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Abstract— This work focuses on the generic identifiability of
dynamical networks with partial excitation and measurement: a
set of nodes are interconnected by transfer functions according
to a known topology, some nodes are excited, some are mea-
sured, and only a part of the transfer functions are known. Our
goal is to determine whether the unknown transfer functions
can be generically recovered based on the input-output data
collected from the excited and measured nodes.

We introduce the notion of separable networks, for which
global and so-called local identifiability are equivalent. A
novel approach yields a necessary and sufficient combinatorial
characterization for local identifiability for such graphs, in
terms of existence of paths and conditions on their parity.
Furthermore, this yields a necessary condition not only for
separable networks, but for networks of any topology.

I. INTRODUCTION

This paper addresses the identifiability of dynamical net-
works in which node signals are connected by causal linear
time-invariant transfer functions, and can be excited and/or
measured. Such networks can be modeled as directed graphs
where each edge carries a transfer function, and known
excitations and measurements are applied at certain nodes.

A. Problem Statement

We consider the identifiability of a network matrix G(q),
where the network is made up of n node signals stacked
in the vector w(t) = [w1(t) w2(t) · · · wn(t)]

⊤, known
external excitation signals r(t), measured node signals y(t)
and unmeasured noise v(t) related to each other by:

w(t) = G(q)w(t) +Br(t) + v(t)

y(t) = Cw(t),
(1)

where matrices B and C are binary selections indicating
respectively the nB excited and nC measured nodes, forming
sets B and C respectively. Matrix B is full column rank and
each column contains one 1 and n − 1 zeros. Matrix C is
full row rank and each row contains one 1 and n− 1 zeros.

The nonzero entries of the transfer matrix G(q) define
the network topology: Gij(q) is the transfer function from
node j to node i. It is represented by an edge (j, i) ∈ E
in the graph, where E is the set of all edges, each corre-
sponding to a nonzero entry of G(q). Some of those transfer
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functions are known and collected in the matrix G•(q), and
the others unknown, collected in matrix G◦(q), such that
G(q) = G•(q) + G◦(q). The known edges (i.e. the edges
corresponding to known transfer functions) are collected in
set E•, the unknown ones in E◦, and they form a partition
of the set of all edges E = {E•, E◦}. We denote the number
of unknown transfer functions by m◦ ≜ |E◦|.

We assume that the input-output relations between the
excitations r and measurements y have been identified, and
that the network topology is known. From this knowledge,
we aim at recovering the unknown transfer functions G◦(q).

B. State of the Art

The model (1) has recently been the object of a significant
research effort. Network identifiability was first introduced in
[1], in case the whole network is to be recovered. Conditions
for the identification of a single transfer function are derived
in [2], [3]. Studying the influence of rank-reduced or corre-
lated noise under certain assumptions yields less conservative
identifiability conditions [4]–[7].

It turns out that under some assumptions, identifiability
of the network, i.e. the ability to recover a transfer function
or the whole network from the input-output relation, is a
generic notion: Either almost all transfer matrices corre-
sponding to a given network structure are identifiable, in
which case the structure is called generically identifiable,
or none of them are. A number of works study generic
identifiability when all nodes are excited or all nodes are
measured, i.e. when B or C = I [8], [9]. Considering
the graph of the network, path-based conditions on the
allocation of measurements (resp. excitations) in the case of
full excitation (resp. measurement) are derived in [10] (resp.
[11]). Reformulating these conditions by means of disjoint
trees in the graph, the authors of [12]–[14] develop scalable
algorithms to allocate excitations/measurements in case of
full measurement/excitation. In case of full measurement,
[15] derives path-based conditions for the generic identifi-
ability of a subset of transfer functions, with noise.

While the conditions in [10], [11] apply to generic identi-
fiability i.e. for almost all transfer functions, [16] extends
these results to the stronger requirement of identifiability
for all (nonzero) transfer matrices corresponding to a given
structure, and [17] provides conditions for the outgoing edges
of a node, and the whole network under the same conditions.

As mentioned, the common assumption in all these works
is that is that either all nodes are excited, or they are all mea-
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sured. In [18], this assumption is relaxed and generic identi-
fiability with partial excitation and measurement is addressed
for particular network topologies. For acyclic networks, [19]
gives necessary conditions, introduces the transpose network
and shows that identifiability of the transpose network and
its original network is equivalent.

For an arbitrary topology, [20] provides for noise ex-
ploitation an elegant reformulation as an equivalent network
model, where noise is cast into excitation signals. [21]–[23]
provide necessary conditions for network identifiability, but
do not handle a priori known/fixed transfer functions, which
could lead to less conservative conditions.

