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Abstract— Routing control is one of important traffic man-
agement strategies against urban congestion. However, it could
be compromised by heterogeneous driver non-compliance with
routing instructions. In this article, we model the compliance
in a stochastic manner and investigate its impacts on routing
control. We consider traffic routing for two parallel links.
Particularly, we consider two scenarios: one ignores congestion
spillback while the other one considers it. We formulate the
problem as a Markov chain, given random drivers’ adherence.
Then, we propose the stability and instability conditions to
reveal when the routing is able or unable to stabilize the traffic.
We show that for links without congestion spillback there exists
a necessary and sufficient stability criterion. For links admiting
congestion propagation, we present one stability condition and
one instability condition. These stability conditions allow us to
quantify the impacts of driver non-compliance on the two-link
network in terms of throughput. Finally, we illustrate the results
with a set of numerical examples.

I. INTRODUCTION

A. Motivation

Dynamic traffic routing provides drivers with route recom-
mendations based on real-time road information. It has been
used as one of promising control policies for alleviating con-
gestion [1], [2], and is expected to find extensive applications
in a connected vehicle environment [3]. Nevertheless, it is
also reported that driver non-compliance with route guidance
could undermine the performance of dynamic routing [4],
especially social routing advice that deliberately detours part
of vehicles to achieve benefits in terms of road networks
[5]. Although more and more surveys have confirmed this
phenomenon [5], [6], limited studies have investigated in an
analytical way how drivers’ adherence influences the effect
of traffic routing control.

In this paper, we focus on routing advice released by traffic
system operators/agencies. We study the above problem by
considering a setting with random demand and random
driver non-compliance. We analyze the resulting stochastic
dynamical system under routing control. Specially, we focus
on a network comprised of two parallel links; see Fig. 1.
Though simple, the two-link network serves as a typical
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scenario for studying routing control [7], [8], [9]; it turns
out to be an appropriate abstraction of multiple parallel links:
one stands for arterials and the other denotes a set of local
streets [10]. Furthermore, we adopt a Markov chain to model
the compliance rate that possibly depends on traffic states.
It allows us to study stability and instability criteria that
determine whether the network is destabilized by the random
compliance rate. We also quantify the impacts of drivers’
disobedience in terms of throughput, namely the maximum
constant inflow under which the network can be stabilized.

demand D(t)

major link e1

minor link e2
Origin Destination

Fig. 1: The two-link network.

B. Related work
Previous work on evaluating impacts of the conformity

with routing advice typically applied static or dynamic
traffic assignment (STA or DTA). These methods are fa-
vored since they easily provide numerical assessment in
terms of efficiency, equity and so on [5], [11], [12] and
can be implemented even for large-scale networks. How-
ever, they also have disadvantages. STA finds equilibrium
by solving mathematical programming. It fails to capture
significant traffic dynamics, such as congestion spillback
and fluctuations of drivers’ compliance rate and thus could
induce unrealistic equilibrium. Though DTA can address
the shortcomings of STA to some extent, it introduces a
new problem. As we see later, low compliance rates could
make traffic networks unstable. In that case, it could be
problematic to apply DTA since we do not have guaranteed
convergence in advance. Noting this, we aim at developing
methods that allow stability and instability analysis, at least
in some conditions, before numerical evaluation. To our best
knowledge, limited studies discussed this topic for routing
control subject to random compliance.

Our model belongs to discrete-time nonlinear stochastic
systems. Although the general theories of stochastic stability
have been studied extensively [13], how to apply them in
our problem is still unclear. Typically, stability analysis
can be refined for specific nonlinear systems. Besides, it
is noteworthy that most of studies mainly discuss sufficient
stability conditions for general nonlinear stochastic systems,
while we also have interest in sufficient instability conditions.
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C. Our contributions

In this paper, we address the following two questions:
1) How to determine whether the network can be sta-

bilized by routing control subject to driver non-
compliance?

2) How to evaluate efficiency losses of routing control
due to the non-compliance in an analytic way?

