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Abstract— In the framework of transferable utility coalitional
games, a scoring (characteristic) function determines the value
of any subset/coalition of agents. Agents decide on both which
coalitions to form and the allocations of the values of the formed
coalitions among their members. An important concept in coali-
tional games is that of a core solution, which is a partitioning of
agents into coalitions and an associated allocation to each agent
under which no group of agents can get a higher allocation
by forming an alternative coalition. We present distributed
learning dynamics for coalitional games that converge to a
core solution whenever one exists. In these dynamics, an agent
maintains a state consisting of (i) an aspiration level for its
allocation and (ii) the coalition, if any, to which it belongs.
In each stage, a randomly activated agent proposes to form a
new coalition and changes its aspiration based on the success
or failure of its proposal. The coalition membership structure
is changed, accordingly, whenever the proposal succeeds. Re-
quired communications are that: (i) agents in the proposed
new coalition need to reveal their current aspirations to the
proposing agent, and (ii) agents are informed if they are joining
the proposed coalition or if their existing coalition is broken.
The proposing agent computes the feasibility of forming the
coalition. We show that the dynamics hit an absorbing state
whenever a core solution is reached. We further illustrate the
distributed learning dynamics on a multi-agent task allocation
setting.

I. INTRODUCTION

In strategic interactions with self-interested agents, cooper-
ating with other agents can be the optimal strategic decision
an agent can make to maximize its own benefits. In some
interactive situations, the whole can be bigger than the sum
of its parts, and agents forming coalitions can collectively
gain higher payoffs. Coalitional games, within the field of
cooperative game theory, enable us to study such situations.

The authors in [1]–[3] use coalitional game theory con-
cepts to study the problem of forming coalitions of micro-
grids for local power exchange. Such collaboration between
the microgrids increases their revenues and improves the
autonomy of the system by decreasing their reliance on the
main grid. In communications and networks fields, coali-
tional game theory offers a suitable framework to address a
spectrum of problems. The tutorial paper [4] provides a clas-
sification of coalitional games and a variety of applications
for each. One such application is the rate allocation problem
presented in [5], where the users of a multiaccess channel
are modeled as agents in a coalitional game. The value of
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any coalition of agents depends on the maximum sum-rate
achieved by the coalition given that the agents outside the
coalition will act as jammers. The authors motivate various
allocation methods for the agents including two of the most
common solution concepts in coalitional game theory, the
core and the Shapley value.

Coalitional game theory is applied to various problems in
multi-agent systems. Coalitional games framework was uti-
lized in [6] in the control of a multi-agent system. Coalitions
between agents dictate the communication between them
and, hence, the collective optimization that they solve. The
grand coalition, i.e., the union of all agents, represents a
centralized optimization problem, and the partition of agents
into singletons represents the fully decentralized optimiza-
tion. The cost of coalitions depends on both the cost resulting
from the coalition optimization as well as the cost of forming
the coalition. Even though centralized optimization yields the
least cost for the optimization problem, it has the highest
overhead of communication between agents and complexity
of the optimization problem. The authors in [7] and [8] use
coalitional game theory solution concepts to solve the multi-
robot task allocation problem. The Shapley value solution
is used in [7] to group the robots into coalitions to fulfill
the available tasks and specify the reward of each robot.
The authors in [8] use coalition formation as an intermediary
step to group robots and tasks into smaller coalitions, after
which they solve for the optimal task allocation within these
coalitions.

In multi-agent systems, a centralized agent is not always
accessible to mediate computing a solution with satisfactory
payoffs for all agents. In addition, reliance on a centralized
agent means having a single point of failure, which threatens
the robustness of the system. Furthermore, privacy concerns
and communication constraints may limit the information
an agent is willing or capable of sharing. Our proposed
distributed learning algorithm addresses these concerns. The
presented algorithm converges to a core solution, a central
solution concept in coalitional game theory, whenever one
exists. The algorithm does not require the agents to learn
about the full state of the environment. Alternatively, at
any time instance, an agent is randomly activated which
then needs to know only the current payoff aspirations of a
subset of its neighboring agents. Furthermore, the algorithm
has small memory and computation requirements from the
agents. They only need to retain their current payoff aspira-
tions, coalition membership, and the values of the coalitions
that they can form or a means of calculating such values
online.