In the general case of arbitrary topology, partial excitation
and measurement, we introduced in [24] the notion of local
identifiability, i.e. only on a neighborhood of G(q). Local
identifiability is a generic property, necessary for generic
identifiability and no counterexample to sufficiency is known
to the authors, i.e. no network which is locally identifiable
but not globally identifiable. We derived algebraic necessary
and sufficient conditions for generic local identifiability for
both the whole network, and a single transfer function.

The algebraic conditions of [24] allow rapidly testing local
identifiability for any given network, but finding a graph-
theoretical characterization, akin to what was done in the full
excitation case [10], remains an open question, even though
it is known that the property depends solely on the graph.
Such characterization would in particular pave the way for
optimizing the selection of nodes to be excited and measured,
alike the work in [11] in the full measurement case.

In this line of work, we introduced in [25] decoupled
identifiability, necessary for local identifiability, see Section
II. We extended the algebraic characterization of [24] when
some transfer functions are known/fixed a priori, and devel-
oped it in terms of closed-loop transfer matrices T (G) =
(I−G)−1, which led to some necessary and some sufficient
path-based conditions for decoupled identifiability.

An approach different to all that precedes is to that
network dynamics are known, and aim at identifying the
topology from input/output data. This problem is referred
to as topology identification, and is addressed in e.g. [26],
[27]. [28] studies diffusively coupled linear networks, which
can be represented by undirected graphs.

In this paper, we introduce separable networks, which are
a generalization of the decoupled version of the network,
allowing for different topologies in excited and measured
subgraphs, see Section III and Fig. 1. Thanks to their partic-
ular structure, global and local identifiability are equivalent
on those networks, thus global identifiability can be studied
with the algebraic tools of [24].

We obtain a necessary and sufficient combinatorial char-
acterization of global identifiability, in terms of existence of
paths and conditions on their parity. Since the decoupled
network is a particular case of separable network, this
condition can be formulated on the decoupled network of

networks of any topology, not only separable networks. And
generic decoupled identifiability is necessary for generic
global identifiability [25], hence the necessary condition
applies to a network of any topology.

C. Framework

Assumptions: We consider model (1). Consistently with
previous work (e.g. [9], [10], [17]), we assume:

1) The network is well-posed and stable, that is (I −
G(q))−1 is proper and stable.

2) All the entries of G(q) are proper transfer functions.
3) The network is stable in the following sense : |λi| < 1

for each eigenvalue λi of G.

Throughout the paper, we develop our results without
exploiting noise signals. However, under some mild assump-
tions, noise signals v(t) can play the same role as excitation
signals, as [20]: the network is reformulated as an equivalent
network model, where noise is cast into excitations.

We suppose that there are exactly nBnC unknown trans-
fer functions, i.e. as many as the number of (excitation -
measurement) pairs, and we address the identifiability of
the whole network, i.e. all unknown transfer functions. If
there are more unknown transfer functions, then it is not
identifiable since there are more unknowns than (input,
output) data.

Genericity: We will focus on generic properties: we say
that a property is generic if it either holds (i) for almost all
variables, i.e for all variables except possibly those lying on
a lower-dimensional set [29], [30] (i.e. a set of dimension
lower than m◦, the number of unknown transfer functions),
or (ii) for no variable. For example, take a polynomial p.
The nonzeroness of p(x) is a generic property of x: either
(i) p(x) ̸= 0 for all x except its roots, or (ii) p is the zero
polynomial, which returns zero for all x.

Consistently with [24], [25], we consider a single fre-
quency: instead of working with transfer functions Gij(q)
and their transfer matrix G(q), we work with scalar values
Gij and their matrix G ∈ Cn×n. Conceptually, our generic
results directly extend to the transfer function case: if one
can recover a Gij(z) at a given frequency z for almost all
G consistent with a network, then one can also recover it
at all other frequencies. In the remainder, for the sake of
simplicity, we work in the scalar setup, hence omit the (q).

The framework of this paper is summarized below:
• Partial excitation and measurement
• Allows for the presence of known transfer functions

next to the unknown ones
• No use of noise, scalar setup
• Global identifiability on separable networks
⇒ Applies on decoupled identifiability of all networks

• Generic identifiability of the whole network
• We assume nBnC = m◦, i.e. as much data as unknowns
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II. IDENTIFIABILITY

We remind different notions of identifiability relevant to
our work [1], [10], [24], [25]. In order to lighten notations,
we denote T (G) = (I −G)−1.