We answer the first question for two types of networks.
In the first one, the two parallel links have infinite space
and there are no congestion spillback, while in the second
one, the two parallel links only have finite space. We formu-
late discrete-time nonlinear stochastic systems for the two
networks, respectively. Then we apply the Foster-Lyapunov
criterion [13] to derive the stability condition and scruti-
nize transience of Markov chains [13] to obtain instability
conditions. For the first network, we successfully obtain a
sufficient and necessary stability condition (Theorem 1); for
the second one, we have one stability crietrion (Theorems 2)
and one instability criterion (Theorems 3).

Even when the network is stable, we want to know to what
extent the network performance decrease. Thus, to answer
the second question, we take throughput as the metric to
measure efficiency losses. However, throughput is not always
available even for the two-link network. For the two links
with infinite buffer sizes, we indeed derive exact values of
throughput since we have a sufficient and necessary stability
condition. For the two links with finite buffer sizes, we use
the stability and instability conditions to yield lower and
upper bounds, respectively.

The rest of the paper is organized as follows. Section II
introduces our modeling framework. Section III presents the
results when the two parallel links have infinite storage space,
and Section IV provides the results in case of two links with
limited buffer sizes. Finally, Section V summarizes our work
and discusses future research.

II. MODELING AND FORMULATION

Consider the two-link network in Fig. 1: one is the major
link e1, typically with a higher free-flow speed or capacity,
and the other is the minor link e2. We suppose that the system
operator tries to route part of flows to the minor link e2 to
reduce congestion in the major link e1.

We denote by Xe(t) ∈ R≥0 traffic density of link e ∈
{e1, e2} at time t. Each link e ∈ {e1, e2} is associated with
a sending flow (demand function) fe(xe) : R≥0 → R≥0 and
a receiving flow (supply function) re(xe) : R≥0 → R≥0.

Assumption 1 (Sending & receiving flows).
1.1 Sending flows: For link e, fe(xe) is Lipschitz contin-

uous and dfe(xe)/dxe ≥ 0 almost everywhere (a.e.).
Moreover, fe(0) = 0 and supxe

fe(xe) < ∞.
1.2 Receiving flows: For link e with a finite buffer size

xmax
e < ∞, re(xe) is Lipschitz continuous and

dre(xe)/dxe ≤ 0 a.e.. Moreover, re(xmax
e ) = 0 and

supxe
re(xe) < ∞. For link e with an infinite buffer

size, re = ∞.

The assumptions above follow the conventional modeling
of road traffic. We also define link capacity as

Qe := sup
xe

min{fe(xe), re(xe)}, (1)

which denotes an upper bound of sustainable discharging
flow from link e.

Note that Assumption 1.2 implies that it is reasonable to
only consider Xe(t) ∈ [0, xmax

e ] for link e with limited
storage. Compared with supposing finite buffer sizes, the
assumption of infinite buffer sizes seems a little unrealistic,
but it helps understand and design routing control, even on
complex networks. In this paper, we discuss both of them.

For demand modeling, we consider an independent and
identically distributed (i.i.d.) stochastic process {D(t) : t ≥
0} with a distribution Γd, E[D(t)] = α and D(t) ∈ D for t ≥
0, where D is a compact set. This is based on the observation
that during rush hours, of interest to traffic management,
traveling demands are relatively stationary and only fluctuate
within certain bounds. Obviously, we require

E[D(t)] = α < Qe1 +Qe2 , (2)

otherwise the traffic densities must blow up.
Next, we introduce routing control. Let βe(x) : R2

≥0 →
[0, 1] denote a proportion of traffic routed to link e. We
assume the routing policies to satisfy:

Assumption 2 (Routing control). The routing proportions
βe1(xe1 , xe2) and βe2(xe1 , xe2) are continuous and have the
following monotonicity a.e.:

2.1 ∂
∂xe1

βe1(xe1 , xe2) ≤ 0 and ∂
∂xe2

βe1(xe1 , xe2) ≥ 0;
2.2 ∂

∂xe1
βe2(xe1 , xe2) ≥ 0 and ∂

∂xe2
βe2(xe1 , xe2) ≤ 0.

The assumption above implies that the routing proportion
βe(xe1 , xe2) tends to decrease (resp. increase) as link e (resp.
the other link) becomes more congested. It holds true for
typical routing policies, such as logit routing [14].

