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Abstract— The dynamic characteristics of a plant vary with
time-related deterioration and external factors. Therefore, it
is very useful to know how much change in the dynamic
characteristics of the plant can be tolerated. This paper seeks
a parametrization of a plant that satisfies the given control
specification using the same controller within the behavioral
framework. Since this is regarded as the problem whether
a single controller can achieve (implement) the given control
specification for multiple plants, this problem is referred to as
simultaneous implementability problem. As for this problem,
we give parametrizations of a plant with respect to both of a
controller and a specification. We also consider the stabilization
case. Finally, we give some illustrative examples to show the
validity of our results.

I. INTRODUCTION

The dynamic characteristics of a plant vary due to age-
related deterioration and external factors. Therefore, in a
situation where a plant and control specification are given
and a controller that satisfies that control specification is
required, it is useful to know how much change in the dy-
namic characteristics of the plant can be tolerated. In control
engineering, obtaining the parametrization of a controller is
very useful because it allows the structure of the controller
to be expressed precisely to suit its purpose with no excess
or deficiency. One particularly well-known parametrization is
the Youla-Kucera parametrization [1], [2], which represents
a stabilizing controller by using a mathematical model of
a plant and solutions of the related Bezout equation. This
result was developed in the polynomial ring, and was ex-
tended to the stable rational function case in the reference
[3]. We can also find that there are many related studies
on the parametrization of controllers in the conventional
control system theory in which a controller is assumed to
be implemented as feedback.

In [5][6], the behavioral approach was proposed to con-
struct systems and control theory from more broader and
generalized view point. In this approach, a dynamical system
is regarded as the set of trajectories that obey the dynamical
property of the system. Thus, a mathematical model used
in this approach is a not conventional input (with state) and
output relation but a mathematical restriction on variables
without the input and output relation. The advantage of the
behavioral approach is that it can handle systems that are
not proper, so the class of system interconnections to be
considered can include interconnections that are not limited
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to feedback control (e.g. [7], Ex. 2.2). In this approach,
the parametrization of a stabilizing controller was proposed
in [7] and [8]. Furthermore, a parametrization of a con-
troller that achieves regular implementability was obtained
by Praagman et. al. [8]. In the behavioral approach a control
is regarded as an interconnection of a plant and a controller
to achieve a given specification. As mentioned in the above,
it is important to clarify the class of plants which can
achieve a given specification, that is, it is also meaningful to
obtain the parametrization of a plant that achieve the given
specification.

Based on these considerations, this paper seeks a
parametrization of a plant that satisfies the control spec-
ification using the same controller within the framework
of a behavioral approach. We refer to such a problem as
simultaneous implementability. Particularly, this paper focus
on the full interconnection case in which all of the varaibles
interacting with an external environment are used in the
interconnection with a controller. As for another type of
interconnection, the partial interconnection case, we consider
the case in which a control specification is given by all of the
variables. We also mention the difficulty for the case in which
a control specification is given for only manifest variables (to
be controlled variables) with respect to the observability.

This paper is organized as follows. In Section 2, we
give basic preliminaries of behavioral approach and control
as an interconnection of systems. In this section, we also
give a brief review on required preliminaries on regular
implementability [8]. In Section 3, we present our problem
formulation. In Section 4, we present our main result in
this paper. Mainly, we present three main theorems. The
first theorem provides the parametrization of a plant that
yields the same controlled behavior after the interconnection
with the same controller. The second theorem restate the
first theorem by using a specification instead of controllers.
The third theorem presents the parametrozation of a plant
that yields a stabilized behavior with the same characteristic
stable polynomials. In this section, we also mention the
partial interconnection case. In Section 5, we give illustrative
examples to show the validities of our ain results. In Section
6, we give concluding remarks.