Definition 1: A network is globally identifiable at G from
excitations B and measurements C if, for all network matrix
G̃ with same zero and known entries as G, there holds

C T (G̃)B = C T (G)B ⇒ G̃◦ = G◦, (2)

where matrices B and C are binary selections indicating
respectively the excited and measured nodes, forming sets
B and C respectively. C T (G)B is the global transfer ma-
trix between input and output. The network is generically
globally identifiable if it is identifiable at almost all G.

This definition extends [10] to the case where some
transfer functions are known (G•), and some are not (G◦),
as in [2]. We call global identifiability this standard notion
of identifiability, to avoid confusion with local identifiability
[24], which corresponds to identifiability provided that G̃ is
sufficiently close to G. Local identifiability is necessary for
global identifiability, and no counter-example to sufficiency
is known.

Definition 2: A network is locally identifiable at G from
excitations B and measurements C if there exists ϵ > 0
such that for any G̃ with same zero and known entries as G
satisfying ||G̃−G|| < ϵ, there holds

C T (G̃)B = C T (G)B ⇒ G̃◦ = G◦. (3)

The network is generically locally identifiable if it is locally
identifiable at almost all G.

Local identifiability can be characterized algebraically
based on the matrix K:

K(G) ≜
(
B⊤T⊤(G)⊗ C T (G)

)
IG◦ , (4)

where we remind that T (G) = (I−G)−1, symbol ⊗ denotes
the Kronecker product and the matrix IG◦ ∈ {0, 1}n2×m◦

selects only the columns of the preceding nBnC×n2 matrix
corresponding to unknown modules [25].

Theorem 2.1: (Corollary 4.1 in [24])
Exactly one of the two following holds:

(i) rank K = m◦ for almost all G and G◦ is locally
identifiable at almost all G;

(ii) rank K < m◦ for all G and G◦ is locally non-
identifiable at all G, therefore globally non-identifiable
at all G.

Moreover, rank K = m◦ is equivalent to the following
implication holding for all ∆ with same zero entries as G◦:

C T (G)∆T (G)B = 0 ⇒ ∆ = 0. (5)

Equation (5) suggests the definition of a new notion, where
the two matrices T (G) of (5) do not need to have the same
parameters anymore: this notion is decoupled identifiability.

Definition 3: A network is decoupled-identifiable at (G,
G′), with G and G′ sharing the same zero entries, if for all
∆ with same zero entries as G◦, there holds:

C T (G)∆T (G′)B = 0 ⇒ ∆ = 0. (6)

Decoupled identifiability, initially introduced for purely
algebraic reasons, can be interpreted in terms of the iden-
tifiability of a larger network: the decoupled network.

Definition 4: Consider a network of n nodes with exci-
tation matrix B, measurement matrix C and network matrix
G = G• + G◦, where G• collects the known modules and
G◦ collects the unknown modules. Its decoupled network is
composed of 2n nodes: {1, . . . , n, 1′, . . . , n′}. Its network
matrix is defined by

Ĝ(G,G′) ≜

[
G G◦

0 G′

]
,

where G′ has the same zero entries as G. Transfer matrices
G and G′ are considered as known, while G◦ contains
the unknown modules. Excitations are applied on the first
subgraph (G′), and measurements on the second one (G),
i.e. its excitation and measurement matrices are

B̂ ≜

[
0 0
0 B

]
, Ĉ ≜

[
C 0
0 0

]
.

The proposition below relates the notion of decoupled
identifiability with the decoupled network we just introduced.

Proposition 2.1: (Proposition 3.3 in [25]) The network
G is generically decoupled-identifiable if and only if its
decoupled network Ĝ is generically globally identifiable.

Generic decoupled identifiability is necessary for generic
local identifiability (which is itself necessary for generic
global identifiability) [25]. No counterexample to sufficiency
is known to the authors, despite extensive systematic numer-
ical tests, available in [31].

Proposition 2.2: (Proposition 3.2 in [25]) If a network
is generically locally identifiable, then it is generically
decoupled-identifiable.

III. SEPARABLE NETWORKS

We now introduce separable networks, which are a gen-
eralization of decoupled networks, where the excited and
measured subgraphs are not required to have the same
topology anymore. A separable network is a network for
which excitations and measurement can be isolated in two
distinct subgraphs, with no known transfer function linking
the two subgraphs. Between the two subgraphs lie all the
unknown transfer functions, going from the excited subgraph
to the measured one. A formal definition in terms of network
matrices is given below, and an example is given in Fig. 1.