The core of Transferable Utility (TU) coalitional games
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is defined by a distribution of the payoff resulting from
forming the grand coalition. The core allocation respects
the individual rationality of the agents such that no agent
gains less in the grand coalition than what it can gain on
its own. In addition, the core guarantees stability against
group deviations where no group of agents can gain more
by jointly deviating from the grand coalition. Finally, the
core represents efficiency in that the total payoffs gained by
the agents equals the value of the grand coalition. However,
in some settings, the grand coalition is not the optimal
coalition to form; specifically, when there is an associated
cost with coalition formation that grows with the size of
the coalition. The review paper [9] mentions the lack of
literature in coalitional game theory for solution concepts
that consider these settings, which readily occur in energy
applications. In this paper, we consider a generalized core
solution concept, similarly defined in [10] and [11], which
applies to such settings. This generalized core solution still
preserves individual rationality and stability against deviation
but with an extension to the efficiency concept such that the
sum of the payoffs gained by the agents equals the maximum
welfare that can be gained by any partitioning of the agents.
Our proposed dynamics converge to this generalized core
solution for general TU games, whenever one exists.

Classical core and Shapley value calculations do not
consider the dynamics of coalition formation and dissolution.
In addition to the assumption of the grand coalition opti-
mality in most of the literature, the presented solutions and
algorithms come short in connecting the reached solutions
with real-life bargaining and negotiation setups. Our pro-
posed dynamics exhibit feasible coalition formation dynam-
ics throughout the horizon of iterations. Similar distributed
aspiration-based algorithms were introduced in [12]–[14].
Our algorithm builds upon the blind matching algorithm in
[12] and [13]. It uses similar aspiration-based states and
negotiation mechanism to reach the final allocations of the
agents. The algorithm in [14] considers superadditive TU
games, games where the value of a coalition is at least
as good as the sum of values of any disjoint set of its
subcoalitions. In superadditive TU games, the grand coalition
is always optimal to form. The algorithm thus convergences
to the standard core solution of these games. For general
TU games, [10] and [11] provide similar convergence results
to ours. However, they use best reply response, which
imposes higher requirements on the agents’ knowledge of
their opponents’ demands in addition to a global knowledge
of the evolving coalition structure.

The rest of this paper is organized as follows. Section
II presents the TU games setup and relevant propositions.
Section III introduces the Coalition Proposal algorithm. Sec-
tion IV discusses the convergence proof. Section V exhibits
simulation results using the Coalition Proposal algorithm
in a multi-agent task allocation setting. Finally, Section VI
concludes the paper. For the sake of brevity, proofs and
further discussion are included in the arXiv version of the
paper [15].

II. TRANSFERABLE UTILITY GAMES

In this section, we present the TU games setup along with
some definitions and propositions pertaining to it. We are fol-
lowing Hans Peters’ book [16] in the fundamental definitions
of the TU games, Definitions 1 and 2 below. However, we
are generalizing the solution concept in Definition 4 to better
suit general TU games where grand coalition formation does
not necessarily result in the optimal welfare.

Definition 1. A transferable utility coalitional game is
defined by the pair (N, v), such that N = {1, 2, ..., n} is
the set of players and v : 2N → R, where v(∅) = 0, is the
characteristic function defining the value of each coalition
of players. An allocation x ∈ Rn is a vector of real numbers
representing the payoff distribution among the players.

Definition 2. For a TU game (N, v), an allocation x is
indvidually rational if xi ≥ v({i}) for all i ∈ N and
coalitionally rational if

∑
i∈S xi ≥ v(S) for all S ⊆ N.

Definition 3. A collection ρ of subsets of N is defined as a
partition of N if S ∩S′ = ∅ for all S, S′ ∈ ρ and ∪S∈ρS =
N. We denote the set of all partitions of N by P(N).

Definition 4. A core solution of a TU game (N, v) is a pair
(x, ρ), where x is an allocation vector and ρ ∈ P(N) is a
partition of players, satisfying that x is coalitionally rational,∑

i∈S xi ≥ v(S) for all S ⊆ N, and
∑

i∈S xi = v(S) for
all S ∈ ρ. We denote the set of core solutions of a game
(N, v) by Π(v).

