule 2: IF xi,1(k) is about 0, THEN

xi(k+1) = Ai,2xi(k)+Bi,2ui(k)+Mi,2ωi(k)
yi(k) =Ci,2xi(k)+Di,2vi(k),

(30)

where

A1,1 =

[
0.5 −0.3
0.1 0.2

]
A2,1 =

[
0.6 −0.1
0.4 0.5

]
A3,1 =

[
1 −0.6

0.2 0.5

]
Bi,1 =

[
1
1

]
Mi,1 = 1 Ci,1 =

[
1.1 1

]
Di,1 = 1

A1,2 =

[
0.2 −0.3
0.3 0.2

]
A2,2 =

[
0.5 −0.1
0.9 0.5

]
A3,2 =

[
0.4 −0.6
0.5 0.3

]
Bi,2 =

[
1
1

]
Mi,2 = 1 Ci,2 =

[
1.0 1.0

]
Di,2 = 1.

(31)
For the convenience of implementation, triangular member-
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Algorithm 1 Recursive State Estimation

1. Initialization:

Given an initial ellipsoid Xi(0 | 0),Ui(0), recursive times TN , and set
k = 0. Let xi(k) = xi(0), x̂i(k | k) = x̂i(0 | 0),Ξi(k | k) = Ξi(0 | 0),xl(k) =
xl(0), and ξi(k) = ξi(0).

2. Prediction:

1) Calculate Pi(k+1 | k),Ui(k+1), Âli (k),Kli by solving the optimiza-
tion problem (24).
2) Obtain the matrix Ξi(k+1 | k), and ξi(k+1 | k) according to Pi(k+1 |
k) = Ξi(k+1 | k)ΞT

i (k+1 | k), and Ui(k+1) = ξi(k+1)ξ T
i (k+1).

3) Calculate the centre of the prediction ellipsoid x̂i(k+1 | k) by (10).

3. Measurement Update:

1) Calculate Pi(k+1 | k+1) and Lli (k+1) by solving the optimization
problem (27).
2) Obtain the new Ξi(k + 1 | k + 1) according to Pi(k + 1 | k + 1) =
Ξi(k+1 | k+1)ΞT

i (k+1 | k+1).
3) Calculate the centre of the updated estimation ellipsoid x̂i(k + 1 |
k+1) by (14).

4. Attack Detection: Sensor Measurement Data Cyber Attack Detec-
tion

1) If Xi(k+1 | k+1)
⋂

Xi(k+1 | k) ̸=∅, there is no attack and go to
step 6.
2) If Xi(k+1 | k+1)

⋂
Xi(k+1 | k) =∅, data is subject to attack and

go to step 7.

5. Recovery Step and Attack Mitigation:

Set Xi(k+1 | k+1)←Xi(k+1 | k),yi(k+1)← yi(k) and go to step
6.

6. Loop:

If k == TN then Exit, Else k← k+1 and go to step 2.

ship functions are used for Rule 1 and Rule 2 in this example.
In the above fuzzy models, the approximation errors

between the nonlinear system and the fuzzy models are
assumed to satisfy (6), where H1,1 = [0.1 0.1]T , H2,1 =
[0.3 0.3]T , H3,1 = [0.2 0.2]T , E1,1 = [0 0.5], E2,1 = [0 0.6],
E3,1 = [0 0.4], Hi,2 = [0 0]T , Ei,2 = 0, Hi,3 = 0.1, Ei,3 = [0 0.5],
Hi,4 = 0, Ei,4 = 0. The leader’s matrices described in (8) are
given by

Al
1 =

[
0.5 0.2
−0.6 0.7

]
Al

2 =

[
0.5 0.2
−0.4 0.7

]
. (32)

We have selected ωi(k) = 0.5sin(2k) and
vi(k) = 0.5sin(20k). The initial state is set as
xi(0) = [0 0]T , which belongs to the ellipsoids
(xi(0 | 0)− x̂i(0))

T P−1
i (0 | 0)(xi(0)− x̂i(0 | 0)) ≤ 1 and(

xi(0)− xl(0)
)T U−1

i (0)(xi(0)− xl(0)) ≤ 1, where x̂i(0) =
xl(0) = [1 1]T , and Pi(0 | 0) = Ui(0) = diag{100,100},
Qi(k) = 1−k/50, and Ri(k) = 1−k/50. The communication
topology between the agents and the leader is shown in Fig.
2

We obtained the simulation results using MATLAB 9.8
with YALMIP and SDPT3. We considered the following two
scenarios in 50 sampling steps.

A. Attack Free System

In this case, the prediction ellipsoid set and the updated
estimation ellipsoid set always have intersections. Fig. 3 (a)

Fig. 2. Multi-agent system with a leader.
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Fig. 3. Prediction ellipsoid Xi(k+1 | k) (pink) and the updated estimation
ellipsoid Xi(k+1 | k+1) (green).

shows the existence of the intersection at k = 22 between
these sets for Agent 1.