We introduce the notation using in this paper. Let R and C
denote the set of real number and the set of complex number.
Let Rp×q[ξ] denote the set of polynomial matrix of size p×q
consisting of polynomials with real coefficients, where ξ is a
variable. The polynomials that all of roots of its are located in
open left half plane is called Hurwitz polynomial. Let RH [ξ]
denote the set of Hurwitz polynomials. For nonsingular
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matrix R ∈ Rp×p[ξ], R is said to be Hurwitz polynomial
matrix if det(R) ∈ RH [ξ]. Let RH [ξ]p×p[ξ] denote the set
of Hurwitz polynomial matrix of size p×p. For nonsingular
matrix U ∈ Rp×p[ξ], U is said to be unimodular matrix if
det(U) is in R except {0}. Let RU [ξ]

p×p denote the set of
unimodular matrix of size p× p. Let C∞(R,Rq) denote the
set of infinitely differential functions from R to Rq .

II. PRELIMINARIES

A. Behavioral Approach

In this paper, we assume that a dyamical system is linear
time-invariant system. This section describes the basics of
the behavioral approach for analysis and synthesis of linear
time invariant dynamical systems based on the references
[4][5].

A behavior P of a system is the set of that systems’s
trajectories. P is subspace of W q , where W is the signal
space of the system, and q is signal number of the system.
In this paper, we consider W q := C∞(R,Rq). A linear
time-invariant system are represented by multiple differential
equations:R0w + R1

dw
dt + · · · + RN

dNw
dtN

= 0 , where
Ri ∈ Rp×q and w ∈ C∞(R,Rq). This equation is called
kernel representation, also w is called the manifest variable.
Now, differential operator d

dt is regarded as variable ξ.
So, using polynomial matrix R(ξ) := R0 + R1ξ + · · · +
RNξN ∈ Rp×q[ξ], we get Rw = 0. Thus, a behavior
of linear time-invariant system P denotes P := {w ∈
C∞(R,Rq) | Rw = 0} ⊂ W q . To characterise a behavior
P of a system by kernel representation, we denote P =
Ker(R). There are many kernel representation of a behavior.
Among them, for P = Ker(R), the kernel representation
is said to be a minimal representation if R has full row
rank ([4], Th. 3.6.4). The number of rows in the minimal
representation is called the output number of P and is
denoted by p(P). Next, we describe the controllability of
the behavior ([4], Sect. 5.2). P = Ker(R) is said to be
controllable if there exist w ∈ P and t1, t2 ∈ R such that
w(t) = w1(t), t < t1 and w(t) = w2(t), t > t2 for any
w1, w2 ∈ P . P = Ker(R) is controllable if and only
if R(λ) has full row rank for ∀λ ∈ C ([4], Th. 5.2.5).
Furthermore, P = Ker(R) is stabilizable if and only if R(λ)
has full row rank for ∀λ ∈ C+ = {λ ∈ C | Re(λ) ≥ 0} ([4],
Th. 5.2.30).

Furthermore, given two behaviors, the following lemma
is presented as a necessary and sufficient condition for the
two behaviors to be equivalent ([4], Th. 3.6.2, also [5], Prop.
3.3).

Lemma 1: Let P = Ker(R),P ′ = Ker(R′) and R,R′ ∈
Rp×q[ξ]. P = P ′ if and only if there exists U ∈ Rp×p

U [ξ]
such that R = UR′.
The autonomy and stability of the behaviroal approach can be
formalized as follows ([4], Sect. 3.2 and 7.2). P = Ker(R)
is said to be autonomous if for any w1, w2 ∈ P , w1(t) =
w2(t), t ≤ 0 imples w1(t) = w2(t) for t > 0. P = Ker(R)
is autonomous if and only if R has full column rank ([5],
Prop. 5.7). Thus, when R is full row rank, P is autonomous
if and only if R is square and nonsingular. Assume that

P = Ker(R) is autonomous, then P is said to be stable if
any w ∈ P goes to 0 as t → ∞. A minimal representation
P = Ker(R), R ∈ Rq×q[ξ] is stable if and only if R ∈
Rq×q

H [ξ], i.e., det(R) ∈ RH [ξ] ([4], Th.7.2.2).