Recalling that routing proportions could be compromised
due to heterogeneous drivers’ choice behavior, we denote by
C(t) ∈ [0, 1] the compliance rate of drivers’ routed to the
minor link e2 at time t. Then the compromised routing ratios,
denoted by β̃e(xe1 , xe2 , c) : R2

≥0 × [0, 1] → [0, 1], are given
by

β̃e1(Xe1(t), Xe2(t), C(t))

= βe1(Xe1(t), Xe2(t)) + βe2(Xe1(t), Xe2(t))(1− C(t)),
(3a)

β̃e2(Xe1(t), Xe2(t), C(t))

= βe2(Xe1(t), Xe2(t))C(t). (3b)

Note that (3a)-(3b) imply the compliance rate of drivers
routed to the major link e1 equals one. This is because in our
setting drivers are assumed to prefer the major link e1 while
the system operator tries to route some of them to the minor
link e2. The assumption is not necessary, just for simplifying
the problem. In fact, we can introduce the second compliance
rate, and apply our method to obtain stability and instability
criteria, which are more complicated.
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We consider that C(t+ 1) depends on Xe1(t) = xe1 and
Xe2(t) = xe2 with a distribution Γc

xe1
,xe2

. For convenience
of analysis, we assume that the distributions Γc

xe1
,xe2

(c),
for any xe1 and xe2 , have lower semi-continuous densities
with the same support C ⊆ [0, 1]. We define Exe1

,xe2
[C] :=

E[C(t + 1)|Xe1(t) = xe1 , Xe2(t) = xe2 ] and assume it to
satisfy:

Assumption 3 (Drivers’ compliance). The expected compli-
ance rate has the following monotonicity a.e.:

∂

∂xe1

Exe1
,xe2

[C] ≥ 0, and
∂

∂xe2

Exe1
,xe2

[C] ≤ 0. (4)

Clearly, the assumption implies that more drivers follow
the routing advise to the minor link e2 if the major link e1
becomes more congested or the minor link e2 becomes less
congested.

The following specifies the inflows into links e1 and e2.
Given an upstream flow F (t), we denote by qine : R3

≥0 ×
[0, 1] → R≥0 the inflow into link e ∈ {e1, e2}:

qine (F (t), Xe1(t), Xe2(t), C(t))

= min{β̃e(Xe1(t), Xe2(t), C(t))F (t), re(Xe(t))}. (5)

Supposing re1 = re2 = ∞, we have the following network
dynamics for any link e ∈ {e1, e2}

∆Xe(t) =
δ

le

(
qine (D(t), Xe1(t), Xe2(t), C(t))− fe(Xe(t))

)
,

(6)

where ∆Xe(t) := Xe(t + 1) − Xe(t), δ denotes the time
step size, and le denotes length of link e.

Clearly, if links e1 and e2 have finite space, congestion
could block the inflows. For the sake of analysis, we consider
another link e0 upstream of links e1 and e2, satisfying Qe0 ≥
Qe1 + Qe2 and re0 = ∞, to accept inflows. It leads to the
network dynamics as follows:

∆Xe0(t) =
δ

le0

(
D(t)

−
∑

e∈{e1,e2}

qine (fe0(Xe0(t)), Xe1(t), Xe2(t), C(t))
)

(7a)

∆Xe(t) =
δ

le

(
qine (fe0(Xe0(t)), Xe1(t), Xe2(t), C(t))

− fe(Xe(t))
)
, e ∈ {e1, e2} (7b)

For notional convenience, we assume δ/le to be the same
for any link e and ignore them in the following analysis.

Then, (6) indicates that

Φ1 := {(Xe1(t), Xe2(t), D(t), C(t)) : t ≥ 0} (8)

is a Markov chain with a state space R≥0 × R≥0 × D × C,
and (7a)-(7b) indicate

Φ2 := {(Xe0(t), Xe1(t), Xe2(t), D(t), C(t)) : t ≥ 0} (9)

is also a Markov chain with a state space R≥0×Xe1 ×Xe2 ×
D × C. Note that Xe1 ⊆ [0, xmax

e1 ] and Xe2 ⊆ [0, xmax
e2 ] are

bounded sets.

