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Abstract—A zero-sum tax/subsidy approach and a necessary
condition for stabilizing unstable Nash equilibria in pseudo-
gradient-based noncooperative dynamical systems with vector-
valued payoff functions are proposed. Specifically, we first present
a necessary and sufficient condition for the Nash equilibrium of
the noncooperative game with vector-valued payoff functions to
be bounded. Then we give a sufficient condition for such Nash
equilibrium to be stable. After that, we develop a framework
where a system manager constructs a zero-sum tax/subsidy
incentive structure by collecting taxes from one agent and giving
the same amount of subsidy to the other agent to make the
incentivized Nash equilibrium stable and bounded, which can
make the trajectories converge to the interior of original Nash
equilibrium set. Finally, we present a numerical example to
illustrate the utility of the zero-sum tax/subsidy approach.

Index Terms—Nash equilibrium, noncooperative system, sta-
bilization, tax/subsidy approach, vector-valued payoff functions

I. INTRODUCTION

Game theory has served as a widely used framework for
analyzing noncooperative multi-agent systems, with appli-
cations in engineering and economics such as minimizing
energy consumption in wireless networks [1], improving social
welfare [2], implementing pricing mechanisms [3], among
others. In such games, agents make their decisions based on
their associated payoff functions.

In noncooperative games, it is assumed that agents prioritize
increasing their own payoff functions instead of the interest
of others, thus exhibiting selfish behavior. This behavior in
noncooperative systems is typically described as the dynamic
fictitious play [4] and the pseudo-gradient dynamics [5]. How-
ever, such decision-making may often lead to a degradation
of social welfare [6]. An example is the tragedy of the
commons, which represents a social trap involving a conflict
between individual and public interests in resource allocation
[7]. In the absence of an individual who is responsible for the
entire noncooperative system, each agent demands resources
independently based on self-interest, leading to uncontrolled
exploitation of limited resources. This ultimately harms the
communal good of all agents in shared-resource systems.

To avoid such phenomenon, external policies or explicit
incentive mechanisms can be imposed to alter their decision-
making tendencies within noncooperative systems [8]. A
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tax/subsidy approach has been proposed to reward or penalize
deviation from the average contribution of other competitors in
public goods allocation [9]. Varian proposed a compensation
mechanism, where agents are permitted to voluntarily subsi-
dize other agents with prestige when others’ decisions have
not been made yet [10]. Such a mechanism is considered as a
liberal solution since agents are free to avoid the mechanism.
This type of mechanisms works as a weak rule for noncoop-
erative systems and is generally expected to be less efficient
than coercive solutions.

In this paper, we consider the incentive design method
for the game where each agent has vector-valued payoff
functions, depending on the decisions of all players. This
type of game was initially introduced by Blackwell [11].
Subsequently, Shapley and Rigby extended the concept of
Nash equilibrium for two-person zero-sum finite games with
vector payoff functions, which is a key concept in games
where each agent has multiple objectives [12]. For general n-
person multi-objective games, Zhao established the existence
of equilibria [13]. Bade characterized the Nash equilibrium set
of the multi-objective game as the union of Nash equilibria for
certain derived games with complete preference [14]. Patriche
explored the existence of equilibrium for multiobjective games
in abstract convex spaces [15]. Guo et al. characterized the
Nash equilibrium in 2-agent games with quadratic payoff
functions and provided the stability condition when the interior
of the Nash equilibrium is simply connected [16].

In the following we use E(G) to denote the Nash equi-
librium set, and there exists some problem not solved in
[16], such as the stability property when the interior of E(G)
is not simply connected. Also, with the stable dynamics of
each agent, the trajectories from the neighborhood of E(G)
can only reach its boundary. We wonder if by giving some
incentive functions, the trajectories can converge to part of
E(G). Then, another important problem arises: can we make
an unstable E(G) stable as Yan and Hayakawa did in [17];
and can we make E(G) compact to avoid the tragedy of the
commons by incentive functions?