B. Replay Attacks on Sensor Data

A successful replay attack does not need an a priori
knowledge of the system components. It is assumed that the
attacker can record the sensor’s measurement data from ki
until kr, with the window size τ = kr− ki in the first phase.
Then, in the second phase, the attacker replays the recorded
data to the system from k = kr +d until the end of the attack
at k = k f , where d is the delay between the recording time
and replaying time. We model the attack as [9]

ayi(k) = yi(k− τ)− yi(k). (33)

Thus, the sensor’s data affected by the attack are

ỹi(k) = yi(k)+ayi(k). (34)

We assume that the attacker records the data from k = 5
to k = 10 and replaces the sensor data from k = 20 to k = 25
with them. Fig. 3(b) confirms that the prediction ellipsoid
set and the updated measurement set for the current time
instant do not have an intersection during this attack period.
We show only the result for one agent because of the space
constraint. The figure shows the results at k = 23.

Finally, Fig. 4 illustrates the leader-following consensus in
the attack-free system and in the presence of replay attacks.

VI. CONCLUSION

In this paper, we studied cyberattack detection in discrete-
time, leader-following, nonlinear multi-agent systems subject
to UBB system noise. For the approximation of the nonlinear
systems over the true value of the state, the T-S fuzzy model
has been used. A new fuzzy set-membership filtering method
was developed for each agent to detect cyberattacks at the
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time of their occurrence. We developed a method for detect-
ing cyberattacks that inject a malicious signal into sensor
data and affect the leader-following consensus. We proposed
recursive algorithms to achieve the consensus protocol and
find the two ellipsoid sets for attack detection based on their
intersection. Furthermore, the proposed method can recover
the system’s performance and mitigate the effects of the
attacks. Finally, simulation results have been provided to
demonstrate the effectiveness of the proposed method.

APPENDIX

A. Proof of Theorem 1

Proof. From the system model (4), (6), and (7) and the
filter (11), (12), and (21), and by considering the fact that
∑

r
li=1 gli (θi(k)) = 1, the errors xi(k + 1)− x̂i(k + 1 | k) and

xi(k+1)− xl(k+1 | k) can be written in compact forms as

xi(k+1)− x̂i(k+1 | k) =
r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
Γi,1,li jiηi,1(k),

xi(k+1)− xl(k+1) =
r

∑
li=1

gli (θi(k))
r

∑
ji=1

Γi,2,liηi,1(k).
(35)

where

ηi,1(k) =
[

1 zi ωi(k) qi,1 qi,2 qi,3
]T

, (36)

and
qi,1 = ∆i,1Ei,1x̂i(k | k)
qi,2 = ∆i,1Ei,1Ξi(k | k)zi

qi,3 = ∆i,2Ei,2ωi(k).
(37)

According to (35), one has

(xi(k+1) −x̂i(k+1 | k))T P−1
i (k+1 | k)(xi(k+1)− x̂i(k+1 | k))

≤
r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
η

T
i,1(k)Γ

T
i,1,li jiP

−1
i (k+1 | k)

×Γi,1,li jiηi,1(k),

(xi(k+1) −xl(k+1)
)T

U−1
i (k+1)

(
xi(k+1)− xl(k+1)

)
≤

r

∑
li=1

gli (θi(k))η
T
i,1(k)Γ

T
i,2,liU

−1
i (k+1)Γi,2,liηi,1(k).

(38)

The condition in (13) and (20) can be written as

η
T
i,1(k)

[
r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
Γ

T
i,1,li jiP

−1
i (k+1 | k)Γi,1,li ji

−diag{1,0,0,0,0,0}

]
ηi,1(k)≤ 0.

η
T
i,1(k)

[
r

∑
li=1

gli (θi(k))Γ
T
i,2,liU

−1
i (k+1)Γi,2,li −diag{1,0,0,0,0,0}

]
×ηi,1(k)≤ 0.

(39)

With ∥∆i,1∥ ≤ 1, ∥∆i,2∥ ≤ 1, and from (2), (12) and (37),
the unknown zi, ωi(k), qi,1, qi,2, qi,3 satisfy the following
constraints

η
T
i,1(k)diag{−1, I,0,0,0,0}ηi,1(k)≤ 0

η
T
i,1(k)diag{−1,0,Q−1

i (k),0,0,0}ηi,1(k)≤ 0

η
T
i,1(k)diag{−x̂T

i (k | k)ET
i,1Ei,1x̂i(k | k),0,0, I,0,0}ηi,1(k)≤ 0

η
T
i,1(k)diag{0,−Ξ

T
i (k | k)ET

i,1Ei,1Ξi(k | k),0,0, I,0}ηi,1(k)≤ 0.

η
T
i,1(k)diag{0,0,−ET

i,2Ei,2,0,0, I}ηi,1(k)≤ 0.

(40)
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(b) Replay attack on sensor data.

Fig. 4. Leader-following consensus of the agents xi,1 and xl,1, where
xi = [xi,1 xi,2] and xl = [xl,1 xl,2] for all scenarios.