Definition 5. For a TU game (N, v), we denote the maxi-
mum welfare value, maxρ∈P(N)

∑
S∈ρ v(S), by Kv.

Proposition 1. For any TU game (N, v), if Π(v) ̸= ∅, then∑
i∈N xi = Kv for all (x, ρ) ∈ Π(v).

Proposition 2. If (x, ρ) ∈ Π(v),y ∈ Rn such that y is
coalitionally rational,

∑
i∈S yi ≥ v(S) for all S ⊆ N, and∑

i∈N yi = Kv, then (y, ρ) ∈ Π(v).

III. COALITION PROPOSAL ALGORITHM

Algorithm 1 presents a pseudo code for our proposed
algorithm. Informally, the algorithm proceeds as follows:

1) Players come with arbitrary initial aspirations. The as-
pirations can be set to the players’ singleton coalitions
valuations or any value on a grid of width δ, a chosen
discretization value.

2) A player is activated uniformly at random, which in
turn chooses, using a uniform distribution, a set of
other players to propose forming a coalition with.

3) The proposing player asks for and receives the cur-
rent aspirations of the other players in the proposed
coalition. Then, if the total of their aspirations in
addition to its own aspiration raised by δ, is less than or
equal to the coalition valuation, the coalition is formed,
otherwise, the proposal fails.

4) If a coalition is successfully formed, the proposing
player increases its aspiration by δ, and all the previous
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coalitions that had any player from the new coalition
are dissolved.

5) If a coalition cannot be formed, the proposing player
decreases its aspiration by δ if it is not in any other
non-singleton coalition and if it is not already at its
singleton coalition valuation. Otherwise, the player’s
aspiration stays the same.

6) Steps 2–5 are then repeated for a set horizon H.

Algorithm 1: Coalition Proposal Algorithm
Input: the set of players, N, and the characteristic

function, v.
Set: δ to be a discertization value where the v(S)

values for all S ⊆ N lie on the δ-discretized
grid.

Initialize: for all i ∈ N,
the player aspiration ai ← a0i , an arbitrary
value on the δ-discretized grid, and
the player coalition Ci ← ∅.

1 for h=1:H do
2 Activate a player i ∈ N uniformly at random.
3 Player i randomly chooses S ⊆ N \ {i}.
4 Player i proposes to form coalition J = S ∪ {i}.
5 if

∑
j∈J aj + δ ≤ v(J) then

6 ai ← ai + δ
7 Break old coalitions of players in J :

For all j ∈ J, for all k ∈ Cj , k ̸= j, Ck ← ∅
8 Form coalition J :

Cj ← J for all j ∈ J
9 else

10 if Ci = ∅ then
11 ai ← max(v({i}), ai − δ)
12 end
13 end
14 if ai = v({i}) and Ci = ∅ then
15 Ci ← {i}
16 end
17 end

IV. ANALYSIS OF THE COALITION PROPOSAL
ALGORITHM

In this section, we define the environment state at each
iteration of the algorithm and prove how the environment
state converges to a core solution of the input game (N, v),
whenever one exists.

Definition 6. The environment state (a, C) at any iteration
is the vector of aspirations a and the coalition structure
C, where C is the set of disjoint formed coalitions at this
iteration, i.e. C = {Ci : i ∈ N}.

Definition 7. A feasible environment state is a pair of an
aspiration vector and a coalition structure (a, C), where a ∈
Rn and C is a set of disjoint subsets of N such that ai ≥
v({i}) for all i ∈ N and

∑
i∈S ai ≤ v(S) for all S ∈ C. We

denote the set of all feasible environment states by Ω(v).

A. Convergence Cases
We divide the TU games into two cases. The first case is

when the game (N, v) has an empty core, Π(v) = ∅, and
the second is when the game (N, v) has a non-empty core,
Π(v) ̸= ∅.

Assumption 1. The discretization value, δ, is chosen such
that all the values of v(S) for all S ⊆ N lie on the δ-
discretized grid. When Π(v) ̸= ∅, the choice of δ must
guarantee, as well, that there exists a state (x, ρ) ∈ Π(v)
where all the values of x lie on the δ-discretized grid.