The main contributions of this paper are summarized as
follows. Firstly, we give some further results on the chara-
terization (a necessary and sufficient condition for the com-
pactness of Nash equilibrium) and the stability condition of
2-agent games with quadratic vector payoff functions when
the dimension of the vector payoff functions is 2. Secondly,
we use an incentive function that influences only one element
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in the vector payoff functions to make the Nash equilibrium set
compact, stable, and a subset of the original one. We provide
the necessary condition for the existence of the incentive
function and further discuss the flexibility for such incentive
parameters.

Notations: Given a vector x ∈ Rn, its ith coordinate is
denoted by xi ∈ R and its transpose is denoted by xT if there
are no special instructions. Given two vectors a, b ∈ Rn, we
write a ≥ b if ai ≥ bi, for all i ∈ {1, . . . , n} and a ̸= b. Given
a matrix A ∈ Rm×n, Aij denotes the element at ith row and
jth column. The ith row of A is denoted by rowi(A). Finally,
the interior of a set S is denoted by int(S). The set S is called
connected if it is not a union of two disjoint nonempty open
sets, and a set is called compact if it is closed and bounded.
The Hausdorff distance of a point x and a set Y is defined as
dH(x, Y ) ≜ miny∈Y ∥x− y∥2.

II. PROBLEM FORMULATION

A. System description

Consider the noncooperative system with two agents, de-
noted by i ∈ {1, 2}, where each agent controls its state xi ∈ R.
We define the overall agents’ state profile as x = (xi, x−i)
∈ R2, where x−i ∈ R represents the state of the other
agent. We can also write x as x = [x1, x2]T. We assume
that both of the 2 agents have 2 kinds of payoff functions
J i1, J i2 : R2 → R, i ∈ {1, 2}, so that the vector-valued
payoff function of agent i is denoted by J i : R2 → R2, where
J i(x) = [J i1(x), J i2(x)]T.

In this paper, we assume that there is a system manager
who imposes some incentive mechanisms among the agents
to reconstruct the agents’ payoff functions and hence alters
the agents’ decisions. Specifically, let the agents’ incentivized
payoff functions be given by

Ĵ i1(x) ≜ J i1(x) + pi(x),

Ĵ i2(x) ≜ J i2(x),
(1)

where pi : R2 → R denotes the incentive function for
agent i. Note that the incentive is applied to only one of
the payoff functions and satisfies p1(x) + p2(x) = 0. We
denote the original (resp., incentivized) noncooperative system
by G(J) (resp., G(Ĵ)), where J = {J1, J2} Ĵ = {Ĵ1, Ĵ2}
with Ĵ i = [Ĵ i1, Ĵ i2]T. Here, we assume that J ij(x) and
Ĵ ij(x), i, j ∈ {1, 2}, are continuously differentiable and
strictly concave with respect to xi, i ∈ {1, 2}. Specifically, the
payoff functions are given by quadratic functions represented
by

J ij(x) =
1

2
xTAijx+ bijTx+ cij , (2)

where Aij =
[
Aij

11 Aij
12

Aij
12 Aij

22

]
∈ R2×2, with Aij

ii being negative,

bij ∈ R2, cij ∈ R, i, j ∈ {1, 2}. In this paper, we consider the
incentive functions of the form given by

pi(x) ≜
1

2
xTP ix+ qiTx, (3)

with P i =
[
P i

11 P i
12

P i
12 P i

22

]
∈ R2×2 and qij =

[
qi1
qi2

]
∈ R2.