B. Control in the behavioral approach

This subsection describes control in the behavioral ap-
proach based on references [6], [10]. Particularly, we focus
on the full interconnection. In this interconnection, all of
the manifest variables are used for the interconnection with
a controller. Let P = Ker(R), R ∈ Rp×q[ξ] denote the
behavior of a plant and C = Ker(C), C ∈ Rc×q[ξ] denote
the behavior of the controller. Then, the full interconnection
of P and C denotes P ∩ C . The kernel representation of
the full interconnection P∩C is expressed by the following
equation: (

R
C

)
w = 0. (1)

If p(P) + p(C ) = p(P ∩ C ), we say that the full inter-
connection P ∩C is regular ([6], Sect. 7). In other word, if
P = Ker(R),C = Ker(C) are minimal representation, the
full interconnection P∩C is regular if and only if the matrix
of Eq. (1) has full row rank. Let K = Ker(K),K ∈ Rk×q[ξ]
denote the behavior of a control specification. For given P
and K , we say that K is implementable if there exists the
behavior of a controller C such that P ∩ C = K . To use
another expression, C implements K with respect to P by
full interconnection. Furthermore, we say that K is regularly
implementable if there exists the behavior of a controller C
such that P∩C = K and p(P)+p(C ) = p(P∩C ) [10].
To use another expression, C regularly implements K with
respect to P by full interconnection. In the case that R and
C have full row rank, and p+ c = q, C stabilizes P if and
only if det(

(
RT CT

)T
) ∈ RH [ξ].

In addition, the parametrization of a controller that
achieves regular implementability is presented in the follow-
ing theorem ([8], Th. 11).

Theorem 1: Let a minimal representation of the plant
P = Ker(R), R ∈ Rp×q[ξ]. Let a control specification
K = Ker(K),K ∈ Rk×q[ξ] be regularly implementable.
The polynomial matrix inducing the minimal representation
C = Ker(C), C ∈ Rc×q[ξ] of a controller that regularly
implements K is parametrized by the following equation
using arbitrary F ∈ Rc×p[ξ] and arbitrary U ∈ Rc×c

U [ξ]:

C = FR+ UWK (2)

where W is created by the following procedure:
1) Let :M ∈ Rq×(q−p)[ξ] be a matrix where RM = 0

and M(λ) has full column rank for ∀λ ∈ C.
2) Let Q ∈ R(k−c)×k[ξ] be a full row rank matrix that

satisfies QKM = 0.

3) Let W ∈ Rc×k[ξ] be a matrix such that
(
Q
W

)
∈

Rk×k
U [ξ].

Furthermore, the parametrization of a stabilizing controller
is presented by the following theorem ([8], Th. 12).
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Theorem 2: Let a minimal representation of a stabilizable
plant P = Ker(R), R ∈ Rp×q[ξ]. Let a minimal represen-
tation of a controllable part of P be Pc = Ker(Rc), Rc ∈
Rp×q[ξ]. The polynomial matrix inducing the controller
C = Ker(C), C ∈ Rc×q[ξ] such that P ∩ C is regular,
autonomous and stable is parametrized by the following
equation using arbitrary F ∈ R(q−p)×p[ξ] and arbitrary
D ∈ R(q−p)×(q−p)

H [ξ]:

C = FR+DQ (3)

where Q ∈ R(q−p)×q[ξ] is a matrix such that
(
Rc

Q

)
∈

Rq×q
U [ξ].

