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Abstract— This paper presents a decentralized multi-agent
collision avoidance method for systems with single integrator
dynamics and identical maximum speeds. The key to our
approach lies in the concept of safe-reachable sets, which define
the set of positions that each agent can reach while avoiding
collisions with its neighbors for any admissible controllers. With
this concept, we develop a distributed controller by solving an
online convex program, which is shown to guarantee collision-
free trajectories. Furthermore, under a no temporary deadlock
condition, we establish that each agent converges to its target
position. Our approach is also efficient in terms of makespan,
representing the total time needed for convergence. Simulation
results demonstrate the effectiveness of our approach in terms
of safety, convergence, and efficiency.

I. INTRODUCTION
Multi-agent collision avoidance is a fundamental problem

in robotics. Key challenges of this problem include safety,
scalability, and stability. To ensure safety, all agents must
remain collision-free at all times, with each agent assigned
a safety radius to prevent collisions. Scalability, another
important property, implies that the approaches scale linearly
with respect to the number of agents as those that scale
exponentially may not be appropriate for a large group of
agents. Stability is also critical and it refers to the successful
convergence of each agent to its intended goal state. While
a common issue that disrupts stability is a deadlock, which
occurs when several agents get stuck together before reaching
their goal states. In such cases, convergence cannot be
achieved. Multi-agent collision avoidance is widely used in
various fields, such as multi-agent navigation [1], warehouse
inventory [2], traffic management [3], etc.

Multi-agent collision avoidance can be solved by central-
ized and decentralized methods. Centralized methods, such
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as those proposed in [4] and [5], view all agents as a
composite system and each agent computes its input based
on the information of all agents. For instance, the authors
in [5] formulate the multi-agent collision avoidance problem
as a differential game and establish safety and convergence
guarantees for single integrators under certain assumptions.
However, centralized methods have some limitations in prac-
tice as they scale poorly to large-scale systems. On the other
hand, decentralized methods allow each agent to compute its
input based on local information, making them more scalable
and practical for a system with a large number of agents. This
paper focuses on solving multi-agent collision avoidance in
a decentralized manner.

Considerable effort has been devoted to developing decen-
tralized collision avoidance methods for multi-agent systems.
One of the most popular methods is based on the reciprocal
velocity obstacle (RVO) [6], [7], [8], [9]. RVO extends the
concept of velocity obstacle (VO) [10] by assuming that
agents share equal responsibility for avoiding collisions. Us-
ing RVO, the optimal reciprocal collision avoidance (ORCA)
method linearizes the input constraint induced by RVO and
reduces the multi-agent collision avoidance problem to solv-
ing a low-dimensional linear program [7]. In general, ORCA
cannot guarantee convergence because conflicting RVOs may
cause deadlocks. Unlike RVO-based approaches, the control
barrier function (CBF) approach transforms state constraints
induced by safety into linear input constraints through the
construction of barrier functions for each agent [11]. CBF
formulates the multi-agent collision avoidance problem as a
quadratic programming (QP) problem. However, the inter-
section of multiple linear constraints may be empty in dense
conditions, violating the safety requirement. Furthermore,
the paper [11] considers the concept of temporary deadlock,
where at least one agent’s solution to the QP problem is zero,
and proposes a heuristic approach to resolve two out of three
types of temporary deadlock.

Another kind of method is the geometric-based approach,
focusing on using geometrical features to analyze the be-
havior of agents in the environment. Buffered Voronoi cell
(BVC) [12] is a typical geometric-based approach that ex-
tends the concept of Voronoi cell, which has been widely
used in multi-agent systems [13], [14], through retracting
the edge of a Voronoi cell by a safety radius for each agent.
Collision avoidance is performed by planning the agents’
paths within their respective BVCs using a framework of
model predictive control. In particular, the state constraints
used during the predictive horizon are based on the same
BVC with the current position information. BVC ensures
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collision-free motion for discrete-time single-integrator sys-
tems, but fails to guarantee convergence due to the possibility
of deadlocks. Recently, the authors in [15] propose heuristic
methods to resolve certain types of deadlocks, and the paper
[16] extends BVC to weighted BVC.