Definition 1 (Shapley [12]). The state profile x∗ =
(x∗1, x∗2) ∈ R2 is called a Nash equilibrium for G(J) with
the vector-valued payoff functions J i, i ∈ {1, 2}, if there does
not exist xi ∈ R such that

J i(xi, x∗−i) ≥ J i(x∗), i ∈ {1, 2}. (4)

As in [16], we use the notion of the weighted games to
fully characterize the set of all Nash equilibria E(G) of a
given game G(J). Specifically, let λi = [λi

1, λ
i
2]

T ∈ ∆2 ≜
{λi ∈ R2 : λi

1 + λi
2 = 1, λi

j ≥ 0, j ∈ {1, 2}} denote a vector
of weights for agent i. For λ ≜ (λ1, λ2) ∈ ∆ ≜ ∆2 ×∆2, the
weighted game is denoted by G(J̃λ) with J̃λ = {J̃1

λ1 , J̃2
λ2},

where
J̃ i
λi(x) ≜ λiTJ i(x) ∈ R, i ∈ {1, 2}. (5)

We define E(Gλ) as the set (which may be a single point set
or empty set) of Nash equilibria (equilibrium) for the weighted
game G(J̃λ) with a given λ. According to Theorem 2 in [14]
and Theorem 2.5 in [18], since J i1(x), J i2(x) are concave in
xi for i ∈ {1, 2}, the set E(G) of Nash equilibria satisfies

E(G) =
⋃

λ∈∆
E(Gλ). (6)

Since J ij(x), i ∈ {1, 2}, are assumed to be continuously
differentiable and concave with respect to xi, according to
the maximum principle and (5), it follows that

∂J̃ i
λi(x)

∂xi

∣∣∣∣
x=x∗

λ

= λiT ∂J i(x)

∂xi

∣∣∣∣
x=x∗

λ

= 0, (7)

holds for λ ∈ ∆, i = {1, 2}, if and only if x∗
λ ∈ E(Gλ).

With the payoff functions defined in (2), according to (7),
for a fixed λ, the Nash equilibrium x∗

λ ∈ E(Gλ) satisfies[
λ1
1row1(A

11)+λ1
1row1(A

12)

λ2
1row2(A

21)+λ2
2row2(A

22)

]
x∗
λ = −

[
λ1
1b

11
1 +λ1

2b
12
1

λ2
1b

21
2 +λ2

2b
22
2

]
. (8)

Then, by iterating over all elements in ∆, we can get all
elements of E(G), which can also be characterized as

(row1(A
11)x∗ + b111 )(row1(A

12)x∗ + b121 ) ≤ 0, (9a)

(row2(A
21)x∗ + b212 )(row2(A

22)x∗ + b222 ) ≤ 0, (9b)

for x∗ ∈ E(G). In the context of the 2-agent noncoopera-
tive system, we define the best response state xi as xi =

BRij(x−i) ≜ arg maxxi∈RJ
i
j(x

i, x−i) = − biji
Aij

ii

− Aij
12

Aij
ii

x−i for

given x−i. This can also be expressed as rowi(A
ij)x+biji = 0,

which represents agent i’s best-response line in relation with
its jth payoff function. As there are two agents with two
payoff functions each, there are 4 best-response lines in total.
The regions divided by the four best-response lines can be
described by

Di
k,l ≜{x ∈ R2 : k(rowi(A

i1)x+ bi1i ) ≥ 0,

l(rowi(A
i2)x+ bi2i ) ≥ 0}, (10)

where i ∈ {1, 2}, and k, l ∈ {1,−1}. The red, blue and purple
regions in Figs. 1–3 depict regions D1

−1,1 ∪ D1
1,−1, D2

−1,1 ∪
D2

1,−1, and the Nash equilibrium set E(G) respectively, with

E(G) =(D1
1,−1 ∪D1

−1,1) ∩ (D2
1,−1 ∪D2

−1,1)

=(D1
1,−1 ∩D2

1,−1) ∪ (D1
1,−1 ∩D2

−1,1)

∪ (D1
−1,1 ∩D2

1,−1) ∪ (D1
−1,1 ∩D2

−1,1). (11)
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Fig. 1. A11 < 0 while Ajk > 0, (j, k) ∈
{(1, 2), (2, 1), (2, 2)}. E(G) is noncompact nor
connected.

Fig. 2. Ajk > 0 for all j, k ∈ {1, 2}. E(G)
is compact and connected, but int(E(G)) is not
connected.