We make the last assumption as follows:

Assumption 4.
4.1 For the system (6), there exists c ∈ C and d ∈ D such

that limt→∞ Xe(t) = x∗
e < ∞, e ∈ {e1, e2}, given

C(t) ≡ c and D(t) ≡ d;
4.2 For the system (7a)-(7b), there exists c ∈ C and d ∈ D

such that limt→∞ Xe(t) = x∗
e < ∞, e ∈ {e0, e1, e2},

given C(t) ≡ c and D(t) ≡ d. Moreover,

β̃e1((x
∗
e1 , x

∗
e2), c)fe0(x

∗
e0) <re1(x

∗
e1), (10a)

β̃e2((x
∗
e1 , x

∗
e2), c)fe0(x

∗
e0) <re2(x

∗
e2). (10b)

The above assumption essentially states that there exists
c and d such that the systems (6) and (7a)-(7b) are stable.
Note that (10a)-(10b) are mild technical assumptions. The
system (6) does not require them due to re1 = re2 = ∞.
The equations (10a)-(10b) imply that the inflows into links
e1 and e2 are strictly fewer than the corresponding receiving
flows. That is, the inflow can smoothly pass links e1 and e2
when there is no congestion. By noting (2), (10a)-(10b) are
easy to achieve for appropriate routing polices.

We have the following lemma by Proposition 7.1.4 and
Theorem 7.2.6 in [13]:

Lemma 1. Given Assumption 4.1, the Markov chain (8) is
φ-irreducible; and given Assumption 4.2, the Markov chain
(9) is φ-irreducible.

Here φ is a certain measure. The φ-irreducibility means
that any set with positive measure can be reached by the
Markov chain given any initial state. It implies that any
large set can be reached from any initial condition and thus
the state space is indecomposable. It is a prerequisite of
discussing stability of Markov chains.

Finally, we define the stability of interest below:

Definition 1 (Stability & Instability). A stochastic process
{Y (t) : t ≥ 0} with a state space Y is stable if there exists
a scalar Z < ∞ such that for any initial condition y ∈ Y

lim sup
t→∞

1

t

t∑
τ=0

E[|Y (τ)||Y (0) = y] ≤ Z, (11)

where |Y (τ)| denotes 1-norm of Y (τ). The network is
unstable if there does not exist Z < ∞ such that (11) holds
for any initial condition y ∈ Y .

The notion of stability follows a classical definition [15]
and is widely used in studying traffic control [16].

III. STABILITY ANALYSIS OF THE NETWORK WITHOUT
CONGESTION PROPAGATION

We state the main result as follows:

Theorem 1. The Markov chain (8) with the state space
R≥0 × R≥0 × D × C is stable if and only if there exists
a vector θ := [θe1 , θe2 ]

T ∈ R2
≥0 such that(

βe1(θ) + βe2(θ)Eθ[1− C]
)
α− fe1(θe1) < 0, (12a)

βe2(θ)Eθ[C]α− fe2(θe2) < 0. (12b)
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In the following sections, we first present a numerical
example and then prove Theorem 1.

A. Numerical example

First, we set δ = 0.1 and le1 = le2 = 1. We consider the
sending flows fe(xe) = min{vexe, Qe} for e ∈ {e1, e2},
with ve1 = 1, ve2 = 0.8, Qe1 = 0.6, Qe2 = 0.4. Besides,
we adopt the classical logit routing as follows:

βe(x) =
e−νexe

e−νe1xe1 + e−νe2xe2
, e ∈ {e1, e2}, (13)

where νe1 = 1 and νe2 = 2 are routing parameters.
We assume the demands D(t) ∈ [d, 1.2], t ≥ 0, are in-

dependent and identically distributed (i.i.d.) uniform random
variables. It follows E[D(t)] = d/2 + 0.6. We also assume
the routing compliance rates C(t) ∈ [0, c̄], t ≥ 0, are i.i.d.
uniform random variables, along with E[C(t)] = c̄/2. It
indicates that in our numerical example the compliance rates
are independent of traffic states. It should be noted that this
independence is not necessary for our approach. Here we
assume it just for simplification. However, we still have non-
trivial observations in this case.

We first analyze the stability and instability of scenarios
with different d and compliance rate c̄. Fig. 2a shows the
time-average traffic densities after 5× 105 steps and reveals
the stability and instability regions. We observe a non-linear
boundary: given moderate traffic demands, improvements of
compliance rates can stabilize the network; but given a high
demand close to the network capacity, we hardly see the
effect of improving compliance rate.