In this paper, we study the problem of steering each
agent to its target position while avoiding collisions with
other agents. We propose a decentralized collision avoidance
method based on safe-reachable sets (SRSs) for a class
of multi-agent systems with single-integrator dynamics. We
derive a distributed version of SRSs to represent the set of all
positions that an agent can reach while avoiding collisions
with neighbors for any admissible controllers. The concept
of SRS was first introduced in [17], and has been recently
reformulated in [18], [19] for solving multiplayer adversarial
games. Motivated by the definition of SRS, we construct
an objective function and formulate the multi-agent collision
problem as an online robust optimization problem, where
each agent considers the worst-case scenarios created by
neighboring agents, thereby ensuring safety regardless of
their decisions. We then reduce this problem to solving
an online convex program, which enables the design of a
distributed controller. Our method is distributed as only the
neighbors’ information is used in the convex program to
compute the input of each agent.

The contribution of this paper can be summarized as fol-
lows. Firstly, we prove that our method guarantees collision
avoidance for single integrators with identical maximum
speeds. While some other methods like ORCA and CBF
require the optimization problem that generates input to be
feasible all the time for collision-free motion. Secondly, our
method also guarantees convergence under the no temporary
deadlock condition. To the best of our knowledge, such
a sufficient convergence guarantee is not given in existing
decentralized methods. Thirdly, our method excels in terms
of makespan, which represents the total time required for
convergence. Simulation results demonstrate that our ap-
proach outperforms BVC under this metric.

The remainder of this paper is organized as follows. In
Section II, we formulate the multi-agent collision avoidance
problem. In Section III, we design a distributed controller
based on the concept of SRSs. Section IV provides simula-
tion results to demonstrate the effectiveness of our method.
We state our conclusions and future work in Section V.

II. PROBLEM FORMULATION

We consider a team of N agents indexed by N =
{1, 2, . . . , N} moving on the Euclidean space Rn. The
dynamics of the agents are described by the single integrator
model

ẋi = ui, i ∈ N (1)

where xi ∈ Rn and ui ∈ U are the position and velocity
of agent i, respectively. We denote xi and ui as the state
and control input of agent i, respectively and U as the input
constraint set given by

U = {v ∈ Rn | ||v|| ≤ vmax} (2)

with vmax being the maximum speed. We define the joint
state as x = [xT

0 , x
T
1 , . . . , x

T
N ]T . Each agent i, i ∈ N , has

a safety radius ri to avoid collisions. Agent i and agent j
are said to be collision-free if their distance is greater than
the sum of their safety radii, i.e., ∥xi − xj∥ ≥ rij , where
rij = ri + rj . Let hij(xi, xj) = ∥xi − xj∥2 − r2ij . Then the
collision-free set for all agents can be written as

C = {x ∈ RnN | hij(xi, xj) ≥ 0,∀1 ≤ i < j ≤ N}. (3)

Each agent i is assumed to have a sensing radius Ri > 0,
and its neighborhood set is defined as

Ni = {j ∈ N|∥xi − xj∥ ≤ Ri, j ̸= i}

The sensing region of agent i is expressed as

Xi = {y ∈ Rn | gi(y) ≤ 0}

where gi(y) = ||y − xi||2 − R2
i . To avoid collisions, each

agent only accesses the agents within its sensing region.
Thus, a distributed controller of agent i is such that

ui = πi(zi) (4)

where zi = [xT
i ;x

T
j , j ∈ Ni]

T and πi : R(|Ni|+1)n → U is
the mapping from the state of agent i and its neighbors to
the input constraint set. Define ũi = [uT

j , j ∈ Ni]
T . Any

controller πi satisfying the constraint ui ∈ U is called an
admissible controller. The collision-free condition of agent
i, namely the ith collision-free condition, can be defined as

hij(xi, xj) ≥ 0,∀j ∈ Ni. (5)

We aim to design a distributed controller of the form
(4) to steer each agent to its target position while avoiding
collisions with other agents, with constraints on input and
sensing scale. Formally, our problem can be stated as follows.