III. PROBLEM FORMULATION

We formulate the problem we consider here as fol-
lows. First, we consider a linear time-invariant plant P =
Ker(R), R ∈ Rp×q[ξ] and a control specification K =
Ker(K),K ∈ Rk×q[ξ]. We assume that we obtain the con-
troller C = Ker(C), C ∈ Rc×q[ξ] that regularly implements
K , i.e., the matrix C meets

Ker

(
R
C

)
= Ker(K) (4)

and this is full row rank. Now we consider another plant
behavior P ′ = Ker(R′), R′ ∈ Rp×q[ξ]. Then, find the
parametrization of P ′ that meets

Ker

(
R′

C

)
= Ker(K) (5)

and this is full row rank. Moreover, find the parametrization
of the above setting for the case that P is stabilizable and
K = Ker(K),K ∈ Rk×q[ξ] is autonomous and stable.

IV. MAIN RESULTS

A. Parametrization of a plant that regularly implements K
by using a representation Cw = 0

We derive the following parametrization on based previous
section.

Theorem 3: Let P , R, K and K be as in Theorem
1. Assume that a minimal representation of a controller
C = Ker(C), C ∈ Rc×q[ξ] regularly implements the control
specification K w.r.t. P by full interconnection. Then,
the polynomial matrix inducing the minimal representation
P ′ = Ker(R′), R′ ∈ Rp×q[ξ] such that P ′ ∩ C = K is
parametrized as follows using an arbitrary U ∈ Rp×p

U [ξ] and
arbitrary V ∈ Rp×c[ξ]:

R′ = UR+ V C. (6)
Proof: First, sufficiency is shown. Let R′ = UR + V C
with arbitrary unimodular matrix U and arbitrary polynomial
matrix V . In this case, the following calculation can be
performed:(

R′

C

)
=

(
UR+ V C

C

)
=

(
U V
0 I

)(
R
C

)
Because U is a unimodular matrix, P ′∩C = K by Lemma
1.

Next, necessity is shown. Let P ′ ∩ C = K ′ for P ′ =
Ker(R′) and K ′ = Ker(K ′). As we are considering
necessity, K = K ′ for P ∩ C = K . Therefore, from
Lemma 1, there exists a unimodular matrix U ′ satisfying
K ′ = U ′K, and the following calculation can be performed:(

R′

C

)
= K ′ = U ′K = U ′

(
R
C

)
=

(
U11 U12

U21 U22

)(
R
C

)
In the above calculation, U ′ is divided according to the
number of rows of R and C. In this case, we obtain the
following two equations:

R′ = U11R+ U12C
C = U21R+ U22C

(7)

Here, as we assume the regular implementability of P and

C ,
(
R
C

)
has full row rank. Noting that the second equation

of Eq. (7) can be rewritten as(
−U21 I − U22

)( R
C

)
= 0, (8)

we see that U21 = 0, U22 = I . Moreover, as U ′ is a
unimodular matrix, U11 = U,U12 = V , where U can be
any unimodular matrix and V can be any polynomial matrix.
Thus, we obtain R′ = UR+ V C. (Q.E.D.)

B. Parametrization of a plant that regularly implements K
by using a representation Kw = 0

Theorem 3 is a controller-dependent parametrization like
Eq. (6). Now, from Theorems 1 and 3, we can derive
the following parametrization that depends on the control
specification.

Theorem 4: Let P , R, K , K and W be as in Theorem
1. Let C and C be as in Theorem 3. Then, the poly-
nomial matrix inducing the minimal representation P ′ =
Ker(R′), R′ ∈ Rp×q[ξ] such that P ′ ∩ C = K is
parametrized as follows using arbitrary U ∈ Rp×p

U [ξ], U ′ ∈
Rc×c

U [ξ], V ∈ Rp×c[ξ] and F ∈ Rc×p[ξ]:

R′ = (U + V F )R+ V U ′WK. (9)
Proof: Necessity follows from the necessity of Theorems 1
and 3.