Then we compute the throughput, the maximum expected
demand under which the network can be stabilized. It is
interesting to find that we can achieve a relatively high
throughput (around 0.987) when E[C(t)] = 0.395. Further
improvement is marginal when E[C(t)] exceed 0.395.
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Fig. 2: Analysis given links e1 and e2 with infinite buffer
sizes.

B. Proof of Theorem 1

We first prove the sufficiency by the Foster-Lyapunov
criterion [13]:

Foster-Lyapunov criterion. Consider a φ-irreducible
Markov chain {Y (t); t ≥ 0} with a state space Y , an
infinitesimal generator L , and a Lyapunov function V :
Y → R≥0. If there exist constants m > 0, n < ∞, a function
g : Y → R≥0 and a compact set E such that for any y ∈ Y
E[V (Y (t+ 1))|Y (t) = y]− V (y) ≤ −mg(x) + n1E(y),

where 1E(y) is an indicator function, then, for each initial
condition y(0) ∈ Y ,

lim sup
t→∞

1

t

t∑
τ=0

E[g(Y (τ))] ≤ m/n.

To proceed, we consider the following Lyapunov function

V (x) =


0 x ∈ X 1,
1
2 (xe1 − θe1)

2
+ x ∈ X 2,

1
2 (xe2 − θe2)

2
+ x ∈ X 3,

1
2 ((xe1 − θe1)+ + (xe2 − θe2)+)

2 x ∈ X 4,
(14)

where (·)+ := max{·, 0}, Xe1 := [0, θe1 ] × [0, θe2 ], Xe2 :=
(θe1 ,∞) × [0, θe2 ], Xe3 := [0, θe1 ] × (θe2 ,∞) and Xe4 :=
(θe1 ,∞)× (θe2 ,∞).

The rest is devoted to show that there exist constants m′ >
0 and n′ < ∞ such that for every x ∈ R2

≥0

E[V (X(t+ 1))|X(t) = x]− V (x)

≤−m′
(
(xe1 − θe1)+ + (xe2 − θe2)+

)
+ n′. (15)

If (15) holds, we must have 0 < m < m′, n < ∞, and a
compact set E = [0,M ]× [0,M ] such that

E[V (X(t+ 1))|X(t) = x]− V (x)

≤−m
(
(xe1 − θe1)+ + (xe2 − θe2)+

)
+ n1E(x), (16)

which indicates that Xe1(t) and Xe2(t) and thus concludes
the stability.

To show (15), we need to discuss whether Xe1(t) is larger
than θe1 and whether Xe2(t) is larger than θe2 , up to four
cases. Here we present the proofs for the typical cases and
the remaining can be proved in a similar way.

When Xe1(t) ≤ θe1 and Xe2(t) ≤ θe2 , the proof is trivial
by noting that Xe1(t+ 1) and Xe2(t+ 1) must be bounded
a sufficiently large number.

Now we assume Xe1(t) > θe1 and Xe2(t) ≤ θe2 . It
follows

E[V (X(t+ 1))|X(t) = x]− V (x)

≤
((

βe1(x) + βe2(x)Ex[1− C]
)
α− fe1(xe1)

)
xe1 + n,

where n is a sufficiently large number. Note that we omit
δ/le1 . By Assumptions 1-3,(

βe1(xe1 , xe2) + βe2(xe1 , xe2)Ex[1− C]
)
α− fe1(xe1)

is non-increasing in xe1 and non-decreasing in xe2 . Thus
(12a) indicates there exists m′

1 > 0 such that for any xe1 >
θe1 , xe2 ≤ θe2 , we have

E[V (X(t+ 1))|X(t) = x]− V (x) ≤ −m′
1xe1 + n.

Finally, we consider Xe1(t) > θe1 and Xe2(t) > θe2 . It
turns out that we obtain

E[V (X(t+ 1))|X(t) = x]− V (x)

≤
(
α− fe1(xe1)− fe2(xe2)

)
(xe1 + xe2) + n.
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Note the α−fe1(xe1)−fe2(xe2) is non-increasing in both xe1

and xe2 . Combing (12a)-(12b) indicates there exists m′
2 > 0

such that for any xe1 > θe1 , xe2 > θe2 , we have

E[V (X(t+ 1))|X(t) = x]− V (x) < −m′
2(xe1 + xe2) + n.