Problem 1: Consider a team of N agents with dynamics
(1), input constraint ui ∈ U , and target position xf,i, for
i ∈ N . The problem is to find a distributed controller of the
form (4) satisfying the following two properties:

• Safety: For any initial joint state satisfying x(0) ∈ C, all
joint states along the system trajectory are in a collision-
free configuration, i.e., x(t) ∈ C, for all t > 0.

• Convergence: The position of agent i converges to the
target position, i.e., limt→∞ xi(t) = xf,i, for all i ∈ N .

III. SAFE-REACHABLE SET-BASED APPROACH

A. Safe-reachable set

We start with a formal definition of the safe-reachable
set for each agent. In the centralized version of the safe-
reachable set, as employed in [18], [19] for solving mul-
tiplayer adversarial games, each agent’s safe-reachable set
contains all positions that the agent can reach while satisfying
certain safety constraints. In this study, we introduce a
distributed version of the safe-reachable set and apply it to
the multi-agent collision avoidance scenario.

Definition 1: Given a team of N agents with dynamics
(1) and input constraint ui ∈ U for all i ∈ N , the ith safe-
reachable set (SRS), denoted by Ωi, consists of all points y
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within the ith sensing region Xi satisfying the following two
properties:

1) (Reachability) There exists a time instant τ and an
admissible controller πi over the interval [0, τ ] such
that agent i can reach position y at time τ .

2) (Safety) For any admissible controller πj of agent j,
j ∈ Ni, the ith collision-free condition (5) holds for
all t ∈ [0, τ ].

According to Proposition 1 in [19] or the result on page 144
of [17], we can similarly represent the ith SRS as a sublevel
set as follows:

Ωi(zi) =
⋂

j∈Ni

{y ∈ Xi | cij(y, xij) ≤ 0} (6)

where cij(y, xij) = (||y − xi|| + rij)
2 − ||y − xj ||2 with

xij = (xi, xj). This leads to the following properties of SRS.
Proposition 1: (i) The ith SRS Ωi is nonempty at zi if

and only if the ith collision-free condition (5) holds at zi.
(ii) The ith nonempty SRS Ωi is closed and convex.
Proof: (i) If the ith collision-free condition (5) holds, i.e.,
∥xi − xj∥ ≥ rij ,∀j ∈ Ni, then cij(xi, xij) = r2ij −
∥xi − xj∥2 ≤ 0,∀j ∈ Ni. Thus, the ith SRS Ωi is
nonempty. Conversely, if the ith SRS Ωi is nonempty, then
∃ y ∈ Xi, cij(y, xij) ≤ 0, for all j ∈ Ni, which means
||y−xi||+ rij −||y−xj || ≤ 0,∀j ∈ Ni. Then, ∥xi−xj∥ ≥
|∥y − xi∥ − ∥y − xj∥| ≥ rij , for all j ∈ Ni, implying that
the ith collision-free condition holds. (ii) Note that cij(y, xij)
can be expanded as cij(y) = 2(xj −xi)

T y+2rij∥y−xi∥+
r2ij + xT

i xi − xT
j xj , which is a sum of convex functions

of the argument y. cij(y), gi(y) are both convex function.
Therefore, the nonempty ith SRS Ωi is a closed and convex
set from the definition (6). □

The construction of the ith SRS is carried out in a
distributed manner, as the safety property is checked only
for agents in the neighborhood of agent i. When no agents
are located within the sensing region of agent i, the ith SRS
reduces to its sensing region, as shown in Fig. 1.

