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Abstract— Data-Enabled Predictive Control (DeePC) by-
passes the need for system identification by directly leveraging
raw data to formulate optimal control policies. However, the
size of the optimization problem in DeePC grows linearly with
respect to the data size, which prohibits its application to
resource-constrained systems due to high computational costs.
In this paper, we propose an efficient approximation of DeePC,
whose size is invariant with respect to the amount of data
collected, via differentiable convex programming. Specifically,
the optimization problem in DeePC is decomposed into two
parts: a control objective and a scoring function that evaluates
the likelihood of a guessed I/O sequence, the latter of which
is approximated with a size-invariant learned optimization
problem. The proposed method is validated through numerical
simulations on a quadruple tank system, illustrating that the
learned controller can reduce the computational time of DeePC
by a factor of 5 while maintaining its control performance.

I. INTRODUCTION

Optimal trajectory tracking has long been a fundamental
problem in control systems. Classical model-based control
approaches, such as Model Predictive Control (MPC), typi-
cally rely on a state-space model of the system to predict fu-
ture trajectories and determine the optimal control decision.
However, defining the state space model can be a laborious
part of the control design [1, 2], and even after it is defined,
identifying its parameters from noisy observations is known
to be difficult [3, 4].

In recent years, direct data-driven control [5–8] has
emerged as a promising solution to the aforementioned chal-
lenges, with Data-Enabled Predictive Control (DeePC) [9]
being a representative algorithm encompassing this concept.
A key idea of direct data-driven control is to construct a
non-parametric model of the system using a data matrix
formed by Input/Output (I/O) trajectories of the system
collected in advance. According to Willems’ fundamental
lemma [10], any feasible I/O trajectory of a noise-free linear
system must be spanned by these offline trajectories, as long
as the persistency of excitation condition [11] is satisfied,
which justifies a non-parametric representation. Based on this
non-parametric model, DeePC tackles the tracking problem
by solving an optimization problem in a receding-horizon
manner similarly to MPC, but with the non-parametric model
replacing the state-space model for prediction.
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DeePC has received significant attention from both theo-
retical [12, 13] and empirical [14, 15] perspectives. However,
a notable challenge associated with the practical deployment
of DeePC lies in its computation demand [6, 16, 17]. Since
the I/O data collected from real-world systems are typically
contaminated with noise, a large amount of data is required
to generate an accurate non-parametric model of the system.
However, as the amount of data used for building the non-
parametric model increases, width of the data matrix grows
accordingly, resulting in an increase in the dimension of a
decision variable in DeePC. Therefore, the computational
burden of DeePC scales with the amount of data collected,
which can be prohibitive for real-time applications such as
robotics and power electronics [18].

Previous research efforts have been devoted to mitigating
the computational challenge of DeePC by compressing the
data matrix. On the one hand, for lossless compression, a rep-
resentation of predicted trajectories based on the null-space
of the data matrix is proposed [14]. On the other hand, ap-
proximation methods have been developed to perform lossy
compression of the data matrix, including those based on Sin-
gular Value Decomposition (SVD) [19], Proper Orthogonal
Decomposition (POD) [20], and LQ decomposition [21, 22].
Overall, these methods amount to diminishing the number
of effective trajectory segments in the nonparametric model,
i.e., reducing the width of the data matrix.

In this paper, we propose an alternative view of DeePC: we
show that the DeePC problem is equivalent to minimizing the
sum of a control objective ℓ(τ) and an anomaly metric S(τ),
both as functions of the predicted I/O sequence τ . The former
encompasses the tracking error, the penalty on control effort,
and the constraints on I/O signals, which is independent from
the data collected. The latter maps an I/O sequence to a
scalar representing how unlikely τ is a trajectory generated
by the system, whose evaluation is based on the data. We
dub S(τ) as a scoring function or scoring model, since
it can serve as an oracle whose queries return a score
indicating the fitness of a guessed I/O sequence to the system
dynamics. Although this reformulation is equivalent to the
original DeePC, it motivates us to accelerate computation
of the controller via a learning-based approximation Ŝ(τ)
of the scoring function whose computational complexity
is fixed even with more data collected. Specifically, we
propose to parameterize the approximate scoring function as
a differentiable convex program, and train its parameters via
supervised learning against the true scoring function S. With
our proposed learning objective based on proximal operators,
the minimizer of ℓ + Ŝ is close to the minimizer of ℓ + S,
indicating that the approximate scoring function can be used
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to solve the overall control problem effectively.
An advantage of our approach is its computational merit in