Fig. 3. Ajk > 0 for all j, k ∈ {1, 2}.
int(E(G)) is compact and connected.

B. Myopic pseudo-gradient dynamics

In the literature, various decision dynamics are associated
with each agent to dynamically alter their states based on
other agents’ decisions. In our problem setting, we assume
that each agent knows her own payoff function and the current
state of the both agents. As a result, the frequently considered
pseudo-gradient dynamics is applied to the game, in which
agents only consider their own payoff and myopically adjust
their states based on current information without any foresight
into the future states of other agents. Since in the problem
there are vector payoff functions and each agent has no
preference between the different objectives, she follows the
payoff function whose maximal point is closer to her current
state. Specifically, the dynamics are given by

ẋi(t) = f i(x(t)), x(0) = x0 ∈ R2, i ∈ {1, 2}, t ≥ 0, (12)

where f i(x) is defined to be the piecewise function given by

f i(x) =



αi1 ∂J
i1(x)

∂xi
,
|xi − BRi1(x−i)| ≤ |xi − BRi2(x−i)|,
(xi − BRi1(x−i))(xi − BRi2(x−i)) > 0,

αi2 ∂J
i2(x)

∂xi
,
|xi − BRi1(x−i)| > |xi − BRi2(x−i)|,
(xi − BRi1(x−i))(xi − BRi2(x−i)) > 0,

0, otherwise,
(13)

where αi1 and αi2 are the sensitivity parameters of agent i for
i ∈ {1, 2}. To ensure that f i(x) is continuous in x ∈ R2, the
sensitivity parameters must satisfy αi1 ∂2Ji1(x)

∂(xi)2 = αi2 ∂2Ji2(x)
∂(xi)2

for i ∈ {1, 2}. This piecewise function of f i(x) ensures that
each agent has no incentive to change its state if it is in the
Nash equilibrium E(G), as defined in Definition 1.

III. MAIN RESULTS

A. Characterization and stability of E(G)

In this subsection, we analyze the condition for the compact-
ness of E(G). We begin by considering the 4 best-response
lines in G(J), which are in general position. The term “general
position” is defined in [19] and refers to configurations of
geometric objects that are most likely to occur. Then, we make
the following assumptions.

Assumption 1. The 4 best-response lines characterized by
rowi(A

ij)x+ biji = 0, i, j ∈ {1, 2}, satisfy:
1) No two lines are parallel,
2) No three lines have a common intersection,
3) No line is vertical or horizontal to the x1, x2 axes.

Under Assumption 1, we denote the intersection of
BRi1(x−i) = xi and BRi2(x−i) = xi as xpi . Let Ajk ≜[
A1j

11 A1j
12

A2k
12 A2k

22

]
, j, k ∈ {1, 2}. Based on Assumption 1, the follow-

ing proposition is presented.

Proposition 1. Under Assumption 1, E(G) is compact if and
only if detAjk > 0 for all j, k ∈ {1, 2}, or detAjk < 0 for
all j, k ∈ {1, 2}.

Proof. The proof is omitted due to space limitations.

From (10), Di
1,−1 and Di

−1,1 are 2 cones intersected at the
vertex xpi . And according to (11), the interior of E(G) can be
either connected or disconnected depending on the patterns of
the four intersecting regions of Di

k,l, i ∈ {1, 2}, k, l ∈ {1,−1},
which are divided by the 4 best response lines. In Figs. 1–
3, we show three distinct patterns for the Nash equilibrium
set E(G) represented by purple regions. Fig. 1 exhibits a
noncompact Nash equilibrium set, and Fig. 2 shows a com-
pact Nash equilibrium set with disconnected interior, while
Fig. 3 depicts a compact Nash equilibrium set with connected
interior. Proposition 1 highlights the difference between Fig. 1
and Fig. 2 (Fig. 3), and demonstrates the consistency between
Fig. 2 and Fig. 3. The distinction between Figs. 2 and 3 is
the position of xpi , i ∈ {1, 2}. Here, we present the following
lemma to be a necesary condition for E(G) to be compact.