Here, sufficiency is shown. By assumption, the controller
C = Ker(C) that regularly implements K for P is obtained
from Theorem 1 as C = FR + UWK using an arbitrary
unimodular matrix U and an arbitrary polynomial matrix F ,
where W is created as in Theorem 1. Here, P ′ = Ker(R′)
is calculated as R′ = (U +V F )R+V U ′WK with arbitrary
unimodular matrices U and U ′, and arbitrary polynomial
matrices F and V In this case, the following calculation
can be performed:(

R′

C

)
=

(
(U + V F )R+ V U ′WK

FR+ U ′WK

)
=

(
U + V F V U ′W

F U ′W

)(
R
K

)
=

(
U V
0 I

)(
I 0
F U ′W

)(
R
K

)
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Meanwhile, the following calculation can be performed:(
R
C

)
=

(
R

FR+ U ′WK

)
=

(
I 0
F U ′W

)(
R
K

)
From the above calculations, P ′∩C = K is obtained from
Lemma 1 (Q.E.D.)

C. Parametrization of a plant that regularly implements
stable K

In this section, we discuss the case from the previous
section in which the characteristic polynomial of the polyno-
mial matrix inducing the control specification is stable. From
Theorems 2 and 3, the following stabilization parametrization
can be derived.

Theorem 5: Let P , R, Pc, Rc and Q be as in Theorem
2. Let K , C and C be as in Theorem 3. Let K is au-
tonomous and stable. Then, the polynomial matrix inducing
the minimal representation P ′ = Ker(R′), R′ ∈ Rp×q[ξ]
such that P ′ ∩ C = K is parametrized by the following
equation using arbitrary U ∈ Rp×p

U [ξ], V ∈ Rp×(q−p)[ξ],
F ∈ R(q−p)×p[ξ] and D ∈ R(q−p)×(q−p)

H [ξ]:

R′ = (U + V F )R+ V DQ. (10)
Proof: Necessity follows from the necessity of Theorems 2
and 3.

Here, sufficiency is shown. Since the controller C =
Ker(C) that regulary implements autonomous and stable K
w.r.t. P by full interconnection, using Theorem 2, we get
C = FR+BD using an arbitrary polynomial matrix F and
arbitrary Hurwitz polynomial matrix D. Let the polynomial
matrix inducing P ′ = Ker(R′) be R′ = (U+V F )R+V DQ
using an arbitrary unimodular matrix U , arbitrary polynomial
matrices F , V , and an arbitrary Hurwitz polynomial matrix
D. Furthermore, F and D of R′ and C can be assumed to
be the same due to their arbitrariness. Let R = DcRc with
Dc ∈ Rp×p

H [ξ] be the same as the proof of ([8], Th. 12).
Then, the following calculation can be performed:

det

(
R′

C

)
= det

(
(U + V F )R+ V DQ

FR+DQ

)
= det

{(
(U + V F ) V D

F D

)(
DcRc

Q

)}
= det

{(
U V
0 I

)(
I 0
F D

)(
Dc 0
0 I

)(
Rc

Q

)}
= det(U) · det(D) · det(Dc) · det

(
Rc

Q

)
= a · det(D) · det(Dc).

In the above equation, a ∈ R\{0}. According to the state-
ments of this theorem, U and

(
RT

c QT
)T

are unimodular
matrices, so a := det(U) · det(

(
RT

c QT
)T

). In addition,
the following calculation can be performed:

det

(
R
C

)
= det

(
DcRc

FR+DQ

)
= det

{(
I 0
F D

)(
Dc 0
0 I

)(
Rc

Q

)}
= a′ · det(D) · det(Dc).

In the above equation, det(
(
RT

c QT
)T

) =: a′ ∈ R\{0}.
Thus, we obtain P ′ ∩ C = P ∩ C .(Q.E.D.)

D. The partial interconnection case

This paper focuses on only full interconnection. We con-
sider whether the results in this paper can be extend to the
partial interconnection case. At first glance, it seems that this
extention may be trivial. However, necessity is not obvious.

In the case of the partial interconnection case, the behavior
of plant is denoted by Pfull ⊂ W q × W l and induced the
following kernel representation:

Rw +Mc = 0 (11)

where R ∈ Rp×q[ξ],M ∈ Rp×l[ξ], w ∈ C∞(R,Rq), c ∈
C∞(R,Rl). c is called control variable which is used to the
interconnection.