decoupling the scale of the control problem from the amount
of data used. That is, once the form of the approximate
scoring function is determined, one can train its parameters
offline with a large dataset, without affecting the number of
variables or constraints in the control problem to be solved
online. This stands in contrast with the original DeePC,
which, as mentioned, has a set of variables whose dimension
scales with the amount of data. Hence, the learned approx-
imate scoring function Ŝ can be viewed as a condensed
representation of the system dynamics, which, combined
with the control objective, enables computationally efficient
control. The above intuitions are supported by numerical
simulations, which show that our proposed controller can
achieve a similar control performance to DeePC in less
computational time.

Our contributions can be summarized as follows: i) We
present a reformulation of DeePC based on the notion of
scoring model, contributing to a new perspective on the data-
enabled control problem. ii) We propose an approximate
DeePC control law derived from a learning-based approx-
imation of the scoring function. iii) We demonstrate through
numerical simulations that the proposed method can signif-
icantly reduce the computational time required for DeePC,
with only a minor compromise in control performance.

The rest of the paper is organized as follows. Section II
provides a brief overview of the DeePC algorithm and its
computational restriction. Section III presents our learning-
based approximation of DeePC. Section IV presents the
simulation results. Section V concludes the paper.

Notations: The set of all integers is denoted by Z, with
subsets of positive integers and non-negative integers rep-
resented as Z>0 and Z≥0, respectively. In the context of
matrices and vectors, X⊤ denotes the transpose of matrix
X , and X† represents the Moore-Penrose pseudo-inverse of
matrix X . The operator diag(x1, . . . , xn) creates a diagonal
matrix with elements x1, . . . , xn on its diagonal. The indi-
cator function IX (x) equals 0 if x ∈ X and +∞ otherwise.
The subdifferential and proximal operator of a function f
are denoted by ∂f and Proxf , respectively. The operator
col is used to denote the column stack of vectors. I denotes
the identity matrix of appropriate dimension or the identity
operator according to the context. The p-norm of a vector
or matrix or operator is denoted by ∥ · ∥p. The quadratic
form ∥x∥2Q = x⊤Qx signifies the weighted norm squared of
vector x. The symbol ⊗ represents the Kronecker product.
The symbol N (µ,Σ) denotes a Gaussian distribution with
mean µ and covariance Σ.

II. PRELIMINARIES
A. Problem Formulation

In this paper, we consider a discrete-time Linear Time-
Invariant (LTI) system with state-space representation

x(t+ 1) = Ax(t) +Bu(t) + w(t), (1a)
y(t) = Cx(t) + v(t), (1b)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are state-space
matrices, x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are state,
input, and output vectors at time t ∈ Z≥0, respectively, and
w(t)

i.i.d.∼ N (0,Σw) and v(t)
i.i.d.∼ N (0,Σv) are process and

measurement noises. We assume that (A,B) is controllable
and (A,C) is observable.

We consider an optimal tracking problem of the sys-
tem (1), whose objective is to minimize a quadratic function

lim sup
T→∞

1

T

T−1∑
t=0

(
∥y(t)− r∥2Q + ∥u(t)∥2R

)
, (2)

subject to the constraints

y(t) ∈ Y, u(t) ∈ U ,∀t ∈ Z≥0, (3)

where r is a reference signal to be tracked, Y ⊆ Rp and
U ⊆ Rm are convex sets representing the output and input
constraints respectively, and Q ∈ Rp×p, R ∈ Rm×m are
symmetric positive definite weighting matrices.

Remark 1. The reference signal can be a time-varying signal
r(t) for all of the methods in this paper, but we assume that
r is a constant for notational simplicity.

We consider a setting where the state-space representa-
tion (1) is unavailable to the system operator, i.e., none of
the state-space matrices A,B,C, the state vectors x(t), or
the state dimension n is known. Instead, only the input and
output vectors u(t) and y(t) are observed.

