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Abstract— This work proposes a pricing mechanism for multi-
stage electricity markets that does not explicitly depend on
the choice of dispatch procedure or optimization method. Our
approach is applicable to a wide range of methodologies for the
economic dispatch of power systems under uncertainty, including
multi-interval dispatch, multi-settlement markets, scenario-
based dispatch, and chance-constrained dispatch policies. We
prove that our pricing scheme provides both ex-ante and ex-
post dispatch-following incentives by simultaneously supporting
per-stage and ex-post competitive equilibria. In numerical
experiments on a ramp-constrained test system, we demonstrate
the benefits of scheduling under uncertainty and show how
our price decomposes into components corresponding to energy,
intertemporal coupling, and uncertainty.

I. INTRODUCTION

Rapid changes in the composition of the generation mix
in power markets is creating several challenges for system
operators (SOs). First, increasing renewable penetration from
solar and wind is injecting variability and uncertainty into
available power supply. Second, there is a lack of suitable
market mechanisms tailored to the physical characteristics
of DERs (such as energy storage) which are seeking to join
markets in increasing numbers. Third, electrification of vehicle
charging and thermal (heating/cooling) loads is impacting
the shape and variability of the demand profile, leading to
periods of high, sustained ramping.

These factors have a common theme of uncertainty, and
SOs have been rapidly innovating on new market struc-
tures and dispatch procedures to handle it. These include
multi-interval lookahead dispatch [1], ramping reserves [2],
operating reserves [3], capacity markets [4], and multi-
stage or intraday markets. Alongside, researchers have been
investigating techniques from stochastic optimization to
efficiently dispatch the market under uncertainty, including
robust optimization [5], [6], chance-constrained optimization
[7], scenario optimization [8], and distributionally robust
optimization [9].

Uncertainty impacts the stability of pricing signals and can
lead to market distortions such as out-of-merit dispatch,
ramping shortages, and load shedding. Even with more
advanced and accurate forecasts, SOs must still dispatch
the system in a way that anticipates forecast uncertainty and
the possibility of distribution shift over time. Pricing that

L. Werner, N. Christianson, A. Wierman, and S. Low are
with the Department of Computing and Mathematical Sciences,
California Institute of Technology, Pasadena, CA, USA (emails:
lwerner@caltech.edu, nchristianson@caltech.edu,
adamw@caltech.edu, slow@caltech.edu). A. Zocca is with
the Department of Mathematics, Vrije Universiteit Amsterdam, The Nether-
lands (email: a.zocca@vu.nl).

*equal contribution

incorporates characterizations of uncertainty is necessary to
fairly and efficiently compensate different resources for their
contributions to a reliable power supply.

The contribution in this paper is a pricing scheme for
multi-stage markets that does not depend on the particular
characterization of uncertainty or the method for optimizing
over dispatch decisions that account for this uncertainty. Our
approach is different from those in several recent works where
the construction of the energy price intimately depends on the
optimization paradigm (e.g., chance-constrained [9], robust
[6], or rolling-window [10], [11]). We show that our proposed
prices can be decomposed into components corresponding to
the standard locational marginal price (LMP), intertemporal
coupling, and uncertainty. Finally, we establish that this price
clears the market under profit-maximizing assumptions on
the participants and that it supports both ex-ante and ex-
post dispatch-following incentives (see Section III-B for
definitions).

A. Related Work

Our work draws on two main lines of inquiry into electricity
market mechanism design. The first is dispatching and pricing
multi-interval markets in the presence of intertemporal cou-
pling constraints. The second is dispatching and pricing using
techniques from robust and stochastic optimization.
a) Pricing multi-period electricity markets: In rolling-
window real-time economic dispatch schemes, distribution
shift in predicted net demand can lead to lost opportunity
cost and distorted truthful bidding incentives for generators.
Several pricing mechanisms building on standard uniform
pricing schemes have been proposed in recent years to
mitigate the lack of dispatch-following incentives [1], [12],
[13]. A more recent line of work [10], [11], [14] has proposed
a non-uniform pricing scheme, Temporal Locational Marginal
Pricing (TLMP), and has established a dual definition of
dispatch-following incentives. Simultaneously satisfying a
“partial equilibrium” (i.e., ex ante dispatch-following incen-
tive in every stage) and a general equilibrium (i.e., ex
post) forms the notion of “strong equilibrium,” used in this
work.