1) Games with empty core Π(v) = ∅ :

Proposition 3. Following the Coalition Proposal algorithm
for a game (N, v) with Π(v) = ∅, under Assumption 1,
and starting from any environment state (a, C) ∈ Ω(v), the
environment state never converges.

Proof: Let C′ = C ∪ {{i} : Ci = ∅ and ai = v({i})}.
First, consider the instances where C′ ∈ P(N). Accord-

ingly,
∑

i∈S ai ≤ v(S) for all S ∈ C′. Yet, (a, C′) /∈ Π(v),
then there exists a set S ⊆ N such that

∑
i∈S ai+δ ≤ v(S).

Hence, if any player i ∈ S is randomly activated, there is a
positive probability that i will propose S to form, and hence,
player i will increase its aspiration by δ.

Second, consider the remaining instances where C′ /∈
P(N). Then, there exists a player i ∈ N such that Ci = ∅
and ai ≥ v({i}) + δ. If any such player i is activated, then
for any choice of a proposed coalition, ai will either increase
or decrease its aspiration by δ, depending on the success or
failure of the proposal. Consequently, for all instances of
the environment state (a, C), there is a positive probability
of generating a proposal that would lead to a change in a
player’s aspiration.

2) Games with non-empty core Π(v) ̸= ∅ :

Theorem 1. Following the Coalition Proposal algorithm
for a game (N, v) with Π(v) ̸= ∅, under Assumption 1,
and starting from any environment state (a, C) ∈ Ω(v), the
environment state converges to some state (x, ρ) ∈ Π(v) with
probability one.

The next two subsections establish the necessary proposi-
tions and arguments to prove this theorem. Henceforth in this
section, we will only discuss the games where Π(v) ̸= ∅.
B. Feasible States Partition
Definition 8. Given a game (N, v), we define the following
subsets of the feasible states, Ω(v).

• Γ(v) = {(a, C) ∈ Ω(v) :
∑

i∈N ai = Kv,∑
i∈S ai ≥ v(S) for all S ⊆ N, and C /∈ P(N)}

• Υ(v) = {(a, C) ∈ Ω(v) :
∑

i∈N ai > Kv,
and

∑
i∈S ai ≥ v(S) for all S ⊆ N}

• Ψ(v) = {(a, C) ∈ Ω(v) : ∃S ⊆ N
such that

∑
i∈S ai < v(S)}

Proposition 4. {Π(v),Γ(v),Υ(v),Ψ(v)} is a partition of
Ω(v).
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C. The Steering Sequences

In this subsection, we exhibit possible positive probability
sequences of proposals that steer any state (a, C) ∈ Ω(v)
to some state (x, ρ) ∈ Π(v). The following definitions and
propositions are needed for constructing the aforementioned
sequences.

Definition 9. For any a,x ∈ Rn, define the lower-valued
indices set as La,x = {i : ai < xi}, the upper-valued
indices set as Ua,x = {i : ai > xi}, and the equal-valued
indices set as Ea,x = {i : ai = xi}.

Definition 10. For a given (a, C) ∈ Ω(v), the banded set
of players is B(C) = {i : ∃S ∈ C such that i ∈ S} and the
free set of players is F (C) = N \B(C).

Proposition 5. Assuming Π(v) ̸= ∅, then for all (a, C) ∈
Ψ(v) and (x, ρ) ∈ Π(v), if S ⊆ N is such that

∑
i∈S ai <

v(S), then La,x ∩ S ̸= ∅.

Proposition 6. If Π(v) ̸= ∅, then for all (a, C) ∈ Υ(v) and
(x, ρ) ∈ Π(v), Ua,x ∩ F (C) ̸= ∅.

The steering sequences are used to show that there is
a positive probability of picking a sequence of proposals
that lead any feasible state (a, C) to a core solution of the
game when the set of core solutions is non-empty. The
steering sequence is constructed upon choosing and fixing
any (x∗, ρ∗) ∈ Π(v) that lies on the δ-discretized grid, which
is assumed to exist by Assumption 1. The sequence has two
main stages. If (a, C) ∈ Υ(v) ∪ Ψ(v), the sequence will
follow the first stage proposals till it reaches Γ(v) ∪ Π(v).
When the state reaches or starts in Γ(v), the sequence will
follow the second stage proposals.