B. Data-Enabled Predictive Control (DeePC)

DeePC [23] tackles the aforementioned optimal tracking
problem in a receding horizon manner, where the optimiza-
tion problem described below is solved at every time step t.
We use the convention that the index in the parentheses, e.g.,
y(t), denotes the actual value of the variable at time t., while
the index in subscript, e.g., yk, denotes the predicted value
of the variable at the k-th step in the prediction horizon.

Problem 1 (DeePC Problem at Time Step t).

min
u0:N−1,y0:N−1,g,σy

N−1∑
k=0

(
∥yk − r∥2Q + ∥uk∥2R

)
+

λg1∥g∥1 + λg2∥g∥22 + λy1 ∥σy∥1 + λy2 ∥σy∥22

s.t.

mTini{

mN{

pTini{

pN{


Up

Uf

Yp

Yf


︸ ︷︷ ︸

M

g =


uini

u0:N−1

yini
y0:N−1

+


0
0
σy

0

 ,

uk ∈ U ,∀k ∈ {0, . . . , N − 1}, (4)
yk ∈ Y,∀k ∈ {0, . . . , N − 1}, (5)

where the new notations are defined and explained as fol-
lows:

• N ∈ Z>0 is the prediction horizon, M ∈ Z>0 is the
number of trajectory segments collected offline, and
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Tini ≥ l is the length of the initialization sequence,
where l is the lag [24, Section 7.2] of the system.

• The matrix H ≜
[
U⊤
p U⊤

f Y ⊤
p Y ⊤

f

]⊤
is the data

matrix, each column of which is formed by concatenat-
ing the Input/Output (I/O) signals collected offline at
Tini+N consecutive time steps. We call such a column
a trajectory segment. The data matrix has M columns,
and is partitioned into row block matrices Up, Uf , Yp, Yf ,
with number of rows mTini,mN, pTini, pN respec-
tively, where the subscripts p and f stand for past
and future, respectively. It is assumed that the matrix[
U⊤
p U⊤

f

]⊤
is of full row rank.

• uini ∈ RmTini and yini ∈ RpTini are column vectors
formed by concatenating the I/O signals of the past Tini

time steps, which are inputs to the DeePC problem.
• u0:N−1 ∈ RmN , y0:N−1 ∈ RpN stand for the predicted

I/O sequence over the horizon N , which are optimiza-
tion variables of the DeePC problem. After solving the
DeePC problem, u⋆

0 from the optimal solution is applied
to the system, i.e., u(t) = u⋆

0.
• g ∈ RM and σy ∈ RpN are auxiliary optimization

variables of the DeePC problem, which represent the
coefficients for spanning the predicted I/O trajectory
sequence from the data matrix and the slack variable
for the output constraints, respectively. The scalar pa-
rameters λg1, λg2, λy1, λy2 ∈ R≥0 are predefined coef-
ficients. When brought together, λg1∥g∥1 + λg2∥g∥22 +
λy1 ∥σy∥1+λy2 ∥σy∥22 is viewed as a regularizer essen-
tial for the robustness of the controller in the presence of
noises [6]. In different versions of DeePC, the regular-
izer form has been chosen to be l1-norm [9, 18], squared
l2-norm [19, 20], or the hybrid of both [6]. Therefore,
we adopt a general formulation that can cover the above
cases.

Since the collected I/O data are contaminated with noise,
a large amount of data is required for an accurate non-
parametric representation of the system dynamics. However,
the dimension M of the auxiliary optimization variable g
grows linearly with respect to the amount of data, which
poses a computational challenge to the online optimization
of DeePC.

III. COMPUTATIONALLY EFFICIENT DEEPC VIA
LEARNING-BASED APPROXIMATION

We propose a computationally efficient approximate
DeePC by introducing the notion of the scoring function.
We first show that the DeePC objective can be viewed
as minimizing the sum of the control cost and the score,
and the evaluation of the latter is costly due to the scale
of data matrix. Therefore, we propose to approximate the
scoring function with a reduced-order one via differentiable
convex programming. The parameters of the reduced scoring
function are learned offline. Finally, an approximate control
law is formulated as minimizing the sum of the control cost
and the learned approximate scoring function. The overall
framework is illustrated in Fig 1.

minimize ℓ(τ)

Control Cost

+ S(τ)

Score

DeePC

minimize ℓ(τ) + Ŝ(τ) Ours

Alg. 1

Fig. 1. Illustration of the overall framework. The optimization objective of
DeePC can be split into two parts: the control cost ℓ(τ) and the score
function S(τ). Subsequently, S(τ) is approximated by Ŝ(τ), which is
learned offline. The learning-based efficient approximation of DeePC is
formulated as minimizing the sum of the control cost ℓ(τ) and the learned
approximate score Ŝ(τ).