Our pricing mechanism is distinguished from these works as
they do not incorporate uncertainty directly in the lookahead
dispatch algorithms, but rather design prices to mitigate
incentive misalignment as a result of inaccurate predictions
and distribution shift. However, these lookahead algorithms
might be infeasible [15], [16], necessitating our development
of more general pricing schemes that can incorporate such
robust constraints.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1580



b) Pricing stochastic electricity markets: There has been
much recent interest in designing electricity markets incorpo-
rating robust or stochastic constraints to ensure reliable oper-
ation in the face of uncertainty. For example, such dispatch
schemes include economic dispatch with robust constraints
[6], [5], chance constraints [17], [18], [19], distributionally
robust chance constraints [9], [20], and conditional value at
risk constraints [7]. However, in the subset of these works that
explicitly address the problem of designing price mechanisms
for the stochastic dispatch problem, inconsistent notions of
ex ante dispatch-following incentives are considered which
leaves open the need for out-of-market settlements to make
up for lost opportunity cost.

This work improves practically upon existing methodologies
by combining the temporally-coupled multi-interval dispatch
used in practice with stochastic market-clearing mechanisms
proposed in the research literature. Our approach can be
applied to any formulation of stochastic or robust economic
dispatch and ensures zero lost opportunity cost on the part
of market participants by considering both ex ante and ex
post dispatch-following incentives in the price specifica-
tion.

II. MULTI-STAGE DISPATCH UNDER UNCERTAINTY

The day-ahead (DA) and real-time (RT) stages of electricity
market clearing form a T + 1 stage sequential optimization
problem, with coupling between the stages and uncertainty
from load and renewables realized between each of the T
stages. The first stage is the single-shot, DA optimization
problem which determines a unit commitment and associated
dispatch for the upcoming 24-hour time horizon. This
dispatch, although not physically realized, may be financially
settled. Subsequently, in real time, a receding-horizon multi-
interval optimization is performed. The first interval from
each of these T subproblems is financially binding. Between
each of the subproblems, the SO utilizes updated forecasts
of uncertain demand and renewable generation to improve
the efficiency of the dispatch.

The stages of the sequential problem are temporally coupled
in the manner depicted in Figure 1. The first (DA) stage
couples to all of the subsequent stages because it fixes the
unit commitment – and therefore the upper/lower generation
bounds, ramp limits, etc. – in the T subsequent (RT) stages.
Within the RT market, stages are coupled consecutively due
to the form of ramping constraints and the battery state-of-
charge updates.

Stage: 0 1 2 . . . T

Fig. 1. Coupling between T + 1 stages in DA + RT economic dispatch.
A directed edge between two stages indicates that the later-stage decision
depends explicitly on the decision committed to in the earlier stage.

Since the T + 1 stages are solved and settled sequentially,
we consider two groups of stages at a time: the period
with no uncertainty, and the set of periods with remaining
uncertainty. In the DA stage, the SO seeks to solve a stochastic
optimization problem that fixes here-and-now decisions for
the unit commitment while selecting policies for the wait-
and-see decisions of RT stage 1. The purpose of the policies
is to provide realization-dependent recourse in subsequent
stages. However, in each of these stages, after uncertainty
has been revealed, the multi-interval optimization is solved
again for the next stage.

A. Notation

For each optimization interval indexed by t ∈ {0, . . . , T},
each market participant i ∈ {1, . . . ,N} has a dispatch vector
xi,t ∈ RMi,t where Mi,t is the dimension of the dispatch
vector for i in stage t. The dispatch xi,t includes all of
the quantities associated with participant i in stage t. For
conventional generators, this is just their power generation.
For storage resources, it includes power generation and state-
of-charge. We do not consider discrete variables, such as those
needed for unit commitment, in our presentation here. They
can be included without impacting our pricing or dispatch
results, although the dispatch problem would need to be
modified slightly as in [9], [21]. System states, such as nodal
power injections, line flows, and voltage angles, can be written
in terms of the individual dispatch variables xi,t and are
therefore not explicitly notated. For each t, we collect dispatch
vectors into a single decision vector:

xt ∶= (x1,t, . . . ,xN,t) ∈ RMt ,

where Mt ∶= ∑iMi,t. Associated with each dispatch vector
is a market price πt ∈ RMt . The revenue (or payment) each
participant receives over the entire horizon is π⊺txt.

For each t we associate a random vector of uncertainty
ξt ∈ RPt . Realizations of ξt, denoted ξ̂t, are obtained
sequentially after the dispatch x̂t−1 has been committed but
prior to computing xt. We also assume that the SO has
access to a forecast θt that represents their best knowledge
at stage t about subsequent uncertainty ξt+1, . . . ,ξT . The
composition of the forecast depends on what information is
accessible. In the simplest case, θt is just a point forecast of
ξt+1, . . . ,ξT . When distributional information is available, θt

can be a set of parameters describing each forecast distribution
and its support. Since stage 0 is the DA/UC stage of the
market clearing, which happens when no uncertainty has
been realized, ξ̂0 is defined to be a set of forecasts over the
subsequent T RT intervals.