Lemma 2. Under Assumption 1, E(G) is compact, only if
xp1 ∈ E(G) and xp2 ∈ E(G) do not hold simultaneously.

Proof. The proof is omitted due to space limitations.

And we give the following assumption.

Assumption 2. E(G) is compact.

Under Assumptions 1 and 2, the situation for E(G) to
be compact can be divided by the positions of xp1 and xp2
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into two cases corresponding to the cases in Figs. 3 and 2
respectively, according to Lemma 2:

1) xp1 /∈ E(G) and xp2 /∈ E(G),
2) xp1 ∈ E(G) and xp2 /∈ E(G), or xp1 /∈ E(G) and

xp2 ∈ E(G).

In the following we use the Hausdorff distance
dH(x0, E(G)) to define stability of E(G).

Definition 2. Consider the dynamical system given by (12).
We say that the set E(G) is stable if for every ϵ > 0,
there exists δ > 0, such that dH(x0, E(G)) < δ implies
dH(x(t), E(G)) < ϵ, t ≥ 0. Furthermore, E(G) is asymtoti-
cally stable, if E(G) is stable and there exists δ > 0 such that
dH(x0, E(G)) implies lim

t→∞
dH(x(t), E(G)) = 0.

Note that under Assumptions 1 and 2, case 1) implies E(G)
is convex according to [16], in which stability properties in
case 1) has also been thoroughly examined. As such, we focus
on case 2) where xp1 ∈ E(G) and xp2 /∈ E(G) without loss of
generality. Since xp1 ∈ E(G) means D1

1,−1 ∩D1
−1,1 ⊂ E(G),

it follows that E(G) ⊂ D1
1,−1 ∪ D1

−1,1 instead of E(G) ⊂
D1

1,−1 or E(G) ⊂ D1
−1,1 based on Assumption 1. Also, since

xp2 /∈ E(G) and Assumption 1, E(G) is a subset of (D2
1,−1∪

D2
−1,1)\xp2 . And (D2

1,−1 ∪D2
−1,1)\xp2 is disconnected. Ac-

cording to [16] and Proposition 1, E(G) is connected when
it is compact. Then, it follows from (11) that E(G) is a
subset of the connected part of (D2

1,−1 ∪ D2
−1,1)\xp2 . As

a result we let E(G) = (D1
1,−1 ∪ D1

−1,1) ∩ D2
1,−1 without

loss of generality. Thus, to perform stability analysis, we can
partition R2 based on the ordinate of xp1 and abscissa of xp2 ,
creating the 4 sets S1

k ≜ {x ∈ R2 : k(x2 − xp1

2 ) ≤ 0} and
S2
k ≜ {x ∈ R2 : k(x1 − xp2

1 ) ≤ 0}, where k ∈ {−1, 1}. Here,
we provide an example of how we characterize the areas of
interest around E(G).

Example 1. Consider Fig. 4, where the horizontal line
x2 = xp1

2 has an intersection xD with the best-response
line BR21(x1) = x2. Let D ≜ {x ∈ R2 : x1 ≥
xD
1 ,−A11

11x
D
1 +b111

A11
12

≤ x2 ≤ −A12
11x

D
1 +b121

A12
12

}. We note that
D\E(G) is divided into 10 domains given by

D(1) ≜ D ∩D1
1,1 ∩D2

−1,−1, D(2) ≜ D ∩D1
1,1 ∩D2

1,−1 ∩ S1
−1,

D(3) ≜ D ∩D1
1,1 ∩D2

1,−1 ∩ S1
1 , D(4) ≜ D ∩D1

1,1 ∩D2
1,1,

D(5) ≜ D ∩D1
−1,1 ∩D2

1,1, D(6) ≜ D ∩D1
−1,−1 ∩D2

1,1,

D(7) ≜ D ∩D1
−1,−1 ∩D2

1,−1 ∩ S1
1 ,

D(8) ≜ D ∩D1
−1,−1 ∩D2

1,−1 ∩ S1
−1,

D(9) ≜ D ∩D1
−1,−1 ∩D2

−1,−1, D(10) ≜ D ∩D1
1,−1 ∩D2

−1,−1.
(14)