A. DeePC through the Lens of Scoring Function

Let L = Tini + N be the length of the I/O trajectory
sequence in the data matrix. We denote

τ ≜ col(u,y)

as the predicted I/O trajectory sequence of length L, where
u ∈ RmL and y ∈ RpL are the predicted input and output
sequences, respectively.

We propose to reformulate Problem 1 and separate the
objective into two parts:

min
τ

ℓ(τ) + S(τ), (6)

where the objective functions are defined as

ℓ(τ) = ∥y−r∥2Q+∥u∥2R+I{=τini}(Einiτ)+IUN×YN (ENτ),

S(τ) = min
g,σy

λg1∥g∥1 + λg2∥g∥22 + λy1∥σy∥1 + λy2∥σy∥22,

s.t. Hg + Eσσy = τ, (7)

and r ≜ r ⊗ 1L, Q ≜ Q ⊗ IL, R ≜ R ⊗ IL, Eini ≜[
ImTini

0mTini×mN 0mTini×pTini
0mTini×pN

0pTini×mTini
0pTini×mN IpTini

0pTini×pN

]
,

EN ≜

[
0mN×mTini

ImN 0mN×pTini
0mN×pN

0pN×mTini 0pN×mN 0pN×pTini IpN

]
are selection matrices that extract corresponding
parts of the I/O sequence from τ , and Eσ ≜[
0pTini×mL −IpTini

0pTini×pN

]⊤
. In the notation of

IUN×YN (τ), “×” denotes Cartesian power and UN denotes
N -th Cartesian power of a set U .

Here, ℓ(·) and S(·) fulfill two orthogonal roles:
• ℓ(·) represents the cost function of the control problem,

which is distinct from and unaffected by the system
dynamics.

• S(·) is referred to as the scoring function. For any I/O
trajectory τ , it evaluates the fitness of τ to the trajectory
segments collected in the data matrix. It depends only
on the system and is not influenced by any specific costs
or constraints.

Note that g, σy are auxiliary variables required for the
evaluation of the scoring function, not part of the control
policy, and the dimension of g grows with the number
of trajectory segments in the data matrix. Therefore, we
desire to accelerate the evaluation of S(τ) using a learning-
based approach which approximates the scoring function
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with fewer auxiliary variables. We denote the approximate
scoring function as Ŝ(τ), then the overall control problem
becomes:

min
τ

ℓ(τ) + Ŝ(τ). (8)

B. Learning Objective

Since the approximation goal is to make control input, i.e.,
the optimal solution, of the learned problem min l(τ)+Ŝ(τ)
close to that of min l(τ) + S(τ), we set the learning target
to be minimizing the error between the proximal operators
of the approximate and true scoring functions Ŝ and S.

The proximal operator [25] of Ŝ is defined as:

ProxŜ(τ) = argmin
τ̂

Ŝ(τ̂) +
1

2
∥τ̂ − τ∥2. (9)

Consequently, the optimality condition of (8), i.e, 0 ∈ (∂ℓ+
∂Ŝ)(τ̂⋆), can be equivalently expressed with the proximal
operators of ℓ and Ŝ using operator splitting methods.
Therefore, the optimal solution τ̂⋆ to (8) can be determined
once ProxŜ is given.