In the rest of the paper, we denote by aτ ∶t the set of vectors
{aj}tj=τ . If τ > t, we define this to be the empty set. For τ, t ∈
N satisfying τ ≤ t, we define [τ, t] ∶= {τ, τ + 1, . . . , t}.

B. Ex-post Dispatch Problem and Prices

If the SO had perfect forecasts of uncertainty, it could
solve the following optimization problem (1) for all time
intervals simultaneously. This is a useful solution because

1581



it benchmarks the efficiency of dispatch algorithms and
quantifies the impact of uncertainty.

Problem 1. Given an uncertainty realization ξ̂, the ex-post
dispatch problem for all T + 1 stages is:

min
x0,...,xT

T

∑
t=0

N

∑
i=1

ci,t(xi,0∶t; ξ̂0∶t) (1a)

s.t. ft(xt; ξ̂0∶t) ≤ 0 ∀t (1b)

gi,t(xi,t; ξ̂0∶t) ≤ 0 ∀i, ∀t (1c)

hi,t(xi,0∶t; ξ̂0∶t) ≤ 0 ∀i, ∀t (1d)

Our formulation contains three types of constraints: (1b) con-
vex system-wide constraints ft that couple decisions across
market participants but within each stage (e.g., power balance,
line flow limits, zonal constraints, reserve requirements);
(1c) private constraints gi,t for participant i and stage t
(e.g., generation limits, state-of-charge (SOC) limits); and
(1d) private constraints hi,t for participant i coupling their
decisions in stage t to all previous dispatches (e.g., ramping,
storage SOC updates, unit commitment-dependent generation
limits).

This formulation of economic dispatch incorporates linear
power flow equations, network constraints, zonal constraints,
reserve constraints, private constraints, and intertemporal
constraints for both conventional generators, flexible and
inflexible loads, and storage.

Assumption 1. We assume that for each i, t, functions ci,t,
ft, gi,t, and hi,t are convex w.r.t xt. We also assume that
they are causal, in the sense that they possibly depend on
any dispatches and uncertainty realized until time t. Finally,
for non-triviality, we assume that Problem 1 has a feasible
solution.

If market dispatches x∗0, . . . ,x
∗

T are generated by the optimal
solution of Problem 1, then the market clearing price that
supports a competitive equilibrium is just the dual multiplier
associated with constraint (1b), cf. [13], [10].

C. Sequential Market Dispatch

In practice, solving Problem 1 is not a viable procedure for
clearing the market due to the combination of uncertain inter-
stage coupling constraints. Instead, SOs resort to solving a
sequence of market-clearing optimization problems.1 For each
stage, updated forecasts of uncertainty are used as problem
parameters, and advisory forward decisions are computed,
but only the decision for the current stage is settled.

The market-clearing problem for stage t is presented in
Problem 2, where the function Vt ∶ RMt → R represents the
forward cost of dispatch xt; we refer to this as the forward
value or cost-to-go function. As with the functions in Problem
1, Vt may be parameterized by all uncertainty realized up

1For example, this sequence could be the combination of a day-ahead
forward market followed by real-time adjustment market clearings every 15
minutes.

to t, all previous dispatches, as well as forecasts of future
uncertainty θt that are available at time t:

Vt(xt; x̂i,0∶t−1, ξ̂0∶t,θt)

In service of simpler notation, we make this dependence on
parameters implicit in the remainder of the manuscript and
simply refer to Vt(xt), except where an explicit reference
to a particular parameter is necessary. In Section II-D, we
remark on how Vt is already incorporated in market dispatch
problems in practice as well as on the theoretical benefits of
abstracting the forward cost of decisions in this way.

Problem 2. Let x̂0∶t−1 be the sequence of dispatches commit-
ted prior to stage t and ξ̂0∶t the uncertainty realized through
stage t. The sequential dispatch problem for interval t is:

min
xt
∑
i

ci,t(xi,t, x̂i,0∶t−1; ξ̂0∶t) + Vt(xt) (2a)

s.t. λt ⊥ ft(xt; ξ̂0∶t) ≤ 0 (2b)

µi,t ⊥ gi,t(xi,t; ξ̂0∶t) ≤ 0 ∀i (2c)

ηi,t ⊥ hi,t(xi,t, x̂i,0∶t−1; ξ̂0∶t) ≤ 0 ∀i (2d)

The dual multipliers associated with each set of constraints
are indicated to the left of each constraint (and followed
by “⊥”). When Vt(xt) is convex with respect to xt, and the
convexity conditions from Assumption 1 hold, then (2) is a
convex optimization problem.