Let be Pfull = Ker
(
R M

)
. In this case, c is observable

from w if and only if M(λ) has full column rank for ∀λ ∈ C
([4], Th. 5.3.3). Here, we recall the elimination ([4], Th.
6.2.6). Let Pw denote the behavior that eliminates c from
Pfull. We choose unimodular matrix U such that UM =
col

(
M1 0

)
with M1 full row rnak. Now, we can get UR =

col
(
R1 R2

)
. Then, we have Pw = Ker(R2).

C = Ker
(
0 C

)
, C ∈ Rc×l[ξ] denote the behavior of

controller. Considering the interconnection of Pfull and C ,
i.e. Pfull∩C , the kernel representation of this interconnetion
describe as the following equation:(

R M
0 C

)(
w
c

)
= 0 (12)

This interconnection is called the partial interconnection. If
p(Pfull)+ p(C ) = p(Pfull ∩C ), we say that the partial in-
terconnection of Pfull and C is regular. We denote Kfull and
(Kfull)w full control specification and control specification.
For given Pfull and (Kfull)w, we say that (Kfull)w is imple-
mentable if there exists C such that (Pfull∩C )w = (Kfull)w.
Necessary and sufficient condition for implementability of
(Kfull)w was obtained in ([9], Th. 1), furthermore, in the
case of general system, was obtained in [15]. Also, we say
that (Kfull)w is regulary implementable if there exists C
such that (Pfull ∩ C )w = (Kfull)w and p(Pfull) + p(C ) =
p(Pfull ∩ C ) [10]. A necessary and sufficient condition for
regularly implementability of (Kfull)w was obtained in ([10],
Th. 4). Here, we give the following theorem.

Theorem 6: Let a minimal representation of the plant
Pfull = Ker

(
R M

)
, R ∈ Rp×q[ξ],M ∈ Rp×l[ξ] and a

specification for the full control Kfull. Assume that we obtain
a minimal representation C = Ker

(
0 C

)
, C ∈ Rc×l[ξ]

such that Pfull ∩ C = Kfull and p(Pfull) + p(C ) =
p(Pfull ∩ C ). Assume that R has full row rank. Then,
the polynomial matrix inducing the minimal representation
P ′

full = Ker
(
R′ M ′) , R′ ∈ Rp×q[ξ],M ′ ∈ Rp×l[ξ] such

that P ′
full ∩ C = Kfull is parametrized as follows using

arbitrary U ∈ Rp×p
U [ξ] and V ∈ Rp×c[ξ]:

R′ = UR, M ′ = UM + V C (13)
Proof: Frist, sufficiency is shown. Let be R′ = UR,M ′ =
UM+V C with arbitrary unimodular matrix U and arbitrary
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polynomial matrix V . In this case, the following calculation
can be performed:(
R′ M ′

0 C

)
=

(
UR UM + V C
0 C

)
=

(
U V
0 I

)(
R M
0 C

)
Because U is unimodular matrix, P ′

full ∩ C = Kfull by
Lemma 1.

Next, necessity is shown. Assume that P ′
full∩C = Kfull.

So, we can get Pfull ∩ C = P ′
full ∩ C . By Lemma 1, there

exists a unimodular matrix U ′ that satisfies the following
equation:(

R′ M ′

0 C

)
= U ′

(
R M
0 C

)
=

(
U11 U12

U21 U22

)(
R M
0 C

)
In the above calculation, U ′ is divided according to the
size of R,M and C. Then, we obtain the following four
equations:

R′ = U11R, 0 = U21R
M ′ = U11M + U12C,C = U21M + U22C

(14)

Second equation of Eq. (14) is solved by U21 = 0 because
R have full row rank. Then, forth equation iof Eq. (14) is
C = U22C. So, we can obtain U22 = I . Moreover, as U ′ is
a unimodular matrix, U11 = U,U22 = V , where U can be
any unimodular matrix and V can be any polynomial matrix.
Thus, we obtain R′ = UR,M ′ = UM + V C.(Q.E.D.)