Thus we finish proving the sufficient condition.
The following proves the necessary condition. We prove

it by showing the Markov chain (8) is transient [13]. We
consider the following transience criterion [13]:

Transience criterion. Consider a φ-irreducible Markov
chain {Y (t) : t ≥ 0} with a state space Y . Then {Y (t) :
t ≥ 0} is transient if there exists a bounded function
V : Y → R≥0 and a sublevel set of V , denoted by S, such
that

(i) φ(S) > 0 and φ(Y \ S) > 0;
(ii) E[V (Y (t+ 1))|Y (t) = y]− V (y) ≥ 0, ∀y ∈ Y \ S.

Note that our Markov chain (8) is φ-irreducible, stated by
Lemma 1. To proceed, we first assume that for any θ ∈ R2

≥0(
βe1(θ) + βe2(θ)Eθ[1− C]

)
α− fe1(θe1) ≥ 0. (17)

We consider a bounded test function W : R≥0 → R≥0:

W (xe1) = ξ1 −
1

xe1 + ξ2
(18)

where ξ1 and ξ2 are sufficiently large numbers. It turns out
that given (17), we obtain

E[W (Xe1(t+ 1))|Xe1(t) = xe1 ]− fe1(xe1) ≥ 0.

Note that the above inequality holds over R2
≥0. It indicates

that the conditions (i)-(ii) above are satisfied. Thus we
conclude the Markov chain (8) is transient given (17).

Then we assume that for any θ ∈ R2
≥0

βe2(θ)Eθ[C]α− fe2(θe2) ≥ 0. (19)

We can prove in a similar way that the Markov chain (8)
is transient in this case. Finally, we conclude that if there
does not exist a vector θ satisfying (12a)-(12b), the system
is unstable.

IV. STABILITY ANALYSIS OF THE NETWORK WITH
CONGESTION PROPAGATION

We state the main results as follows:

Theorem 2. Given Assumptions 1-4, the Markov chain (9)
with the state space R≥0 × Xe1 × Xe2 × D × C is stable if
there exists a vector θ := [θe1 , θe2 ]

T ∈ [0, 1]2 and a positive
scalar γ > 0 such that

α−
∑

e∈{e1,e2}

(1− θe)Exe1
,xe2

[qine (fe0(x
c
e0), xe1 , xe2 , C)]−

−
∑

e∈{e1,e2}

θefe(xe) < −γ, ∀(xe1 , xe2) ∈ Xe1 ×Xe2 ,

(20)

where xc
e0 := inf{xe0 |fe0(xe0) = Qe0} and

Exe1
,xe2

[qine (fe0(xe0), xe1 , xe2 , C)]

:=

∫
C
qine (fe0(xe0), xe1 , xe2 , c))Γxe1,e2

(dc). (21)

Theorem 3. Given Assumptions 1-4, the Markov chain (9)
with the state space R≥0 × Xe1 × Xe2 × D × C is unstable
if there exists a vector θ := [θe1 , θe2 ]

T ∈ [0, 1]2 and a non-
negative scalar γ ≥ 0 such that

α−
∑

e∈{e1,e2}

(1− θe)Exe1
,xe2

[qine (fe0(x̄e0), xe1 , xe2 , C)]−

−
∑

e∈{e1,e2}

θefe(xe) ≥ γ, ∀(xe1 , xe2) ∈ Xe1 ×Xe2 , (22)

where x̄e0 := ∞.

Note that xc
e0 defined in Theorem 2 is usually interpreted

as critical density since link e0 with xe0 > xc
e0 is considered

as “congested” in practice. Theorem 2 indicates that though
link e0 could be congested with extremely high traffic
densities, we only need to check the critical density. Besides,
Theorem 3 says that we need to check xe0 = ∞, namely to
consider sup fe0 .

One can implement Theorem 2 by solving the following
semi-infinite programming (SIP [17]):

(P1) min
θ1,θ2,γ

γ s.t. (20), (23)

and Theorem 3 by solving the SIP:

(P2) max
θ1,θ2,γ

γ s.t. (22). (24)

The programmings P1 and P2 belong to SIPs because they
have infinite constraints over the continuous set Xe1 × Xe2 .
But noting Xe1 and Xe2 are bounded, we have efficient
algorithms to solve P1 and P2 [17].