C. Approximator Form: Differentiable Convex Program

Given the learning target ProxS , the subsequent step is
to select a parameterized family of Ŝ that satisfies the
following conditions: i) Ŝ(τ) is capable of approximately
representing the true scoring function S(τ); ii) Ŝ is a convex
function of τ , and ProxŜ can be easily parameterized; iii) the
control problem minτ ℓ(τ)+Ŝ(τ) should be computationally
tractable. Considering the above requirements, we adopt a
differentiable convex programming approach to represent Ŝ.
Specially, we adopt the following form:

Ŝ(τ) = min
z∈Rnz

∥ diag(d1)z∥1 + ∥ diag(d2)z∥22 (10a)

s.t. Gz +Wτ = 0. (10b)

Here, Ŝ is a mapping from an I/O sequence τ to a scalar
standing for the optimal value of a convex optimization
problem with nz variables and mz constraints, whose de-
cision variable is z and whose parameters include τ as
well as learnable parameters d1 ∈ Rnz , d2 ∈ Rnz , G ∈
Rmz×nz ,W ∈ Rmz×L(m+p). To train the differentiable
convex program means to update the parameters d1, d2, G,W
via gradient-based methods, such that the learning target
(ProxŜ ≈ ProxS in our case) is achieved. The size of the
convex program, i.e., nz and mz , can be arbitrarily chosen
according to a trade-off between the approximation accuracy
and the computational cost, but once fixed, it is invariant
against the amount of data used for training.

We first show that the chosen form of Ŝ has adequate
representational power to approximate S:

Proposition 1. With sufficiently large nz and mz , the true
S(τ) is representable by (10).

Proof. Let d1 = [λg1, . . . , λg1︸ ︷︷ ︸
M times

, λσy1 , . . . , λσy1︸ ︷︷ ︸
pTini times

]⊤, d2 =

[
√

λg2, . . . ,
√
λg2︸ ︷︷ ︸

M times

,
√

λσy2
, . . . ,

√
λσy2︸ ︷︷ ︸

pTini times

]⊤, G =
[
H Eσ

]
,

W = −I(m+p)L, then Ŝ(τ) defined in (10) is equivalent
to S(τ). Therefore, the true S(τ) can be representable by
(10) with nz ≥ M + pTini and mz ≥ (m+ p)L.

We next show how to evaluate and learn the proximal
operator of the function Ŝ given in (10). By definition (9) of
proximal operator, we have:

(z⋆, τ̂⋆) = argmin
z,τ̂

∥ diag(d1)z∥1 + ∥ diag(d2)z∥22+

∥τ̂ − τ∥2/2, s.t. Gz +Wτ̂ = 0.

ProxŜ(τ) = τ̂⋆. (11)

To evaluate (11) and find the gradient of τ⋆ with respect to
the learnable parameters d1, d2, G,W , we adopt an algorithm
unrolling [26, 27] approach, which has been proved efficient
for controller learning [28]. In particular, we unroll the
Douglas-Rachford Splitting (DRS) [29], which, when applied
to the problem (11), yields the following iterations:[

zk+
1
2

τ̂k+
1
2

]
=

[
shd1,d2

(ξk)
τ+ηk

2

]
, (12a)[

zk+1

τ̂k+1

]
=

(
I − G̃†G̃

)[
2zk+

1
2 − ξk

2τ̂k+
1
2 − ηk

]
, (12b)[

ξk+1

ηk+1

]
=

[
ξk + zk+1 − zk+

1
2

ηk + τ̂k+1 − τ̂k+
1
2

]
, (12c)

where ξ, η are auxiliary variables, G̃ =
[
G W

]
, and the

soft-thresholding operator shd1,d2
(x) is defined as:

shd1,d2
(x)i =


xi−|d1i|
1+2(d2i)

2 if xi − |d1i| > 0,
xi+|d1i|
1+2(d2i)

2 if xi + |d1i| < 0,

0 otherwise .

(13)

Here, d1i and d2i are the i-th elements of d1 and d2,
respectively.

The unrolled iterations resemble a deep neural network
that interleaves affine transformations with soft-thresholding
nonlinearities, whose weights are functions of the learnable
parameters d1, d2, G,W . This resemblance, visualized in
Fig 2, facilitates the training of the learnable parameters
using established deep learning frameworks.

Affine Affine Affine

d1, d2

G,W

(z0, τ̂0,
ξ0, η0)

τ

(z⋆, τ̂⋆,
ξ⋆, η⋆)

. . .