Given two behaviors Kfull,K ′
full ⊂ Pfull, it is obviously

that (Kfull)w = (K ′
full)w if Kfull = K ′

full. So, by using
theorem 6 we can say that (P ′

full ∩ C )w = (Kfull)w =
(Pfull∩C )w if the polynomial matrix inducing the minimal
representation P ′

full is represented by R′ = UR,M ′ =
UM + V C where U is arbitrary unimodular matrix and V
is arbitrary polynomial matrix. In order to say (Kfull)w =
(K ′

full)w only if Kfull = K ′
full, we need the condition that c

is obsevable from w in Pfull and P ′
full ([8], Lem.18). How-

ever, it should be noted that c is not necessarily observable
from w in P ′

full, even if c is observable from w in Pfull.

V. EXAMPLES

First, we consider a numerical example for Theorem 4.
Let the polynomial matrix inducing the plant behavior P =
Ker(R) be

R =
(
1 ξ − 1

)
(15)

Let the polynomial matrix inducing the control specification
K = Ker(K) be

K =

(
2 ξ − 3
3 ξ − 5

)
. (16)

Now, we parametrize the polynomial matrix inducing the
plant behavior P ′ = Ker(R′) such that P ′ ∩ C = K .
First, we find W using Theorem 1. So, we can get

M =

(
ξ − 1
−1

)
. (17)

Moreover, we find the polynomial matrix Q satisfying next
equation and have full row rank.

QKM = Q

(
2 ξ − 3
3 ξ − 5

)(
ξ − 1
−1

)
= Q

(
ξ + 1

2(ξ + 1)

)
= 0.

(18)
We can get Q =

(
−2 1

)
. Next, we find W such that(

QT WT
)T

is unimodular. We can get

W =
(
1 −1

)
(19)

Now, using Theorem 4, we can get the polynomial matrix

R′ = (U + V F )R+ U ′VWK

=
(
(U + V F )− V U ′ (U + V F )(ξ − 1) + 2V U ′) ,

(20)

where U and U ′ be any real number other than 0, F, V be
any polynomial. For example, choosing U = 1, U ′ = 1, F =
ξ, V = ξ, we get

R′ =
(
ξ2 − ξ + 1 ξ3 − ξ2 + 3ξ − 1

)
. (21)

Also, we can get the polynomial matrix inducing the regular
implementability controller C = Ker(C) as

C = FR+ U ′WK =
(
ξ − 1 ξ2 − ξ + 2

)
(22)

In fact, the determinant of the kernel representation of the
interconnection is calculated as follows:

det

(
R
C

)
= det

(
1 ξ − 1

ξ − 1 ξ2 − ξ + 2

)
= (ξ2 − ξ + 2)− (ξ2 − 2ξ + 1) = ξ + 1,

det

(
R′

C

)
= det

(
ξ2 − ξ + 1 ξ3 − ξ2 + 3ξ − 1

ξ − 1 ξ2 − ξ + 2

)
= (ξ4 − 2ξ3 + 4ξ2 − 3ξ + 2)− (ξ4 − 2ξ3 + 4ξ2 − 4ξ + 1)

= ξ + 1.

From this, we see that the characteristic polymomials of both
of the interconnected systems are the same.