Remark 1: SRS Ωi is different from the concept of
BVC[12]. In our distributed framework, the BVC of agent i
can be rewritten as V̄i =

⋂
j∈Ni

{y ∈ Xi | (y− xi+xj

2 )T (xj−
xi) +

rij
2 ∥xj − xi∥ ≤ 0} and (6) can be recast in a similar

form as Ωi =
⋂

j∈Ni
{y ∈ Xi | (y − xi+xj

2 )T (xj − xi) +
r2ij
2 + rij∥y − xi∥ ≤ 0}. When rij = 0 for all j ∈ Ni, both
V̄i and Ωi reduce to the Voronoi cell. Otherwise, V̄i and Ωi

have different expressions. Importantly, the main difference
between SRS and BVC is that the property (i) in Proposition
1 holds only for SRS. In other words, a nonempty BVC does
not imply that the ith collision-free condition holds, whereas
a nonempty SRS does.

B. Distributed controller design

Building upon the concept of SRS, we next derive our
distributed controller. Recall that the goal of each agent is
to minimize the distance between the agent and its target
position while avoiding collisions. According to the defini-
tion of SRS, agent i can safely reach any point within Ωi.

Fig. 1: Example of three agents with their corresponding
SRSs. Each agent i is assigned a safety radius ri and sensing
radius Ri, and both the agent and its SRS are plotted in the
same color. Agent 3 does not have any neighbors within its
sensing region, and thus its SRS at this moment is equivalent
to its sensing region. In contrast, for agents 1 and 2, their
SRSs are obtained by considering the safety radius of each
other, as their neighborhood sets are not empty.

Bearing this in mind, we define the ith objective function as
the squared distance between the ith target position and the
ith SRS:

Ψi(zi) = min
y∈Ωi(zi)

||y − xf,i||2.

Since the ith nonempty SRS Ωi is convex, according to
property (ii) in Proposition 1, the value of Ψi can be
determined using the following convex program:

min
y∈Rn

||y − xf,i||2

s.t. cij(y, xij) ≤ 0, j ∈ Ni

gi(y) ≤ 0.

(7)

It is worth noting that the convex program (7) is equivalent to
finding the Euclidean projection [20] of a point xf,i onto the
ith SRS Ωi. Moreover, we can demonstrate the uniqueness
of the solution for the convex program (7) as below.

Proposition 2: If the ith SRS Ωi is nonempty at zi, then
the convex program (7) admits a unique solution.
Proof: According to property (ii) of Proposition 1, the ith
nonempty SRS Ωi is both closed and convex. As stated
on page 397 of [20], the Euclidean projection of a point
on a convex and closed set is unique. Thus, the Euclidean
projection of a point xf,i on a convex and closed set Ωi is
unique. This implies that the convex program (7) admits a
unique solution. □

After defining the ith objective function, we formulate
the decentralized multi-agent collision avoidance problem for
agent i as an online robust minimization problem:

min
ui

max
ũi

Ji = Ψi(zi)

s.t. ẋi = ui, ẋj = uj , j ∈ Ni

ui ∈ U , ũi = [uT
j , j ∈ Ni]

T ∈ U |Ni|.

(8)

Here, the robustness stems from the fact that for agent i, the
inputs of its neighbors are unknown and worst-case scenarios
should be considered to avoid collisions. The Hamiltonian
of (8) is defined as H(q, ui, ũi) = pTi ui +

∑
j∈Ni

pTj uj ,
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where pi, pj , j ∈ Ni are the costates of the system and
q = [pTi ; p

T
j , j ∈ Ni]

T is the Lagrange multiplier vector.
According to Theorem 8.2 in [21], the necessary condition
for problem (8) is given by

p∗i
T =

∂Ψi

∂xi
, p∗j

T =
∂Ψi

∂xj
, j ∈ Ni

H(u∗
i , ũi) ≤ H(u∗

i , ũ
∗
i ) ≤ H(ui, ũ

∗
i ),∀ui ∈ U ,∀ũi ∈ U |Ni|

where (u∗
i , ũ

∗
i ) is the strategy pair in the saddle-point

equilibrium. Observe that, the function H comprises two
independent parts: pTi ui and

∑
j∈Ni

pTj uj . Thus, minimizing
H with respect to ui is equivalent to minimizing pTi ui. As
such, we can express u∗

i as follows:

u∗
i =

{
− vmax

||pi|| pi, pi ̸= 0
Undetermined, pi = 0

(9)

where “undetermined” means u∗
i can be any value within U .