Applying S-procedure [23] to (39) and (40), and using Schur
complements, we can conclude that the inequalities (39) hold
if there exist nonnegative scalars τi,m(k), for m = 1, . . . ,10,
such that (22) holds.

According to the above discussion, if there exist Pi(k+1 |
k)> 0, Ui(k+1)> 0, Âli , Kli, τi,m(k)≥ 0, for m = 1, . . . ,10,
such that (22) holds for all li, ji = 1, . . . ,r, then

r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
η

T
i,1(k)Γ

T
i,1,li jiP

−1
i (k+1 | k)Γi,1,li ji ηi,1(k)≤ 1,

r

∑
li=1

gli (θi(k))η
T
i,1(k)Γ

T
i,2,liU

−1
i (k+1)Γi,2,liηi,1(k)≤ 1.

(41)

Therefore, from (38), we obtain
(xi(k+1)− x̂i(k+1 | k))T P−1

i (k+1 | k)(xi(k+1)− x̂i(k+1 | k))≤ 1,(
xi(k+1)− xl(k+1)

)T
U−1

i (k+1)
(

xi(k+1)− xl(k+1)
)
≤ 1,

(42)
which completes the proof.

B. Proof of Theorem 2
Proof. From the system (1), the prediction ellipsoid set (16),
and the filter (15), the current estimation error xi(k+ 1)−
x̂i(k+1 | k+1) can be written in a compact form

xi(k+1)− x̂i(k+1 | k+1) =
r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
Γi,2,li jiηi,2(k+1),

(43)
where

ηi,2(k+1) =
[

1 zi vi(k+1) qi,4 qi,5 qi,6
]T

, (44)

and
qi,4 = ∆i,3Ei,3x̂i(k+1 | k)
qi,5 = ∆i,3Ei,3Ξi(k+1 | k)zi

qi,6 = ∆i,4Ei,4vi(k+1).
(45)

Considering (43), one has

(xi(k+1) −x̂i(k+1 | k+1))T P−1
i (k+1 | k+1)

× (xi(k+1)− x̂i(k+1 | k+1))

≤
r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
η

T
i,2(k+1)ΓT

i,3,li ji Γi,3,li ji ηi,2(k+1)

(46)
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Therefore, the condition (17) in Section III-B is given by

η
T
i,2(k+1)

[
r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
Γ

T
i,3,li jiP

−1
i (k+1 | k+1)Γi,3,li ji

−diag{1,0,0,0,0,0}

]
ηi,2(k+1)≤ 0

(47)

From (2), (16), and (45) the unknown zi, vi(k+1), qi,4, qi,5,
and qi,6 satisfy the following constraints

η
T
i,2(k+1)diag{−1, I,0,0,0,0}ηi,2(k+1)≤ 0

η
T
i,2(k+1)diag{−1,0,R−1

i (k+1),0,0,0}ηi,2(k+1)≤ 1

η
T
i,2(k+1)diag{−x̂T

i (k+1 | k)ET
i,3Ei,3x̂i(k+1 | k),

0,0, I,0,0}ηi,2(k+1)≤ 1

η
T
i,2(k+1)diag{0,−Ξ

T
i (k+1 | k)ET

i,3Ei,3Ξi(k+1 | k),0,0, I,0}
×ηi,2(k+1)≤ 1

η
T
i,2(k+1)diag{0,0,−ET

i,4Ei,4,0,0, , I}ηi,2(k+1)≤ 1

(48)

By applying S-procedure to (47) and (48), we can conclude
that the inequality (47) holds if there exist non-negative
scalars τi,11(k), τi,12(k), τi,13(k), τi,14(k), τi,15(k) such that

Γ
T
i,3,li ji P

−1
i (k+1 | k+1)Γi,3,li ji −Θi,3(k)≤ 0. (49)

Now, we deal with the output constraint (18) in Section III-B.
First, it can be described by

Γliyi (x̂i(k+1 | k))ηi,2(k+1) = 0. (50)

By virtue of Finsler’s lemma [27], the inequality (47) under
constraint (50) holds if there exists a Zi(k+1) such that (25)
holds.

According to the above discussion, if there exist Pi(k+1 |
k+1)> 0, Lli(k+1), Ni(k+1), τi,m(k)≥ 0, for m= 11, . . . ,15
such that (25) holds for all li, ji = 1, . . . ,r, then we have

r

∑
li=1

gli (θi(k))
r

∑
ji=1

g ji
(
θ̂i(k)

)
η

T
i,2(k+1)ΓT

i,3,li ji P
−1
i (k+1 | k+1)Γi,3,li ji ηi,2(k+1)≤ 1.

(51)

Therefore, from (46), we obtain

(xi(k+1) −x̂i(k+1 | k+1))T P−1
i (k+1 | k+1)

× (xi(k+1)− x̂i(k+1 | k+1))≤ 1,
(52)

which completes the proof.
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