Definition 5: A separable network is a network whose
matrices have the following block structure:

G =

[
GC G⊙

0 GB

]
, G• =

[
GC 0
0 GB

]
, G◦ =

[
0 G⊙

0 0

]
,

B =

[
0 0
0 B†

]
, C =

[
C† 0
0 0

]
. (7)
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CB

GB GCG⊙

Fig. 1: An example of separable network: the excitations
B are isolated in one subgraph, and the measurements C in
another subgraph. The unknown transfer functions, in dashed
orange, link the excited subgraph to the measured one.

We have the following important property: on separable
networks, global and local identifiability are equivalent.

Proposition 3.1: A separable network is locally identifi-
able at G at if and only if it is globally identifiable at G.

Proof: Consider a separable network: its matrices have
the block structure described in (7). From Definition 1, the
network is generically identifiable at G if, for all G̃◦ with
same zero entries as G◦, there holds

C (I − G̃)−1 B = C (I −G)−1 B ⇒ G̃◦ = G◦ (8)

where matrices C,B,G and G◦ have the block structure of

(7), and G̃ =

[
GC G̃⊙

0 GB

]
.

Developing (8) from the block structure of (7) yields

C† T (GC) G̃
⊙ T (GB)B

† = C† T (GC)G
⊙ T (GB)B

†

⇒ G̃⊙ = G⊙,

and bringing out common terms gives

C† T (GC) (G̃
⊙ −G⊙)︸ ︷︷ ︸
≜∆

T (GB)B
† = 0

⇒ G̃⊙ −G⊙︸ ︷︷ ︸
=∆

= 0,

which is exactly what we obtain by developing (5) with the
block structure of (7). To conclude, we know from Theorem
2.1 that (5) is a necessary and sufficient condition for local
identifiability.

Since m◦ = nBnC , K introduced in (4) is a square matrix,
hence rank K = m◦ is equivalent to detK ̸= 0. Theorem
2.1 can then be rewritten in terms of the determinant. In
addition, since we work on separable networks, global and
local identifiability are equivalent, hence the theorem below
characterizes global identifiability.

Theorem 3.1: Consider a separable network. Exactly one
of the two following holds:

(i) detK ̸= 0 for almost all G and G◦ is globally
identifiable at almost all G;

(ii) detK = 0 for all G and G◦ is globally non-identifiable
at all G.

Moreover, detK = m◦ is equivalent to the following
implication holding for all ∆ with same zero entries as G◦:

C† T (GC)∆T (GB)B
† = 0 ⇒ ∆ = 0. (9)

IV. COMBINATORIAL CHARACTERIZATION

We are now going to derive a combinatorial characteri-
zation based on a re-expression of the determinant of K.
The closed-loop transfer function Tji is expressed in terms
of transfer functions Gji in the following way. The analytic
matrix T (G) can be expanded in the Taylor series

T (G) = (I −G)−1 = I +

∞∑
k=1

Gk, (10)

which converges since the spectral radius of G is strictly
smaller than one, see Assumption 3) in Section I-C. A
classical result in graph theory is that [Gk]ji is the sum of
all paths from i to j of length k:

[Gk]ji =
∑

all k-paths
i→j

Gj∗ . . . G∗i︸ ︷︷ ︸
k terms

, (11)

where the notation ∗ denotes some node of the network,
which can be different for each occurence of ∗. Combining
(10) and (11) gives the following lemma, which extends
Lemma 2 of [19] for networks with cycles.

Lemma 4.1: [19] Consider the closed-loop transfer ma-
trix T (G) = (I −G)−1. Its entries are given as follows:

1) if there is no path from i to j, Tji = 0
2) otherwise, Tji is the (possibly infinite) sum of all the

paths from i to j:

Tji =
∑

all paths
i→j

Gj∗ . . . G∗i. (12)

In the sequel we refer to the unknown transfer functions
G◦

ji as unknown edges α. We develop detK as the sum over
all possible row-column permutations by Leibniz formula1:

detK =
∑
σ∈S

sgn(σ)
∏
α∈E◦

TσC(α),α Tα,σB(α), (13)

where each row-column permutation corresponds to a bijec-
tive assignation σ : E◦ → B×C, i.e. between unknown edges
and (excitation - measurement) pairs. S denotes the set of all
such bijective assignations, σB(α) is the excitation assigned
to edge α by assignation σ and σC(α) is its measurement.
The sign sgn(σ) equals +1 if the number of transpositions
in assignation σ is even, and −1 otherwise. A transposition
is the swap of two elements, and each σ is obtained by
combining a certain number of transpositions.