Note that, the value of u∗
i is related to the partial derivative

of Ψi with respect to xi. To proceed, we need the following
proposition.

Proposition 3: For almost every zi, there is a set of
nonnegative constants λ∗

ij , j ∈ Ni such that

∂Ψi

∂xi
=

∑
j∈Ni

λ∗
ij

∂cij
∂xi

(ηi, xij)

and ∂Ψi

∂xj
= λ∗

ij
∂cij
∂xj

(ηi, xij) for j ∈ Ni, where ηi is the
solution to the convex program (7). Moreover, cij(ηi, xij) <
0 implies that ∂Ψi

∂xj
= 0.

Proof: Consider the Lagrangian function of (7):

Li(y, λ̂) = ||y − xf,i||2 +
∑
j∈Ni

λijcij(y, xij) + λgi(y)

where λ̂ = (λij , j ∈ Ni;λ). The KKT conditions imply that
there is λ̂∗ with nonnegative components such that

2(ηi − xf,i)
T + 2λ∗(ηi − xi)

T +
∑
j∈Ni

λ∗
ij

∂cij
∂y

(ηi, xij) = 0

(10)
λ∗
ijcij(ηi, xij) = 0,∀j ∈ Ni (11)

On the other hand, the complementary slackness (11)
implies that the value of λ∗

ij and cij can be divided into
two cases: {

cij(ηi, xij) = 0, λ∗
ij > 0

cij(ηi, xij) ≤ 0, λ∗
ij = 0.

For the case of λ∗
ij = 0, λ∗

ij ċij(ηi, xij) = 0 is satisfied. For
the case of λ∗

ij > 0, cij(ηi, xij) = 0, and ċij(ηi, xij) = 0
or ċij(ηi, xij) ̸= 0. Note that, the case of cij(ηi, xij) =
0 and ċij(ηi, xij) ̸= 0 has measure zero, as stated in real
analysis (see, for example, [22]). Thus, for almost every zi,
λ∗
ij ċij(ηi, xij) = 0, i.e.,

λ∗
ij(

∂cij
∂y

(ηi, xij)η̇i+
∂cij
∂xj

(ηi, xij)uj+
∂cij
∂xi

(ηi, xij)ui) = 0.

(12)

Similarly, for almost every zi, we obtain λ∗ġi(ηi) = 0, i.e.,

λ∗ġi(ηi) = 2λ∗(ηi − xi)
T η̇i = 0. (13)

Combining equations (10), (12), and (13), we obtain the
derivative of Ψi as:

Ψ̇i = 2(ηi − xf,i)
T η̇i

= −2λ∗(ηi − xi)
T η̇i −

∑
j∈Ni

λ∗
ij

∂cij
∂y

(ηi, xij)η̇i

= −
∑
j∈Ni

λ∗
ij

∂cij
∂y

(ηi, xij)η̇i

=
∑
j∈Ni

λ∗
ij

∂cij
∂xi

(ηi, xij)ui +
∑
j∈Ni

λ∗
ij

∂cij
∂xj

(ηi, xij)uj .

for almost every zi, which completes the proof by examining
Ψ̇i =

∂Ψi

∂xi
ui +

∑
j∈Ni

∂Ψi

∂xj
uj . □

We are now ready to derive our distributed controller as
follows. Note that when ηi = xi, u∗

i = 0. Conversely, when
ηi ̸= xi,

∂cij
∂xi

is given by

∂cij(ηi)

∂xi
= 2(xi − ηi)

T (1 +
rij

∥ηi − xi∥
).