First stage: If the state (a, C) ∈ Υ(v)∪Ψ(v), we choose
a feasible proposal (i, S) that transitions this state to a state
(a+, C+) with ∥a+ − x∗∥1 = ∥a − x∗∥1 − δ. Choosing
(i, S) means that player i proposes to form S. Specifically,
the chosen proposals will be as follows:

• If (a, C) ∈ Ψ(v), pick S ⊆ N such that
∑

i∈S ai <
v(S). From Proposition 5, La,x∗ ∩S ̸= ∅. Pick any i ∈
La,x∗ ∩ S. Then, the proposal (i, S) is chosen. S will
be successfully formed and only player i’s aspiration
will increase by δ, a+i = ai + δ. Since i ∈ La,x∗ ,
∥a+ − x∗∥1 = ∥a− x∗∥1 − δ.

• If (a, C) ∈ Υ(v), from Proposition 6, Ua,x∗∩F (C) ̸= ∅.
Pick any i ∈ Ua,x∗ ∩ F (C) and any S ⊆ N such that
i ∈ S. Then, the proposal (i, S) is chosen. S will
fail to form and player i is free and has an aspiration
ai ≥ v({i}) + δ. Hence, the proposal failure will cause
the player’s aspiration to decrease by δ, a+i = ai − δ.
Since i ∈ Ua,x∗ , ∥a+ − x∗∥1 = ∥a− x∗∥1 − δ.

Note that if (a, C) ∈ Υ(v)∪Ψ(v), the above proposals will
consistently reduce the 1-norm between the new state and x∗

by δ. We can continue performing these proposals until the
state reaches Γ(v) ∪ Π(v). This will happen within a finite
number of steps, which is at most the 1-norm, between the
starting state and the chosen core solution, divided by δ.

Second stage: If the state (a, C) ∈ Γ(v), a sequence of
proposals is selected to transition said state to a new state
(a, ρ∗) ∈ Π(v), which is proven to exist by Proposition 2.

• If (a, C) ∈ Γ(v), then F (C) ̸= ∅. Pick any i ∈ F (C) and
pick the set S ∈ ρ∗ where i ∈ S. Choose the proposal
(i, S). From Proposition 2, (a, ρ∗) ∈ Π(v). Hence,∑

i∈S ai = v(S) for all S ∈ ρ∗. Thus, the proposal will
fail resulting in a+i = ai − δ and v(S) −

∑
i∈S a+i =

δ. Then pick the proposal (i, S) again. Now, the
proposal will succeed and a++

i = a+i + δ = ai and
v(S)−

∑
i∈S a++

i = 0. Now, a++ = a, hence, the new
state is either in Γ(v) or Π(v). If the state is still in
Γ(v), then make another iteration of the second stage.

Note that this stage ends in a finite number of steps. That
is because if S ∈ ρ∗ is chosen as a part of a proposal in one
iteration, then following the second stage proposals, none
of the players in S become free again. Hence, the number
of iterations of the above two proposals is bounded by the
number of elements of ρ∗.

The sequence achieves its target whenever the state
reaches Π(v). As demonstrated next, once a state reaches
Π(v), the state can never change using the Coalition Proposal
algorithm.

Proposition 7. Any state (x, ρ) ∈ Π(v) is absorbing in the
Coalition Proposal algorithm.

Proof: Since (x, ρ) ∈ Π(v), then
∑

i∈S xi ≥ v(S)
for all S ⊆ N. Hence, no proposal can succeed, and
consequently, no player will be able to increase its aspiration
nor can any change in the coalitions happen. Furthermore,
ρ is a partition of N ; thus, all players are in non-singleton
coalitions, or at their individual valuations, and hence, will
not decrease their aspirations from the failed proposals. Ac-
cordingly, no proposal at this state can change the aspirations
or the coalition structure.