The following algorithm specifies how the system operator
clears and settles the market over the multi-stage scheduling
horizon. Note that at each stage, the SO requires a scheme
for deciding the prices π∗t (see below).

Algorithm 1.

1) The SO generates a DA uncertainty forecast ξ̂0 and
solves Problem 2 for t = 0 to produce decisions x∗0 and
prices π∗0 .

2) For t = 1, . . . , T :

a) Nature realizes uncertainty ξ̂t;

b) The SO solves Problem 2 to produce dispatches x∗t
and prices π∗t ;

c) Each participant realizes dispatch x̂t ∶= x∗t and settles
with the SO i at π∗i,t

⊺x̂i,t.

Assumption 2. Solving Problem 2 iteratively for t = 0, . . . , T
produces a feasible sequence of dispatches. Note that such
recursive feasibility is in general not guaranteed and may
depend on the choice of Vt and θ; see [15], [16] for further
consideration of these details.

D. Specifying the cost-to-go function Vt

Depending on the parameterization of the uncertainty forecast
θt and the choice of the stochastic optimization model, the
function Vt adopts different forms. We show below how
several common stochastic paradigms fit into this framework.
These encompass the multi-settlement and rolling-window
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optimization procedures (with and without lookahead) used by
SOs in practice as well as stochastic optimization formulations
increasingly studied in the research literature.
1) Rolling dispatch without lookahead: This procedure is
the traditional approach to dispatching the DA and RT
markets, where each stage (or interval) is optimized without
considering the forward consequences of the current dispatch.
Thus, xt is only coupled intertemporally to x̂t−1 through the
constraints (2e). In this case, Vt ∶= 0 for all t = 0, . . . , T .
As this is convex, Problem 2 is, therefore, convex and
tractable.
2) Rolling dispatch with lookahead: To better handle uncer-
tainty, SOs make use of forecasts and advisory decisions
over a lookahead horizon of length h > 1. Exploiting
lookahead predictions can increase the feasibility and ex-
post optimality of the overall dispatch sequence since it
allows for anticipating future ramp, unit commitment, and
storage charge/discharge needs [22]. The forecast is a point
forecast θt = (ξ̃t+1, . . . , ξ̃t+h), available at time t, of the true
uncertainties ξ̂t+1, . . . , ξ̂t+h to be realized.

Vt(xt;θt) ∶=

min
xt+1,...,xt+h

t+h

∑
τ=t+1

N

∑
i=1

ci,τ(xi,t+1∶τ , x̂i,0∶t; ξ̂0∶t, ξ̃t+1∶τ) (3a)

s.t. fτ(xτ ; ξ̂0∶t, ξ̃t+1∶τ) ≤ 0 ∀τ (3b)

gi,τ(xi,τ ; ξ̂0∶t, ξ̃t+1∶τ) ≤ 0 ∀i,∀τ (3c)

hi,τ(xi,t+1∶τ , x̂i,0∶t; ξ̂0∶t, ξ̃t+1∶τ) ≤ 0 ∀i,∀τ (3d)

In the above, ∀τ means τ ∈ [t + 1, t + h]. By convention, if
(3) is infeasible, Vt = +∞.

Proposition 1. Vt(xt;θt) in (3) is convex in xt.

Although Vt in (3) is convex, it is not possible to write
down a closed-form solution in general. However, (3) can
be incorporated into the formulation of the problem (2),
recovering the standard lookahead economic dispatch problem
studied in [10], [13], which is a tractable convex optimization
problem. Note that in a solution xt,xt+1, . . . ,xt+h to (2)
with Vt defined as (3), only the first dispatch xt is binding
for the purposes of Algorithm 1. The remaining dispatches
xt+1, . . . ,xt+h are advisory and are re-computed for each
successive interval.
3) Chance-constrained optimization: Chance-constrained op-
timization has received increasing interest for its ability to
optimize over decisions with constraints involving stochastic
uncertainty [17], [9], [23]. The form of Vt presented next en-
ables probabilistic guarantees on the feasibility of the advisory
dispatch under a distributional assumption on uncertainty. At
time t, we define pt to be the distribution of future uncertainty
ξt+1∶t+h conditioned on all uncertainty realizations through
time t. The forecast θt collects parameters of this distribution
or of the SO’s best guess of this distribution. In this case,
the risk-neutral chance-constrained lookahead value function

is defined as follows:

V (xt;θt) ∶=

min
xt+1,...,xt+h

E
ξt+1∶t+h∼pt

[
t+h

∑
τ=t+1

N

∑
i=1

ci,τ(xi,τ ;ξτ)] (4a)

s.t. Pξt+1∶τ
[fτ(xτ ; ξ̂0∶t,ξt+1∶τ) ≤ 0] ≥ 1 − ε

f
τ ∀τ (4b)