Let xDi ≜ xDjk ∈ D(i) be the intersection point of
BR1j(x2) = x1 and BR2k(x1) = x2, where i ∈ {1, 4, 6, 9}.
The corresponding relation can be seen from Fig. 4. For
example, xD1 = xD21 ∈ D(1), and the dynamics (12) in D(1)

can be rewritten as

ẋ(t) =
[
α12 0
0 α21

]
A21(x(t)− xD21). (15)

Fig. 4. An example where xp1 ∈ E(G) and int(E(G)) is not connected.
We can see how the domain D denoted by green color around E(G) is
partitioned.

The dynamics (12) can be also rewritten in the form of
(15) to D(i), i ∈ {4, 6, 9}. In D(i), i ∈ {2, 3, 7, 8}, the state
moves horizontally, while in D(i), i ∈ {5, 10}, the state moves
vertically.

Note that when the sign of slopes of the best response lines
changes, the partitions in Fig. 4 may change. By checking the
different cases of the slopes of the best response lines, we get
the following theorem based on Lemma 4 in [16].

Theorem 3. Consider the noncooperative dynamical system
(12) satisfying (2) under Assumptions 1 and 2. If detAjk > 0
for j, k ∈ {1, 2}, then E(G) is asymptotically stable. Con-
versely, if detAjk < 0 for j, k ∈ {1, 2}, then E(G) is unstable.

Proof. The proof is omitted due to space limitations.

Remark 1. Theorem 3 is a generalized result of the stability
property of E(G) with connected interior analyzed in [16], and
can be used for our incentive design in the next subsection.
Note that the sensitivity parameters αjk, j, k ∈ {1, 2}, in
(12) do not influence the stability property. As a result, if
the incentive functions do not change the slopes of the best-
response lines, the stability property of the Nash equilibrium
set does not change. Also, when E(G) is not compact,
according to our simulation, the trajectories converge to E(G).
But the stability property depends on the connectedness in
such a case, which can be seen from the numerical example.

B. Incentive design

From Proposition 1 and Theorem 3, we know that the
compactness and stability of E(G) are determined by the signs
of the determinants of Ajk, j, k ∈ {1, 2}. By applying the
incentive function pi(x) to the original noncooperative system,
we can obtain the incentivized payoff functions of the game
G(Ĵ) as given in (1). To simplify the analysis, we combine
(1)–(3) to express Ĵ ij in the form of:

Ĵ ij(x) =
1

2
xTÂijx+ b̂ijTx+ cij , (16)

where Âi1 = Ai1 + P i, b̂i1 = bi1 + qi, Âi2 = Ai2, and
b̂i2 = bi2 for i ∈ {1, 2}. Note that pi(x) can alter the position
of the best-response lines of BRi1(x−i) = xi, i ∈ {1, 2}, and
the resulting E(Ĝ) may differ from the original E(G). Firstly,
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we aim to find the condition when E(Ĝ) is a subset of E(G),
i.e.,

E(Ĝ) ⊂ E(G). (17)

To address this problem, we define 4 pairs of cones given
by

C1 = {x ∈ R2\{0} : x = c1
[
−A11

12 A11
11

]T
+ d1

[
−A12

12 A12
11

]T
,

c1, d1 ∈ R, c1d1 ≥ 0}, (18a)

C2 = {x ∈ R2\{0} : x = c2
[
A21

22 −A21
21

]T
+ d2

[
A22

22 −A22
21

]T
,

c2, d2 ∈ R, c2d2 ≥ 0}, (18b)

Ĉ1 = {x ∈ R2\{0} : x = c1
[
−Â11

12 Â11
11

]T
+ d1

[
−Â12

12 Â12
11

]T
,

c1, d1 ∈ R, c1d1 ≥ 0}, (18c)

Ĉ2 = {x ∈ R2\{0} : x = c2
[
Â21

22 −Â21
21

]T
+ d2

[
Â22

22 −Â22
21

]T
,

c2, d2 ∈ R, c2d2 ≥ 0}. (18d)

The pairs C1 and C2 represent the cones with tips at the origin
by translating D1

1,−1∪D1
−1,1 and D2

1,−1∪D2
−1,1 respectively.