In conclusion, Theorem 1 is proven following the proof
of the existence of a finite steering sequence from any state
(a, C) ∈ Ω(v) to a state (x, ρ) ∈ Π(v). By the Borel-Cantelli
lemma, the probability that one such sequence is followed at
some iteration goes to 1 as the number of iterations goes to
infinity. Finally, Proposition 7 shows that any state (x, ρ) ∈
Π(v) is an absorbing state.

V. AN ILLUSTRATIVE EXAMPLE

In this section, we apply our algorithm to a multi-
agent task allocation setting. We consider self-interested
and heterogeneous agents. In task fulfillment problems, it
is justifiable to assume that a number of heterogeneous
agents are needed to complete a task because of the different
resources and capabilities that each agent has [17]. Self-
interested agents aim to maximize their own benefits be it
through collaborations or individual actions. In such settings,
the core solution provides a satisfactory allocation for said
agents. Given a core solution, no group of agents can
gain more by deviating from the proposed allocation and
coalition structure. In addition, the core solution guarantees
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the optimal social welfare, the total allocations to the agents
equals the maximum welfare value.

A. Setup
Formulate the multi-agent task allocation problem as a

game G = (N, v). The set of players N = A ∪ T, where A
is a set of m agents and T is a set of n tasks. F is a set of k
features. Each agent is assumed to be equipped with a non-
empty subset of these features. Matrix Q is an m×k binary
matrix such that Qa,f = 1 if feature f is present in agent
a and Qa,f = 0 otherwise. For the tasks, R is an n × k
binary matrix of task requirements such that Rt,f = 1 if
task t requires feature f to be present in the group of agents
fulfilling the task and Rt,f = 0 otherwise. The worth of any
task t, is characterized by the function W : T → R, which
is the base value of fulfilling the task. Here, we assume this
value to be proportional to the complexity of the task, i.e.
the number of features required to fulfill the task. The agents
and tasks are set to have a location on a bounded grid. The
location is specified by an (m+ n)× 2 matrix L.

The characteristic function v(S) for S ⊆ N is formulated
as follows:
v(S) = 0 if

• |S| = 1, the coalition is a singleton, or
• |T ∩ S| ̸= 1, the coalition does not have exactly one

task in it, or
• minf∈F (

∑
a∈A∩S Qa,f−

∑
t∈T∩S Rt,f ) < 0, the union

of the features that the agents in the coalition have
does not cover all of the required features to fulfill the
coalition’s task.

Otherwise,

v(S) = max{0,W (t)−
∑

a∈A∩S

∥La − Lt∥1},

where t = T ∩ S and Li is the location vector of player i.
The following are additional assumptions on the setup and

the agents’ implementation of the algorithm.
• We are assuming a static task allocation setup where

the agents are required to fulfill only a subset of the
available tasks.

• The current setup assumes full communication, how-
ever, the dynamics are readily applied to limited com-
munication setups so long as agents that are part of any
positive-valued coalition can communicate with each
other.

• To avoid unnecessary proposals, we assume that agents
propose only to form coalitions of positive values.

• Tasks are assumed to be passive players, they do not
propose or have payoff aspirations.

• Proposing agents broadcast formed coalitions so that
other agents know when tasks in their coalitions leave
and cause the dissolution of said coalitions.

B. Simulation
Parameters: The setup used to produce the succeeding

runs is as follows. On a 9× 9 grid, we randomly generated
the L matrix for 10 players and 20 tasks. The Q and R
matrices were randomly generated accounting for 5 features.

1) Sample run: On the left of Fig. 1, a visualization of
a randomly generated scenario with the above parameters
and the coalition structure produced from the attained core
solution after running the Coalition Proposal algorithm is
shown. Squares represent tasks and circles represent agents.
Agents and tasks in the same coalition have the same color
and are connected by a dashed line. Grey circles, whenever
they exist, are agents that have no benefit of becoming a
part of any coalition and grey squares are tasks that were
not chosen to be fulfilled. The right plot of Fig. 1 displays
the total aspirations of the players over the communication
rounds resulting from running the Coalition Proposal algo-
rithm. The dotted line is the optimal welfare value as solved
by an LP representation of the problem.

Fig. 1. A visualization of a sample configuration and a plot of the total
aspirations of the agents obtained from running the Coalition Proposal
algorithm.