Next, we consider a numerical example for theorem 6.
Let the polynomial matrix inducing the full plant behavior
Pfull = Ker

(
R M

)
be

R =

(
1 0
0 1

)
,M =

(
1 ξ − 1
ξ 0

)
. (23)

Let the polynomial matrix inducing the controller behavior
C = Ker

(
0 C

)
be

C =

(
2ξ + 1 ξ2 − 1
ξ(ξ + 1) 0

)
. (24)

Then, the polynomial matrix inducing the full control spec-
ification Pfull ∩ C = Kfull = Ker(Kf ) be

Kf =


1 0 1 ξ − 1
0 1 ξ 0
0 0 2ξ + 1 ξ2 − 1
0 0 ξ(ξ + 1) 0

 . (25)
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Then, premultiplying the matrix of Eq. (25) by appropri-
ate unimodular matrix, we get the kernel representation of
(Kfull)w:

1 0 0 0
0 1 0 0

ξ + 1 1 −1 0
0 ξ + 1 0 −1



1 0 1 ξ − 1
0 1 ξ 0
0 0 2ξ + 1 ξ2 − 1
0 0 ξ(ξ + 1) 0



=


1 0 1 ξ + 1
0 1 ξ 0

ξ + 1 1 0 0
0 ξ + 1 0 0

 .

(26)

From Eq. (26), we can get (Kfull)w = Ker(K):

K =

(
ξ + 1 1
0 ξ + 1

)
. (27)

Now, using Theorem 6, we can get the polynomial matrices
of P ′

full = Ker
(
R′ M ′):

R′ = U

(
1 0
0 1

)
M ′ = U

(
1 ξ − 1
ξ 0

)
+ V

(
2ξ + 1 ξ2 − 1
ξ(ξ + 1) 0

)
, (28)

where arbitrary U ∈ R2×2
U [ξ] and V ∈ R2×2[ξ]. For example,

we choose U =

(
1 0
ξ 1

)
, V =

(
1 0
0 ξ

)
. So, we can get:

R′ =

(
1 0
ξ 1

)
,M ′ =

(
2(ξ + 1) (ξ − 1)(ξ + 2)

ξ(ξ2 + ξ + 2) ξ(ξ − 1)

)
.

(29)
Then, the polynomial matrix inducing the full control spec-
ification P ′

full ∩ C = K ′
full = Ker(K ′

f ) be:

K ′
f =


1 0 2(ξ + 1) (ξ − 1)(ξ + 2)
ξ 1 ξ(ξ2 + ξ + 2) ξ(ξ − 1)
0 0 2ξ + 1 (ξ − 1)(ξ + 1)
0 0 ξ(ξ + 1) 0

 (30)

Then, premultiplying the matrix of Eq. (30) by appropri-
ate unimodular matrix, we get the kernel representation of
(K ′

full)w:
1 0 −1 0
−ξ 1 ξ −ξ
1 1 −2 −ξ

−ξ(ξ + 1) ξ + 1 ξ(ξ + 1) −(ξ2 + ξ + 1)

×


1 0 2(ξ + 1) (ξ − 1)(ξ + 2)
ξ 1 ξ(ξ2 + ξ + 2) ξ(ξ − 1)
0 0 2ξ + 1 (ξ − 1)(ξ + 1)
0 0 ξ(ξ + 1) 0



=


1 0 1 ξ − 1
0 1 ξ 0

ξ + 1 1 0 0
0 ξ + 1 0 0

 . (31)

Thus, from Eq. (27) and Eq. (31), we can get (Pfull∩C )w =
(P ′

full ∩ C )w.

VI. CONCLUSIONS

In this paper, in a situation where a plant and control
specification are given and a controller that satisfies that
control specification is obtained, we found a parametrization
of the plant that satisfies the same control specification
without changing the controller. Future challenges include
seeking parametrizations with higher generality without con-
sidering regularity. Also, in partial interconnection case,
we introduced only sufficient condition. So, the issue of
considering sufficient and necessary condition with respect to
partial interconnection case remains. Another future direction
is to clarify the relationship with simultaneous stabilization
problem, which is known as one of the unsolved problems
in the control theory. Finding conditions that single con-
troller stabilizes multiple plants is simultaneous stabilization
problem[12][13][14]. In [12][13][14], study simultaneous
stabilization problem using stable proper functions. Also, in
[11], study simultaneous stabilization problem using behav-
ior approach, i.e., polynomial theory.
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