Fig. 2. Illustration of evaluating ProxŜ with unrolled DRS iterations.
The input is an I/O sequence τ and the initial values of z, τ, ξ, η, and
the output is ProxŜ(τ), denoted as τ̂⋆. The learnable parameters are
d1, d2, G,W . is the soft-thresholding operator (13), and the Affine block
is the composition of all affine transformations in each iteration (12).
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D. Learning Algorithm

Given a data matrix H consisting of I/O trajectory se-
quences, we first collect a dataset D of I/O trajectory
sequences by linear combination of the trajectories in H
and adding random noise to the trajectories to increase the
diversity of the dataset. Then, we compute the ground truth
ProxS(τ) for each trajectory τ in D. Finally, we learn the
parameters θ = (d1, d2, G,W ) of the approximate scoring
function Ŝ by minimizing the mean squared error between
ProxŜ and the ground truth ProxS across all entries in the
dataset D.

The learning procedure is summarized in Algorithm 1.

Algorithm 1: Framework for Learning the Scoring
Function

Input: Data matrix H consisting of I/O trajectory
sequences, regularization parameters
λg1, λg2, λy1, λy2

Output: Approximate scoring function parameters
θ = (d1, d2, G,W )

1 Collect a dataset D of I/O trajectory sequences by
applying different noises to the trajectories in H.

2 Compute ProxS(τ) for each trajectory τ in D.
3 Randomly initialize the parameters

θ = (d1, d2, G,W ).
4 for epoch = 1, 2, . . . do
5 Solve Problem 11 to obtain ProxŜ(τ) for each

trajectory τ in D.
6 Compute the mean squared error denoted by

ℓmse(θ;D) =
∑

τ∈D ∥ProxS(τ)− ProxŜ(τ)∥22.
7 Update θ according to the gradient of the loss

function ℓmse(θ;D).
8 end

Note that learning the approximate scoring function is an
offline process, and the learned parameters θ are used to
substitute the original scoring function S(τ) to solve the
overall control problem (8) online.

IV. SIMULATION
In this section, we present the simulation results to demon-

strate the effectiveness of our approach. All computations are
performed on a computer with an AMD Ryzen 9 5900X
Processor clocked at 3.7GHz. All controllers are imple-
mented using the MOSEK optimizer. Our code is available
at https://github.com/zhou-yh19/redpc.

Consider a quadruple-tank system [30] whose simulation
employs the same linearized system equations and system
parameters as the LTI system used in [19]:

A =


0.921 0 0.041 0
0 0.918 0 0.033
0 0 0.924 0
0 0 0 0.937

 ,

B =


0.017 0.001
0.001 0.023
0 0.061

0.072 0

 , C =

[
1 0 0 0
0 1 0 0

]
.

The system is subject to process noise w(t) ∼
N (0, 0.01I4) and measurement noise v(t) ∼ N (0, 0.1I2).

We follow the same setting as in [19], with the control
cost matrices Q = 35 · I2 and R = 10−4I2, the control
input and output constraints U = Y = [−2, 2]2, the setpoint
r(t) =

[
0.65, 0.77

]T
, the prediction horizon N = 20, and

the initial sequence length Tini = 10.
Data Collection: The dataset is collected by simulating

the system with random inputs generated by sampling from
a uniform distribution over U . The corresponding outputs are
recorded during the simulation. In total, we collect 1500 I/O
data points, which are subsequently organized into the data
matrix H in the form of Hankel matrix.

We choose the regularization parameters of DeePC as
λg1 = 1, λg2 = 100, λy1 = 100, λy2 = 100000. And the
approximate scoring function is learned with mz = 55, nz =
110 and DRS iteration number 20. The training procedure
is completed within 260s on a single NVIDIA GeForce
RTX 4090 GPU. Fig 3 illustrates the first two states of the
system under the control of both the DeePC controller and
our proposed approach. The results demonstrate that both
controllers track the setpoint effectively.

0 50 100
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x
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DeePC
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x2

0 50 100

0

0.2

0.4

0.6

0.8

t

x
(t
)

Ours

x1

x2

Fig. 3. Tracking performance of DeePC and our approach.