The cones Ĉ1 and Ĉ2 are defined similarly for the incentivized
payoff functions. Then, we have the following lemma.

Lemma 4. Under Assumption 1, if q1 =
[
−row1(P

1)xp1

−row2(P
1)xp2

]
,

Ĉ1 ⊂ C1, and Ĉ2 ⊂ C2, then E(Ĝ) ⊂ E(G).

Proof. The proof is omitted due to space limitations.

Then, we try to guarantee that E(Ĝ) is both compact and
asymptotically stable. First, we present the following corollary.

Corollary 5. Under Assumption 1, if detA22 < 0, then there
is no incentive function in the form of (3) such that E(Ĝ) is
both compact and stable.

Proof. The proof is omitted due to space limitations.

Based on Corollary 5, we have the following assumption.

Assumption 3. detA22 > 0 for the original game G(J).

Note that the reason we do not consider the situation when
detAjk = 0 is that it has been excluded in Assumption 1.
Here, we give the following lemma for the incentive design.

Lemma 6. Under Assumption 1 for the game G(Ĵ), E(Ĝ) is
compact if and only if Ĉ1 ∩ Ĉ2 = ∅.

Proof. This result can be obtained directly from Proposition
1 and Propositions 1 and 2 from [16].

The existence of pi(x), i ∈ {1, 2}, is derived from the
following theorem, based on Assumption 3 and Lemma 6.

Theorem 7. Under Assumptions 1 and 3 for the game G(J),
there exist pi(x), i ∈ {1, 2}, such that E(Ĝ) is a compact
subset of E(G), and asymptotically stable.

Proof. The proof is omitted due to space limitations.

Remark 2. Here we show how we design pi(x) to fulfill our
objective. In the case when A11

12 and A12
12 have the same sign,

while A21
12 and A22

12 have different signs, we let P 1
12 = 0, P 1

11

be a number between 0 and A11
12A

12
11

A12
12

− A11
11, and P 2

22 small

enough. Then, based on Lemma 4 by satisfying the condition
of q1, E(Ĝ) is compact, connected, and asymptotically stable
due to Lemma 6. The other cases can be handled similarly.

The design method in Remark 2 is not the only way, since
Lemma 4 does not characterize a necessary condition for
E(Ĝ) ⊂ E(G). We can also design E(Ĝ) satisfying Lemma
6 to be a quadrilateral. If the 4 corners of quadrilateral E(Ĝ)
are in one convex subset of E(G), then E(Ĝ) ⊂ E(G).

In the above analysis, we have 3 restrictions, including the
concavity of Ĵ i1 with respect to xi, the compactness and
stability of E(Ĝ), and E(G) ⊂ E(Ĝ). At last, we discuss
mathematically whether we can design appropriate incentive
functions for given slopes under the concavity restriction. In
this part we only consider A11 and A21, since b11 and b21

do not influence stability and compactness. If we want the
incentived best-response lines to have slopes 1

a and b, where
a, b ̸= 0, then for convenience we let

A11 +A21 =
[
A B
B C

]
= Â11 + Â21 ≜ α

[−1 a
a x

]
+ β

[
y b
b −1

]
, (19)

with α, β > 0, and solve α, β, x, y to satisfy the basic
concavity condition. Now, we have the following proposition.

Proposition 8. For given a, b in (19), there do not exist α, β >
0 and x, y such that (19) holds if and only if (B > 0, a <
0, b < 0), (B < 0, a > 0, b > 0), or (B = 0, ab > 0).