Pξt+1∶τ
[gi,τ(xi,τ ; ξ̂0∶t,ξt+1∶τ) ≤ 0] ≥ 1 − ε

g
i,τ ∀i,∀τ (4c)

Pξt+1∶τ
[hi,τ(xi,t+1∶τ , x̂i,0∶t; ξ̂0∶t,ξt+1∶τ) ≤ 0]

≥ 1 − εhi,τ ∀i,∀τ (4d)

In the above, ∀τ means τ ∈ [t + 1, t + h]. By convention, if
(3) is infeasible, Vt = +∞. The hyperparameter ε’s can be
tuned by the SO to adjust the permissible probability of a
constraint violation.

In general, (4) is intractable due to the difficulty in computing
probabilities and expectations over arbitrary distributions pt.
In particular, the feasible set defined by the constraints may
be nonconvex even if the constraint functions fτ , gi,τ , hi,τ

are convex. The structure of the constraints may also make
the problem infeasible, e.g., a fixed advisory decision will
generally be insufficient to guarantee feasibility under any
demand realization, and uncertainty-dependent recourse will
be necessary. However, by introducing suitable assump-
tions on the structure of the problem such as linearity of
ci,τ , fτ , gi,τ , hi,τ , Gaussianity of pt, separating joint chance
constraints into individual chance constraints, and replacing
advisory decisions with advisory uncertainty-dependent affine
policies, a tractable, convex counterpart to (4) can be formed.
For details on such a transformation, we refer the reader
to recent literature on chance-constrained optimization and
economic dispatch [24], [17].
4) Other stochastic formulations: The procedure we have
been following in Subsections II-D.1 – II-D.3 to formulate the
sequential dispatch problem in the form (2) be applied to other
stochastic optimization settings, including scenario-based
optimization, robust optimization, and distributionally robust
optimization, where there is an extensive literature on convex,
tractable reformulations [20], [9], [8], [5], [16].

In fact, although all of these approaches to defining Vt rely
on constructing a tractable optimization problem, this is not
necessary for Problem 2. As long as Vt is convex and it
is possible to obtain gradients of Vt for any input xt, then
optimization (2) can be solved using gradient-based methods.
And, as we will show in the next section, the price formation
also depends only on being able to compute gradients of Vt

for the market dispatch.

III. PRICING MULTI-STAGE UNCERTAINTY

In this section, we define the market clearing price and
prove that it supports a competitive market clearing solution
under ex-ante and ex-post definitions of dispatch-following
incentives.

A. Model of market participation

In order to establish the properties of a competitive equi-
librium, we first present the participant’s model of market
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behavior. We assume that the agents are price-takers, in that
they do not bid strategically to impact the price. Further,
we assume that they optimize for the current stage of the
optimization problem and do not price future decisions into
the bid for the current interval. We express the agent’s
profit-maximizing behavior precisely through the following
problem.

Problem 3. Under a given price πi,t, agent i’s profit-
maximizing schedule in interval t is:

argmax
xi,t

π⊺i,txi,t − ci,t(xi,t, x̂i,0∶t−1; ξ̂0∶t) (5a)

s.t. µi,t ⊥ gi,t(xi,t; ξ̂0∶t) ≤ 0 (5b)

ηi,t ⊥ hi,t(xi,t; x̂i,0∶t−1, ξ̂0∶t) ≤ 0 (5c)

B. Equilibrium Concepts

We are interested in pricing mechanisms that the SO can
implement to promote dispatch-following incentives. These
incentives come in two varieties: ex-ante, which apply before
uncertainty realization and dispatch, and ex-post, which apply
after uncertainty has been realized and dispatches have been
committed. Adopting terminology from [10], [11], we now
present equilibrium notions that will encourage both ex-ante
and ex-post dispatch following incentives.

Definition 1. Let x0, . . . ,xT be a dispatch sequence and
π0, . . . ,πT be a price sequence, and let ξ̂ be a realization
of uncertainty. This pair of sequences supports a general
equilibrium over the entire scheduling horizon t = 0, . . . , T
if and only if the following conditions hold:

1) Market Clearing Condition. The dispatch sequence
satisfies the system-wide constraints at all times:

ft(xt, ξ̂0∶t) ≤ 0 ∀t ∈ [0, T ]

2) Incentive Compatibility. For each participant i,
xi,0, . . . ,xi,T is an optimal solution of the participant’s
ex post problem:

argmax
xi,0,...,xi,T

T

∑
t=0

πi,t
⊺xi,t − ci,t(xi,t,xi,0∶t−1; ξ̂0∶t) (6a)

s.t. µi,t ⊥ gi,t(xi,t; ξ̂0∶t) ≤ 0 ∀t ∈ [0, T ] (6b)