Note that Theorem 2 is proved based on the Lyapunov
function Ṽ : R3

≥0 → R≥0:

Ṽ (xe0 , xe1 , xe2) = xe0(
1

2
xe0 + θe1xe1 + θe2xe2). (25)

and Theorem 3 is based on the test function W̃ : R3
≥0 →

R≥0:

W̃ (xe0 , xe1 , xe2) = ξ1−
1

xe0 + θe1xe1 + θe2xe2 + ξ2
, (26)

where ξ1 and ξ2 are sufficiently large numbers. Clearly,
we can improve the stability and instability conditions by
considering more sophisticated Lyapunov/test functions, but
with more computational costs.

The following section presents a numerical example. The
proofs of Theorems 2 and 3 are omitted since they are similar
to those of Theorem 1, except for different Lyapunov/test
functions.
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A. Numerical example

Besides the setting in Section III-A, we introduce the
receiving flows re(xe) = Re − wexe, with Re1 = 1.2,
Re2 = 0.8, we1 = 0.5 and we2 = 0.4. It follows xmax

e1 = 2.4
and xmax

e2 = 2. For the upstream link e0, we suppose that its
sending flow with ve0 = 1 and Qe0 = 1, which indicates the
critical density xc

e0 = 1.
Analyzing the Markov chain (9) is more difficult since

traffic dynamics involving congestion spillback is more com-
plicated. We consider the technique of invariant sets [18] and
focus on our analysis of the Markov chain (9) on the state
space

[d,∞)× [xe1
, x̄e1 ]× [0, x̄e2 ]× [d, 1.2]× [0, c̄], (27)

where the boundaries xe1
, x̄e1 and x̄e2 satisfy

βe1(xe1
, 0)xe1

d+ βe2(xe1
, 0)(1− c̄)d =fe1(xe1

), (28a)
re1(x̄e1) =fe1(x̄e1), (28b)

β2(x̄e1 , x̄e2)fe0(x
c
e0)c̄ =fe2(x̄e2). (28c)

Note that restricting analysis on the state space (27) does
not lose any generality. In fact, we can prove that the set
X̃ := [d,∞) × [xe1

, x̄e1 ] × [0, x̄e2 ] is positively invariant
and globally attracting. That is, for any initial condition
(Xe0(0), Xe1(0), Xe2(0)) ∈ X̃ , (Xe0(t), Xe1(t), Xe2(t)) ∈
X̃ for t ≥ 0 given any (D(t), C(t)) ∈ [d, 1.2] × [0, c̄]. Be-
sides, for any initial condition (Xe0(0), Xe1(0), Xe2(0)) ∈
R≥0 × [0, xmax

e1 ]× [0, xmax
e2 ], (Xe0(t), Xe1(t), Xe2(t)) enters

X̃ almost surely.
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Fig. 3: Analysis given links e1 and e2 with finite buffer sizes.

Fig. 3a presents the time-average of traffic densities after
5 × 105 steps and discloses the stability and instability re-
gions. We have two observations. First, there exists a gap be-
tween the stability and instability regions. This is because our
stability and instability criteria are only sufficient. Second,
the stability region in Fig. 3a shrinks significantly, compared
with that in Fig. 2a. It indicates that congestion spillback
may not be neglected in analyzing real-world scenarios.

Fig. 3b shows upper and lower bounds of throughput. We
note that the gap tends to be enlarged as the compliance
rate increases. Per our discussion on Theorems 2 and 3, it
is possible to narrow down the gap by considering more
advanced Lyapunov/test functions.

V. CONCLUDING REMARKS

This paper considered the traffic stability and throughput
of a parallel-link network subject to non-compliant traffic

flows. We formulated a Markov chain that captures the traffic
evolution under a dynamic routing strategy and in the face of
a state-dependent non-compliance rate of drivers. Using Lya-
punov methods, we derived stability conditions for typical
settings with or without congestion spillback. We also used
the results to analytically quantify the impact of driver non-
compliance on network throughput. Possible future directions
include extension of the results to general networks with
cyclic structures and multi-commodity scenarios.
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