According to (9), ui is undetermined when pi = 0, thus we
only need to consider the case of pi ̸= 0. The control input
that minimizes Ψ̇i is given by

u∗
i = −vmax

||pi||
pi =

−∂Ψi

∂xi

T

∥∂Ψi

∂xi

T ∥
vmax

= −
(xi − ηi) ∗ 2

∑
j∈Ni

λ∗
ij(1 +

rij
∥ηi−xi∥ )

∥(xi − ηi) ∗ 2
∑

j∈Ni
λ∗
ij(1 +

rij
∥ηi−xi∥ )∥

vmax

=
ηi − xi

∥ηi − xi∥
vmax.

(14)

Since ui is undetermined when pi = 0 and ηi ̸= xi, we
choose the form of (14) for the control input ui. Conse-
quently, taking into account all the possibilities of u∗

i , we
arrive at a distributed controller given by

πi(zi) = vmaxN (ηi − xi) (15)

where ηi is the unique solution to the convex program (7)
and the normalizer of a vector v is defined as

N (v) =

{
v

∥v∥ , v ̸= 0
0, v = 0.

The controller (15) is distributed because the computation of
ηi only requires the information of agent i and its neighbors.

C. Safety

We proceed to analyze the collision avoidance capability
of our controller (15). To this end, let us recall the definition
of set invariance. Consider a dynamical system of the form

ė(t) = f(e(t)) (16)

accosiated with a state constraint set I = {e ∈ Rn | h(e) ≥
0} and its boundary ∂I = {e ∈ Rn | h(e) = 0}. The set
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I is said to be invariant [23] for system (16) if e(0) ∈ C
implies e(t) ∈ C for all t > 0. The necessary and sufficient
condition for set invariance is given by Nagumo’s Theorem
as follows.

Lemma 1 (Nagumo, [24]): The set I is invariant for the
system (16) if and only if ḣ(e) ≥ 0, ∀e ∈ ∂I.

We are now prepared to present the main result for
collision avoidance, which demonstrates that our controller
can ensure collision-free motion for all agents, provided that
each agent initilizes in a collision-free configuration.

Theorem 1: If the team of N agents is initially in a
collision-free configuration, i.e., x(0) ∈ C, and the sensing
radius Ri satisfies Ri ≥ rij , for all i ̸= j, i, j ∈ N , the
distributed controller (15) ensures that all the future positions
of the agents are collision-free, i.e., x(t) ∈ C, ∀t > 0.
Proof: For agent i and the agents beyond its sensing region,
we have

∥xi − xj∥ > Ri ≥ rij ,∀j /∈ Ni, j ∈ N . (17)

Thus, for each agent, we only need to consider the agents
within its sensing area to avoid collisions. This is equivalent
to showing that the C is invariant, with the definition of the
collision-free set C given in (3). According to Lemma 1, to
prove that the set C is invariant under the system (1) with the
distributed controller (15), we need to establish that ḣij ≥ 0
for all i ∈ N and j ∈ Ni when hij = 0.

Taking the derivative of hij , we get

ḣij = 2(xi − xj)
T (ui − uj)

= 2(xi − xj)
T (N (ηi − xi)− N (ηj − xj))vmax

(18)

where ηi ∈ Ωi and ηj ∈ Ωj , implying that the following
inequalities are satisfied

(||ηi − xi||+ rij)
2 − ||ηi − xj ||2 ≤0

(||ηj − xj ||+ rij)
2 − ||ηj − xi||2 ≤0.

(19)

Note that hij = 0 implies that

rij = ∥xi − xj∥,∀i ̸= j, i, j ∈ N . (20)

Substituting (20) into (19), we obtain

(xi − xj)
T (ηi − xi) ≥ rij∥ηi − xi∥

−(xi − xj)
T (ηj − xj) ≥ rij∥ηj − xj∥

which can be rewritten as
(xi − xj)

TN (ηi − xi) ≥ 0

−(xi − xj)
TN (ηj − xj) ≥ 0.