ηi,t ⊥ hi,t(xi,t,xi,0∶t−1; ξ̂0∶t) ≤ 0 ∀t ∈ [0, T ] (6c)

A dispatch and price sequence that supports a general equilib-
rium supports ex-post dispatch-following incentives. However,
when the SO schedules in the presence of uncertainty, e.g.
in the case of multi-interval lookahead or stochastic dispatch,
a missing payments problem can arise due to distribution
shift. The works [10], [11] discuss this issue extensively in
the lookahead setting and further show how this missing
payment problem arises even when there are perfect forecasts
(but a truncated lookahead horizon). To address this, they
introduce an additional notion of partial equilibrium at each

dispatch stage which may be viewed as a condition on ex-ante
dispatch-following incentives.

Definition 2. Let xt be the dispatch and πt be the price
from interval t, and let ξ̂0∶t be a realization of uncertainty
up through t. This pair supports a partial equilibrium for
stage t if and only if the following conditions hold:

1) Market Clearing Condition:

ft(xt, ξ̂0∶t) ≤ 0

2) Incentive Compatibility: For each i, the subvector xi,t

of xt is the optimal solution of (5) under price πi,t.

The work in [10], [11] also adopts a dual notion of equilibrium
that combines partial and general equilibrium.

Definition 3. A dispatch sequence x0, . . . ,xT and price
sequence π0, . . . ,πT support a strong equilibrium under
sequentially realized uncertainty ξ̂1, . . . , ξ̂T if and only if they
support both a general equilibrium and a partial equilibrium
for each t.

By employing this stronger notion of equilibrium, both ex-
ante and ex-post incentive alignment can be guaranteed
in the lookahead dispatch setting. We adopt this notion
of strong equilibrium in our work to enable pricing that
guarantees dispatch-following incentives in the case of general
lookahead value function Vt, such as those in the case of
stochastic optimization formulations of the market dispatch
problem.

C. Pricing a strong equilibrium

In each interval, the market operator solves (2) to generate a
dispatch for that interval for each participant x∗i,t along with
a price vector π∗i,t defined as

π∗i,t ∶= −Dxi,t
ft(x∗t ; ξ̂0∶t)⊺λ

∗

t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Locational marginal price

− ∇xi,tVt(x∗i,t;θt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Price of uncertainty

−Dxi,thi,t(x∗i,t, x̂i,0∶t−1; ξ̂0∶t)⊺η∗i,t
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Price of intertemporal coupling

(7)

This price is defined in terms of optimal dual variables and
derivatives of objective/constraint functions at the optimal
point. The notation Dxi,tft(x∗t ; ξ̂t) represents the Jacobian
of the function ft with respect to variable xi,t evaluated at
xi,t = x∗i,t.

Our price admits a straightforward decomposition into several
functional parts. The first component of the price is the
standard locational marginal price (LMP). The second term
prices the cost of scheduling under uncertainty. The magnitude
of this term is determined both by the particular choice of
Vt as well as the quality of the uncertainty parameterization
in θt. The last component is a price on the intertemporal
coupling between decisions. The price of ramping presented
in [10] is a special case of this term; our formulation admits
other intertemporal couplings, such as from storage state-
of-charge [14]. This price is discriminatory, in that each
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participant may see a different price. The necessity of such
price discrimination when there are intertemporal coupling
constraints on generators is proven in [10].

We now establish the equilibrium properties of this price.
Given the prior convexity assumptions on ci,t, ft, gi,t, and
hi,t, problems (5) and (6) are convex.

Theorem 1. Fix a t ∈ [0, T ] and let x∗t be the dispatch
produced by the optimal solution of (2) and let π∗t be the
price as defined in (7) using optimal primal/dual variables
from (2). This dispatch-price pair forms a partial equilibrium
for interval t.

Proof. For an interval t, we have realized uncertainty ξ̂t and
a previous dispatch sequence x̂0∶t−1. Assume that problem (2)
has been solved to optimality yielding optimal primal/dual
solutions (not necessarily unique) x∗t ,λ

∗

t , µ∗i,t, η
∗

i,t ∀i.