In Table I, we benchmark the control performance of our
method with DeePC and MPC, detailing the sample average
accumulative cost 1

K

∑
k

∑
t

(
∥y(t)− r(t)∥2Q + ∥u(t)∥2R

)
,

the average and worst computation time per step. Our ap-
proach achieves control performance comparable to MPC
and DeePC, while significantly enhancing computational
efficiency.

TABLE I
PERFORMANCE COMPARISON OF DEEPC, MPC, AND OURS

Metrics
Method

MPC DeePC Ours

Average Accumulative Cost 305.00 290.68 296.25
Average Computation Time (ms) 96.35 153.71 30.41
Worst Computation Time (ms) 136.45 280.44 80.7

For the MPC, we assume the precise model of the system is available and
update the control input with the true state at each step. To be consistent
with the DeePC formulation, the MPC does not incorporate a terminal
cost and the horizon is set to 20.

Furthermore, we train the approximate scoring function
of different sizes with the data matrix H and evaluate their
performance on the control task. For comparison, we truncate
the columns of H to adjust the number of I/O sequences used
in DeePC. The results are shown in Fig. 4.
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Fig. 4. Comparison of the cost-time curves between DeePC and our
approach. The average computation time for DeePC is influenced by the
number of I/O sequences in the data matrix, whereas our approach’s
computation time primarily depends on the size of the learned approximate
scoring function.

For DeePC, an increase in the number of I/O sequences in
the data matrix results in better control performance but also
longer computation time. For our approach, the computation
time is mainly determined by the size of the learned approx-
imate scoring function, and there is also trade-off between
control performance and computation time. Nevertheless, it
can be observed that under the same computational time
constraints, our method achieves superior control perfor-
mance compared to DeePC, and when aiming for compa-
rable control quality, our approach significantly reduces the
computation time. This demonstrates the effectiveness of
our approach in enhancing the computational efficiency of
DeePC while maintaining control performance.

V. CONCLUSIONS

In this paper, we propose a computationally efficient
approximate DeePC by introducing the notion of the scoring
function and replacing it with a learned approximate one via
differentiable convex programming. The parameters of the
reduced scoring function are learned offline, and the control
law is formulated as minimizing the sum of the control cost
and the learned approximate scoring function. Simulation
results demonstrate our approach can achieve a comparable
tracking performance to DeePC while significantly reducing
the computation time. In the future, we will apply our
approach to the real-world control problems and investigate
the generalization ability of the learned approximate scoring
function.

REFERENCES

[1] H. Hjalmarsson, “From experiment design to closed-loop control,”
Automatica, vol. 41, no. 3, pp. 393–438, 2005.

[2] B. A. Ogunnaike, “A contemporary industrial perspective on process
control theory and practice,” Annual Reviews in Control, vol. 20, pp.
1–8, 1996.

[3] A. Tsiamis and G. J. Pappas, “Linear systems can be hard to learn,” in
2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
2021, pp. 2903–2910.

[4] J. Li, S. Sun, and Y. Mo, “Fundamental limit on siso system iden-
tification,” in 2022 IEEE 61st Conference on Decision and Control
(CDC). IEEE, 2022, pp. 856–861.

[5] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality, and robustness,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 909–924, 2019.

[6] F. Dörfler, J. Coulson, and I. Markovsky, “Bridging direct and indirect
data-driven control formulations via regularizations and relaxations,”
IEEE Transactions on Automatic Control, vol. 68, no. 2, pp. 883–897,
2022.

[7] F. Zhao, F. Dörfler, A. Chiuso, and K. You, “Data-enabled policy
optimization for direct adaptive learning of the lqr,” arXiv preprint
arXiv:2401.14871, 2024.

[8] Y. Wang, K. You, D. Huang, and C. Shang, “Data-driven output
prediction and control of stochastic systems: An innovation-based
approach,” Automatica, vol. 171, p. 111897, 2025.

[9] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive
control: In the shallows of the deepc,” in 2019 18th European Control
Conference (ECC). IEEE, 2019, pp. 307–312.

[10] J. C. Willems and J. W. Polderman, Introduction to mathematical
systems theory: a behavioral approach. Springer Science & Business
Media, 1997, vol. 26.

[11] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. De Moor, “A
note on persistency of excitation,” Systems & Control Letters, vol. 54,
no. 4, pp. 325–329, 2005.
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