(21)

Therefore, substituting (21) into (18) yields ḣij ≥ 0. □
Remark 2: Our method has advantages over existing

methods such as CBF and ORCA in terms of recursively
ensuring collision avoidance. For a multi-agent system with
single integrators, our method ensures safety once the initial
positions meet the collision-free condition, as stated in Theo-
rem 1. In contrast, the CBF and ORCA methods require the
corresponding optimization problem to remain feasible all
the time to guarantee safety, even if the initial collision-free
condition is satisfied.

D. Convergence

Finally, we show that our controller can guarantee con-
vergence under certain conditions. One of the primary chal-
lenges in ensuring convergence is the potential occurrence
of deadlocks [25], where agents become trapped in a state
that prevents them from moving toward their target positions.
Among various definitions of deadlocks, temporary deadlock
refers to a situation in which agents become momentarily
stuck during the convergence process [11]. To better present
our result, we provide a formal definition of temporary
deadlock below.

Definition 2: Given an admissible control law, agent i is
said to be in a temporary deadlock configuration at time
t0 ≥ 0 if xi(t0) ̸= xf,i and ui(t0) = 0.

We are now ready to present the convergence result for our
distributed controller under the assumption of no temporary
deadlock.

Theorem 2: If no temporary deadlock occurs during the
whole process, i.e., ui(t) ̸= 0 when xi(t) ̸= xf,i, and both
the initial positions and target positions are in a collision-free
configuration, then the distributed controller (15) ensures that
the position of each agent converges to its target position.
Proof: Consider the Lyapunov function candidate Vi(xi) =
∥xi − xf,i∥2 for the ith subsystem of system (1) with the
controller (15). The derivative of V (xi) along the trajectories
of the system is given by

V̇ (xi) = 2(xi − xf,i)
Tui

= 2vmax(xi − xf,i)
TN (ηi − xi)

=

{
− 2(xf,i−xi)

T (ηi−xi)
∥ηi−xi∥ vmax, ηi ̸= xi

0, ηi = xi

where ηi is the solution of (7), i.e., ∥ηi − xf,i∥ =
miny∈Ωi(zi) ∥y − xf,i∥. As shown in Theorem 1, the ith
collision-free condition holds at zi, which implies that
cij(xi, xij) ≤ 0,∀j ∈ Ni, and thus xi ∈ Ωi(zi). As a result,
the following inequality holds

∥ηi − xf,i∥ ≤ ∥xi − xf,i∥ (22)

where the equality holds if and only if ηi = xi. Under the
no temporary deadlock condition, ηi ̸= xi when xi ̸= xf,i.
Hence, the inequality (22) strictly holds, which implies that
the time derivative of V satisfies

V̇ (x) = −2(xf,i − xi)
T (ηi − xi)

∥ηi − xi∥
vmax

≤− 2(xf,i − xi)
T (ηi − xi)− ∥ηi − xi∥2

∥ηi − xi∥
vmax

=
2xT

f,ixi − 2xT
f,iηi − xT

i xi − ηTi ηi

∥ηi − xi∥
vmax

=
∥ηi − xf,i∥2 − ∥xi − xf,i∥2

∥ηi − xi∥
vmax < 0

where the last strict inequality holds as ηi ̸= xi, which is
guaranteed by the no temporary deadlock condition. There-
fore, in light of Lyapunov’s stability theorem [26], we can
conclude that xi converges to xf,i. □
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Fig. 2: Performance of our SRS-based controller in the
simulation. (a) Safety. (b) Convergence.

Remark 3: Theorem 2 guarantees convergence under the
no temporary deadlock condition, which is not provided in
existing decentralized methods. Most multi-agent collision
avoidance approaches rely on heuristic methods to handle
deadlock situations, often analyzing specific case studies
without ensuring convergence in general. It is worth noting
that, although the no temporary deadlock condition is con-
servative for convergence guarantees, there exist examples
where our controllers can achieve convergence despite the
occurrence of temporary deadlocks.