2) Empirical performance for configurations with non-
empty core: To illustrate the performance of our algorithm
in the specified setting. We considered 50 random con-
figurations that produced games with non-empty sets of
restricted core solutions. The restricted core solutions are
core solutions that allocate zero payoffs to all the tasks.
This restriction follows our assumption about the tasks
being passive players. We ran our algorithm in addition to
three best reply algorithms from [10] and [11]. We set the
experimentation parameter of the best reply algorithms to
0.05 and Bernoulli agent activation probability to 0.1. The
best reply algorithms with experimentation were proven to
converge to the core in [10]. The best reply algorithm without
experimentation converges very quickly, but possibly, to
suboptimal solutions outside the core. However, for the best
reply algorithms with experimentation, an activated agent
will not experiment before searching for a coalition among
all of its possible coalitions outside the current coalition
structure that can strictly increase the agent’s payoff. This
search is computationally expensive. To be able to calculate
the best reply, the states of the agents must include the global
coalition structure state and the demands of all other agents.

We ran our proposed algorithm, the best reply algorithm
from [10], the best reply algorithm with experimentation
from [10], and the best reply algorithm with experimentation
using only feasible demands from [11] on the aforementioned
50 configurations. Fig. 2(a) shows plots of the average of the
relative welfare for the four algorithms. The relative welfare
for each configuration is the total aspirations of the players
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divided by the optimal welfare value.
3) Empirical performance for general configurations:

Using the specified parameters, the configuration resulted
in games with non-empty core around half of the time.
However, since our algorithm produces a feasible outcome
whenever it is terminated, we explored its performance on
50 general configurations, configurations that may produce
games with empty core. Even though the algorithm is proven
to cycle whenever the core is empty, it may cycle within
allocations close to the optimal values. Hence, the algorithm
can still produce a good feasible solution if negotiations are
set to be terminated after a specified time. Fig. 2(b) shows
the plots of the average relative welfare using our algorithm
in addition to the previously discussed best reply algorithms.

(a) Non-empty core configurations (b) General configurations

Fig. 2. Plots of the average relative welfare of the agents obtained by
running four different dynamics for 50 randomly generated configurations.
The “CP” lines are for the Coalition Proposal algorithm, the “BR” lines
are for the best reply dynamics [10], the “BRExp-A” lines are for the best
reply dynamics with experimentation [10], and the “BRExp-B” lines are for
the best reply dynamics with experimentation using only feasible demands
[11].

C. Discussion

An additional consideration in multi-agent systems is
communication failures. In many systems, a small percentage
of message drops are inevitable. To explore our proposed
algorithm’s tolerance against communication drops, we have
allowed messages that inform agents of the dissolution of
a coalition to be dropped with some percentage. For up
to 5% of message drops, the algorithm performance on
average did not show any significant changes from the
perfect communication case. Even though these message
drops affect the convergence guarantee, they allow for faster
growth of welfare. Specifically in the initial rounds, a false
assumption of being in a coalition dissuades the agents from
decreasing their aspirations from failed proposals. Hence, the
total welfare gets close to the optimal welfare fast.

The empirical simulations that we have performed il-
lustrated the advantages of using our algorithm in this
multi-agent task allocation setting. Our proposed algorithm
allows for negotiation-based distributed decision-making.
The algorithm only involves simple computations from one
agent in each round of communication and requires limited
local knowledge of the environment. Furthermore, we have
observed empirically that the algorithm can still reach the
optimal welfare value even in the presence of a small
percentage of communication failures.

VI. CONCLUSION

We introduced distributed learning dynamics for coali-
tional games. We discussed a core solution concept for gen-
eral TU games. The core solution provides the agents with
payoff allocations that preserve individual and coalitional
rationality and achieve the optimal social welfare. We proved
the convergence of our proposed dynamics to a core solution,
whenever one exists. Finally, we illustrated the learning
dynamics on a multi-agent task allocation setting and com-
pared it to best reply algorithms and the optimal social
welfare value. Our dynamics exhibited desirable performance
in simulation for convergence in perfect communication
setups as well as in the presence of small percentages of
communication failures.
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