Proof. The proof is omitted due to space limitations.

Proposition 8 confirms the correctness of Theorem 7 from
the side, since it shows that the rotations of the best-response
lines are very flexible. If Ai1, i ∈ {1, 2}, are negative definite,
we can solve the linear programming problem in the α, β
space, since x, y can be expressed as a linear form of α, β.
We can also find a sufficient condition for when the solution
can be found as shown below.

Proposition 9. For given a, b in (19), if 0 < B
a <

min{−A, −C
a2 }, 0 < B

b < min{−C, −A
b2 }, or (B = 0, ab <

0), there exist α, β > 0 and x, y such that Âi1, i ∈ {1, 2}, are
negative definite.

Proof. The proof is omitted due to space limitations.

IV. NUMERICAL EXAMPLE

Consider two companies that manufacture different types
of environmentally friendly cars. Both companies aim to
maximize their profits by increasing production, which will
also help in reducing carbon dioxide emissions. However, the
market for these cars is limited, and an increase in production
of cars leads to a decrease in the average profit per unit sale.
Furthermore, excessive production that remains unsold can
result in greater carbon dioxide emissions during the manu-
facturing process. As the system manager, we aim to promote
healthy competition between the two companies through a
tax/subsidy approach. Specifically, the payoff functions are
assumed to be

J11(x) =
1

2
xT

[−1 −1
−1 −2

]
x+

[
55 30

]
x,
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Fig. 5. Nash equilibrium before and after the
incentive design in numerical example.
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Fig. 6. Trajectories before the incentive design in
numerical example. There is one stable connected
part and one unstable connected part of E(G).
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Fig. 7. Trajectories after the incentive design in
numerical example. E(Ĝ) is a compact subset of
original E(G), and asymptotically stable.

J12(x) =
1

2
xT

[−4 −1
−1 −3

]
x+

[
70 20

]
x,

J21(x) =
1

2
xT

[−1 −2
−2 −1

]
x+

[
35 83

]
x,

J22(x) =
1

2
xT

[−1 −1
−1 −2

]
x+

[
65 47

]
x.

The Nash equilibria for this example is illustrated in Fig. 5,
where the green part represents the original Nash equilibrium
set. However, it should be noted that the unbounded parts of
E(G) indicate that agents are caught in a dilemma where one
of the agent has to maintain the current production.

By rotating the best-response lines of the agents with respect
to their first payoff functions, a new set of Nash equilibrium
set E(Ĝ) can be obtained. Specifically, we design the incentive
function as

p1(x) =
1

2
xT

[−1 0
0 1

]
x+

[
5 −35

]
x,

and p2(x) = −p1(x). Then, the phase portrait of the original
game G(J) and the incentivized game G(Ĵ) are given by
Figs. 6 and 7, respectively.

Before implementing our tax/subsidy approach, note that
E(G) has one stable connected set and one unstable connected
set. Although all trajectories ultimately converge to E(G),
those states starting near xD11 would initially move away from
the right part of E(G) before converging to the left connected
part, as discussed in Remark 1. After applying our tax/subsidy
approach, the trajectories will converge to a compact E(Ĝ),
which is also a subset of E(G).

V. CONCLUSION

We proposed a zero-sum tax/subsidy approach, which can
be used to modify or stablize the original Nash equilib-
rium set, and presented a necessary condition for stabilizing
unstable or unbounded Nash equilibria in pseudo-gradient-
based noncooperative dynamical systems with vector-valued
payoff functions. Specifically, we first present a necessary and
sufficient condition to ensure that the Nash equilibrium set is
compact, and a sufficient condition for the Nash equilibrium
to be asymptotically stable. After that, we give a necessary
condition and relevant design method, to make the incentivized
Nash equilibrium set a subset of the original Nash equilibrium,

compact and stable. Furthermore, we discuss flexibility about
the incentive parameters under different restrictions. Finally,
we give an example to show our design method.
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