The market clearing condition in Definition 2 is satisfied
by primal feasibility of the optimal solution x∗t . Without
loss of generality, the rest of the proof will be shown for a
particular i. To show incentive compatibility, we write down
the Lagrangian of (2) for a given t:

Lt =
N

∑
i=1

ci,t(xi,t, x̂i,0∶t−1; ξ̂0∶t) + Vt(xt;θt) +λ⊺t ft(xt; ξ̂0∶t)

+
N

∑
i=1

µ⊺i,tgi,t(xi,t; ξ̂0∶t) +
N

∑
i=1

η⊺i,thi,t(xi,t, x̂i,0∶t−1; ξ̂0∶t)

The stationarity conditions hold at optimality:

0 =∇xi,tci,t(x∗i,t, x̂i,0∶t−1; ξ̂0∶t) + ∇xi,tV (x∗t ; θt)
+Dxi,tft(x∗t ; ξ̂0∶t)⊺λ

∗

t +Dxi,tgi,t(x∗i,t; ξ̂0∶t)⊺µ∗i,t
+Dxi,thi,t(x∗i,t, x̂i,0∶t−1; ξ̂0∶t)⊺η∗i,t

(8)

The argument uses the convex KKT theorem. We construct
primal-dual solutions that satisfy the KKT optimality condi-
tions (primal/dual feasibility, complementary slackness, and
stationarity) of problem (5). Because (5) is convex, the
constructed primal-dual solution is also optimal. Define

xi,t ∶= x∗i,t (9a)

µi,t ∶= µ∗i,t (9b)

ηi,t ∶= 0 (9c)

xi,t satisfies primal feasibility of (5) because x∗i,t is primal
feasible for (2). µi,t and ηi,t are dual feasible because both
are non-negative by construction. Complementary slackness
holds for µi,t because µ∗i,t is optimal for (2), and holds for
ηi,t trivially.

The Lagrangian of (5) is

Li,t = −π∗i,t
⊺

xi,t + ci,t(xi,t, x̂i,0∶t−1; ξ̂0∶t)
+µ⊺i,tgi,t(xi,t; ξ̂0∶t) + η⊺i,thi,t(xi,t, x̂i,0∶t−1; ξ̂0∶t)

(10)

Now to check the stationarity condition,

∇xi,t
Li,t = −π∗i,t +∇xi,t

ci,t(x∗i,t, x̂i,0∶t−1; ξ̂t)
+Dxi,t

gi,t(x∗i,t; ξ̂0∶t)⊺µ∗i,t + 0
= Dxi,t

ft(x∗t ; ξ̂0∶t)⊺λ
∗

t +∇xi,t
V (x∗t ; θt)

+Dxi,thi,t(x∗i,t; x̂i,t−1, ξ̂t)⊺η∗i,t
+∇xi,t

ci,t(x∗i,t, x̂i,0∶t−1; ξ̂t)
+Dxi,t

gi,t(x∗i,t; ξ̂0∶t)⊺µ∗i,t
= 0

where the first equality comes by from plugging (9) into
(10) and the second equality comes from plugging in the
price defined in (7). The third equality holds because the
expression is identical to (8).

Theorem 2. The sequences of dispatches x∗0, . . . ,x
∗

T and
prices π∗0, . . . ,π

∗

T produced by Algorithm 1 over the entire
scheduling horizon form a general equilibrium.

We omit the proof due to space constraints. The approach
is the same as for Theorem 1, where we construct a primal-
dual solution for (6) and show that the dispatches generated
by Algorithm 1 and prices guarantee its optimality. The
intertemporal coupling and uncertainty terms allow the
Lagrangian of (6) to decouple across intervals and thus the
optimality conditions of (2) apply simultaneously.

The result in Theorem 2 shows that price (7) guarantees that
each participant has zero lost opportunity cost at the end
of the scheduling horizon. The intertemporal coupling term
compensates participants for any lost opportunity cost due
to binding intertemporal constraints (e.g., ramping) whereas
the uncertainty term compensates participants for any lost
opportunity cost due to the system operator’s uncertainty-
aware scheduling procedure.

The following corollary holds from Theorems 1 and 2:

Corollary 1. The sequences of dispatches x∗0, . . . ,x
∗

T and
prices π∗0, . . . ,π

∗

T produced by Algorithm 1 over the entire
scheduling horizon support a strong equilibrium.

A strong equilibrium is a desirable property of a market-
clearing price because it provides dispatch-following in-
centives during each stage of scheduling horizon while
also correcting the missing payment problem that arises ex-
post.