IV. SIMULATION RESULTS

In this section, we simulate N single integrator robots
to reach their target positions and compare the performance
of our SRS-based distributed controller (15) to the CBF-
based controller [11] and the BVC-based controller [12]. Our
simulations are carried out on a laptop equipped with a 2.3
GHz 14-Core Intel Core i7 processor with 24 GB of memory.
The convex program in (7) is solved using the CVXPY solver
[27]. In our simulations, we employ circular agents with
identical safety radii of ri = 0.2m and maximum speeds
of vmax = 2m/s. We adopt a time step of 0.1 seconds to
ensure accurate and reliable simulation results.

A. SRS-based controller versus CBF-based controller

Consider the case where there are N = 3 agents and they
move toward their target positions, as shown in Fig. 3(a).
The initial positions of the agents are x1(0) = [−2,−2]T ,
x2(0) = [−2, 2]T and x3(0) = [2, 0]T , and their target

(a) (b)

(c) (d)

Fig. 3: Simulation of three single integrator robots using
different controllers with distinct colors. The light-colored
regions denote the respective SRSs associated with agents
at various time instants. (a) At initial time. (b) At time 2.2s
(SRS). (c) At time 4.2s (SRS). (d) At time 2.4s (CBF).

positions are xf,1 = [2, 2]T , xf,2 = [2,−2]T and xf,3 =
[−2, 0]T . The sensing radii are R1 = 0.8m, R2 = 1.0m and
R3 = 1.2m. The safety performance under our distributed
controller is shown in Fig. 2(a), where the value of hij

remains larger than zero throughout the simulation, meaning
that the safety condition x(t) ∈ C holds for all t ≥ 0. In
addition, the value of ∥xi − xf,i∥ converges to zeros for
i ∈ {1, 2, 3}, as shown in Fig. 2(b), indicating the arrivals
of the agents at their target positions. The collision-free
trajectories of the three agents with the proposed SRS-based
distributed controller (15) are depicted in Fig. 3(b) and Fig.
3(c). Fig. 3(c) shows that each agent successfully arrives at
its target position with our SRS-based approach, while the
agents with the CBF-based approach get stuck in a deadlock
configuration as shown in Fig. 3(d).

B. SRS-based controller versus BVC-based controller

We also conduct a comparison between the SRS-based
controller and the BVC-based controller in a scenario where
N agents are positioned around two edges of a rectangle and
randomly move towards positions near the opposite edge.
The makespan, defined as the time elapsed from the start of
the process to the end, is used to compare the two methods,
as shown in Table I. Specifically, we perform 10 simulations
for different agent sizes and compute the makespan for
each approach. Both methods guarantee safety, but our SRS
approach achieves an average improvement of 16.64% (size
10), 17.79% (size 20), and 15.58% (size 30) in the makespan.
Fig. 4 illustrates a ten-agent scenario with the SRS-based
controller and shows the velocity profile along the trajectory.
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TABLE I: Average makespan comparison

Size SRS BVC Improvement(%)
10 5.53s 6.45s 16.64
20 9.50s 11.20s 17.79
30 13.93s 16.10s 15.58

Fig. 4: Velocity profile with the SRS-based controller. Each
agent moves from the initial position (the solid hollow circle)
to the target position (the dotted hollow circle).

V. CONCLUSIONS
In this paper, we have proposed a geometric-based method

based on safe-reachable sets to address the decentralized
multi-agent collision avoidance problem. Specifically, we in-
troduce a distributed version of the safe-reachable set concept
for multi-agent collision avoidance scenarios. Utilizing the
safe-reachable sets, we design our distributed controller by
online solving a convex program at each time instant. More-
over, our method guarantees collision avoidance for single
integrators with identical maximum speeds and guarantees
convergence under the no temporary deadlock condition.
Through simulations conducted in different scenarios, we
demonstrate the effectiveness of our approach in terms of
safety, convergence, and efficiency. In future work, we will
extend our approach to handle general heterogeneous single
integrator robots.
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