1Tα,σB(α) is the transfer function between σB(α), and start node of
edge α, and TσC(α),α is the one between end node of edge α and σC(α).
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The Leibniz formula (13) can be further developed by
plugging (12) in the equation. The analysis is no longer made
on the Tji, detK is now expressed in terms of paths of
transfer functions Gji

2:

detK =
∑
σ∈S

sgn(σ)
∏
α∈E◦

[( ∑
all paths

α→σC(α)

GσC(α),∗ . . . G∗,α

)

·
( ∑

all paths
σB(α)→α

Gα,∗ . . . G∗,σB(α)

)]

This expression can be conveniently re-expressed using
the notion of collections of paths, that we introduce below.

Definition 6: A collection of paths π is a set of m◦ paths
πi (one πi for each unknown edge), where each path πi is
a sequence of connected edges that starts at an excited node
(i.e. in B), and ends at a measured node (i.e. in C). Since we
work on separable networks, each πi goes through one and
only one unknown edge.
We say that π is bijective if no two paths of π start at the
same excitation and end at the same measurement.

Distributing the product over all unknown edges α gives

detK =
∑
σ∈S

sgn(σ)
∑
π∈Πσ

µ(π),

where π is a bijective collection of paths, as defined in Def-
inition 6, Πσ is the set of all π corresponding to assignation
σ and µ(π) is the monomial corresponding to π:

µ(π) ≜
∏
α∈E◦

GπC(α),∗ ... G∗,α ·Gα,∗ ... G∗,πB(α) (14)

where πB(α) and πC(α) are respectively the starting and
ending node of the path going through α in π, and the
transfer functions Gji may appear several times in µ(π),
which would mean that it is taken several times by π.

From (14), we group by monomials of same π: instead of
summing over σ and then over π, we sum directly over π:

detK =
∑
π∈Π

sgn(π)µ(π), (15)

where Π is the set of all bijective collection of paths π. As
π derives from an assignation σ, its monomial has a sign,
denoted by sgn(π).

Observe that from a same group of edges it may be
possible to build different bijective π (this will be the case
e.g. when two paths cross multiple times), so that these
different π will have the same monomial µ. Hence we
regroup the same monomials together:

detK =
∑
µ∈M

( ∑
π∈Πµ

sgn(π)

)
µ, (16)

2Gα,∗ stands for the transfer function from a node ∗ to start node of
edge α, and G∗,α denotes the one from end node of edge α to a node ∗.

where M is the set of all monomials µ corresponding to
bijective collections of paths, and Πµ is the set of all bijective
collections of paths π corresponding to monomial µ. We
define the repetition r(µ) ≜

∑
π∈Πµ

sgn(π), which allows
to rewrite (16) in a compact way:

detK =
∑
µ∈M

r(µ)µ. (17)

As seen in Theorem 3.1, detK encodes the global (non)-
identifiability of separable networks. Hence equation (17)
allows providing a necessary and sufficient combinatorial
characterization of global identifiability, in terms of the
repetition r(µ).

Theorem 4.1: Consider a separable network. It is gener-
ically globally identifiable if and only if there is at least one
monomial µ ∈ M such that its repetition r(µ) ̸= 0.

Proof: From Theorem 3.1, we know that a separable
network is generically globally identifiable if and only if
detK ̸= 0 for almost all G. Equation (17) expresses detK
as a sum over all monomials µ, weighted by their repetition
r(µ). A sum of distinct monomials is generically nonzero
if and only if at least one of the monomials has a nonzero
coefficient. Therefore, for this sum to be nonzero for almost
all G, at least one µ must have a nonzero repetition r(µ)

Since the decoupled network is a particular case of sep-
arable network, this condition can be formulated on the
decoupled network of a network G of any topology, not only
separable networks. And generic decoupled identifiability is
necessary for generic global identifiability [25], hence the
necessary condition of Theorem 4.1, formulated on decou-
pled network Ĝ, applies to a network G of any topology.

Theorem 4.1 gives a necessary and sufficient combinatorial
characterization, but building an efficient algorithm to check
this condition remains an open question.

V. CONCLUSION

This work was motivated by one main open question:
determining path-based conditions for generic identifiability
of networked systems.

Introducing separable networks allowed to address global
identifiability of such graphs using the algebraic tools of
local identifiability. A new approach led to a necessary and
sufficient combinatorial characterization of identifiability, in
terms of existence of paths and conditions on their parity.

Furthermore, this necessary condition not only applies
to separable networks, but to networks of any topology.
It follows from the fact that the decoupled network is a
particular case of separable networks, and generic decoupled
identifiability is necessary for generic global identifiability.

A further open question is whether our necessary and suf-
ficient combinatorial characterization can be algorithmically
checked. Also, we would like to establish the equivalence
(or not) between the notions introduced here and local
identifiability for a general network.
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