IV. EXPERIMENTS

We explore how uncertainty affects dispatch efficiency and
pricing under our mechanism through a test case similar to
that presented in [11]. We consider a power system with a gas
combined-cycle (C.C.) plant, a gas peaker plant, solar, wind,
and load in a single bus network. The gas plants are ramp
constrained whereas the renewables are not. Cost functions
are linear and are parameterized by their marginal cost. All
parameters for the generators are given in Table I.
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TABLE I
GENERATOR PARAMETERS FOR THE TEST CASE

Generator Pmin
(MW)

Pmax
(MW)

Ramp Rate (%
Pmax/hour)

Cost
($/MWh)

Gas C.C. 350 550 25% 50
Gas Peaker 100 120 200% 70
Solar 0 250 NA 0
Wind 0 350 NA 0

We obtain 24-hr load and renewable generation profiles
from CAISO from Sep. 9, 2021 [25]. These include both
forecast day-ahead trajectories and the actual, realized real-
time trajectories, all of which were normalized to 1000MW
peak demand. Sample realizations of the true trajectories are
simulated by adding correlated zero-mean Gaussian noise to
the actual values.

Algorithm 1 was implemented to clear the market in a rolling
fashion. The dispatch horizon for a single run of the market is
24 hours, consisting of 289 individual stages: one DA dispatch
and RT dispatches every 5 minutes. The first stage (t = 0)
is the DA unit commitment problem. The unit commitment
problem makes use of a 24-hour ahead hourly DA forecast
in the CAISO data.2 The subsequent RT stages take the unit
commitment as fixed.

We implement the three mechanisms from Section II-D for
dispatching in RT. First is myopic scheduling, where only
the current interval’s cost and constraints are optimized but
generator ramping constraints bind the current decision to
the realized dispatch from the previous interval. This is a
deterministic problem, as demand and renewable generation
are assumed to be known, and does not account for the
cost of future decisions in the scheduling horizon. Second is
multi-interval lookahead scheduling with a 3-hour lookahead
horizon.A lookahead forecast is computed by taking the mean
of a small subset of random trajectories. Third is a multi-
interval chance-constrained lookahead problem, where the
constraints for the advisory periods hold probabilistically and
the objective function is the expected cost for the advisory
periods. The distribution parameters of the trajectory forecasts
are obtained from the set of randomly sampled trajectories.

Figure 2 shows the dispatch trajectories for each of the
generators in the system under optimal ex-post scheduling.
Note that due to its high cost relative to the other generators,
the gas peaker is only active during the peak demand hours
when the ramp needs of the system exceed available capacity.
Lookahead dispatch with point forecasts results dispatching
the peaker less often for binding ramping constraints but more
during other intervals due to the cost of uncertain dispatch.
Chance-constrained lookahead dispatch is able to avoid most
of the binding ramping constraints at the expense of more

2In North American ISOs, there is often a financial settlement in the DA
market. Although our formulations accommodate a financially settled DA
market, we do not empirically analyze the DA market settlement in this
work, as intertemporal coupling and uncertainty do not arise in the formation
of the DA prices.

Fig. 2. DA (dashed line) and optimal RT (solid line) dispatch trajectories
for generators and load over a 24 hour scheduling horizon.

precautionary dispatches due to uncertainty.

Fig. 3. Total dispatch cost of the different pricing schemes under increasing
forecast error. Forecast error is defined as the mean absolute percentage
deviation from the true trajectory realization.

Figure 3 presents the benefits of scheduling with lookahead
and stochastic forward cost policies. When the forecast error
is zero, accounting for forward cost results in more costly
dispatch than myopic scheduling. This is due to the inherent
conservatism and robustness that these policies provide. How-
ever, as uncertainty increases, myopic scheduling becomes
more costly than uncertainty-aware scheduling due to load
shedding actions and sub-optimal dispatch of higher cost
generators.

Finally, we show how our proposed market clearing price
(7) decomposes into its constituent components in Figure 4.
The largest component of the price is the uniform shadow
price of the power balance constraint. However, for the ramp-
constrained gas generator, there are additional terms that
compensate for the opportunity cost of the system operator’s
imperfect scheduling under uncertainty.

Fig. 4. Price trajectory π∗i,t for the gas combined-cycle generator under
σ = 10% forecast uncertainty for different real-time forecast methodologies.

The additional complexity of computing price (7) is negligible
compared to the standard LMP and T-LMP in [10], as it is
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also defined in terms of optimal dual variables and cost
function gradients. The complexity of the dispatch problem
depends on the choice of procedure (e.g., change-constrained,
robust, scenario).

V. CONCLUSION

In this paper, we have presented a unified mechanism
for pricing uncertainty in a multi-stage dispatch setting,
incorporating both standard deterministic lookahead dispatch
and stochastic market clearing approaches (e.g., chance-
constrained, robust) within the same pricing framework. We
prove that our price provides dispatch following incentives as
well as zero lost opportunity costs for generators. A detailed
empirical comparison with other pricing methodologies, such
as the standard LMP and the R-TLMP [10], is reserved for
future work. Ongoing research analyzes the system operator’s
merchandizing surplus and compares multi-settlement and
single-settlement pricing methodologies.
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