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Abstract— The accurate modeling and control of nonlinear
dynamical effects are crucial for numerous robotic systems.
The Koopman formalism emerges as a valuable tool for linear
control design in nonlinear systems within unknown environ-
ments. However, it still remains a challenging task to learn the
Koopman operator with control from data, and in particular,
the simultaneous identification of the Koopman linear dynamics
and the mapping between the physical and Koopman states.
Conventionally, the simultaneous learning of the dynamics
and mapping is achieved via single-level optimization based
on one-step or multi-step discrete-time predictions, but the
learned model may lack model robustness, training efficiency,
and/or long-term predictive accuracy. This paper presents a bi-
level optimization framework that jointly learns the Koopman
embedding mapping and Koopman dynamics with exact long-
term dynamical constraints. Our formulation allows back-
propagation in standard learning framework and the use of
state-of-the-art optimizers, yielding more accurate and stable
system prediction in long-time horizon over various applications
compared to conventional methods.

I. INTRODUCTION

Accurately modeling and controlling nonlinear dynamical
effects is critical for robots, especially in challenging sce-
narios, e.g., aerial robotics [1], aerial manipulation tasks [2],
offroad driving [3]. These scenarios often exhibit nonlinear
effects, such as the coupling between translation and rota-
tional motion, the self-motion and the manipulated objects,
or the complex dynamics due to the environment, making
control design difficult. Traditional methods, such as state
feedback [4] or optimization-based control [5], require full
knowledge of the system model to predict dynamics and
design controllers. However, real-world effects such as wind
gusts, boundary layer effects, rough terrain for mobile robots,
and hidden dynamics of chaotic nonlinear effects are too
complex to be fully captured, leading to poor control per-
formance under these scenarios. As a result, new approaches
are needed to model and control these systems accurately and
efficiently, especially when faced with complex, uncertain, or
rapidly changing environments.

Data-driven approaches have been successful in capturing
unknown dynamics and patterns in complex systems [6],
[7], allowing for accurate dynamics prediction. However, in
many cases, these methods produce nonlinear models and
hence require nonlinear control methods such as iterative
Linear Quadratic Regulator (iLQR) [8] or Nonlinear Model
Predictive Control (NMPC) [9] to achieve effective system
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control. These control methods can be computationally ex-
pensive as the system states increases, making them infeasi-
ble for real-time applications where fast and accurate control
is essential. Although some Reinforcement Learning (RL)
approaches [10], either model-based or model-free, can also
achieve good performance on nonlinear control, they often
suffer from sampling inefficiency and lack of generalizability.
Therefore, there is a need for more efficient control methods
that can be used in conjunction with data-driven techniques
to enable real-time control of nonlinear systems.

Koopman operator has recently attracted growing interest
and shown great potential to provide an elegant way of ad-
dressing the control problem under unknown dynamics [11]–
[16]. It embeds the nonlinear system dynamics in a lifted,
higher-dimensional space where the dynamics is governed
by a linear but possibly infinite dimensional operator. Data-
driven methods for identifying the Koopman models have
gained considerable attention due to the strong expressive
power and the rigorous operator-theoretic guarantees [17]–
[19]. The learned linear system on the embedded space is
readily amenable for linear or bilinear control techniques.
Conventionally, the possible representation of the embedding
is given as a predefined dictionary [20]–[22]. However,
finding the mapping between the physical and Koopman
states and selecting the embedding representation remains
a challenging task, especially in terms of maintaining the
predictive accuracy and generalizability.

There are some existing approaches focusing on learning
the mapping expressed by deep neural networks [23], [24],
and then apply linear control methods [25], [26]; these work
show an improvement in the model compactness as well as
predictive accuracy. However, due to the lack of capability
to handle constraints in standard learning frameworks, the
existing Koopman learning approaches often rely on a single-
level unconstrained optimization formulation that attempts
to minimize either only one step prediction errors, or multi-
step prediction errors, typically with hand-tuned weights for
penalty terms. Such approaches not only require significant
amount of effort to tune the penalty term coefficients and loss
components during practical implementation, but also suffer
from increased computational overhead in backpropagation
especially when multi-step prediction errors are optimized.
As a result, the existing methods suffer from poor training
efficiency, and the learned models may lack robustness to
data noise and long-term predictive accuracy.

To overcome the above limitations, this paper proposes a
bi-level optimization framework to learn the Koopman oper-
ator with control by jointly learning the embedding and the
Koopman dynamics. Specifically, in the inner optimization,

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2147



we minimize the loss in the Koopman embedding space with
exact constraints of long-horizon Koopman dynamics; in the
outer optimization, we minimize the reconstruction loss in
the original space with the inner optimization serving as
constraints. This formulation removes the need to hand-tune
weight parameters and exactly enforces Koopman dynamics
during the learning process. Furthermore, our framework
reformulates the Koopman dynamics using an integral form
to eliminate the nested backpropagation calculations in the
conventional formulations to boost up training efficiency
while maintaining the compatibility with standard learning
frameworks. Overall, the framework enforces the reproduc-
tion of dynamics over entire trajectory and thus mitigates the
issues in data noise and the long-term prediction instability,
and holds promise for a more accurate and numerically stable
predictive model for control applications.

The paper is organized as follows. Section II presents a
brief summary of Koopman operator with control, and the
standard learning methods. In Section III, we provide the
details in the formulation, analysis, and numerical algorithms
of the proposed bi-level optimization framework. In Section
IV, we present numerical examples to show the effectiveness
of the proposed methodology in terms of training efficiency,
predictive accuracy and generalizability. Finally, we conclude
the work and point out possible future directions for further
investigation in Section V.

II. KOOPMAN THEORY PRELIMINARY

A. Basic Formulation

Koopman Bilinear Form (KBF) [16], [27] provides a
means to globally bilinearize a control-affine system of the
following form,

ẋ = f0(x) +

m∑
i=1

fi(x)ui, x(0) = x0 (1)

where x ∈ X ⊆ Rr is the state vector, u = [u1 . . . um]⊤ ∈
Rm is the input vector, f0 : X → Rr is the system dynamics,
and fi : X → Rr are the control input coupling terms.

In the autonomous case [12], i.e., when u = 0, the system
generates a flow Ft(x0) = x(t) from an initial condition x0.
The continuous time Koopman operator Kt : F → F is an
infinite-dimensional linear operator such that Ktg = g ◦ Ft

for all g ∈ F , where g : X → C is a complex-valued
observable function of the state vector x, F is the function
space of all possible observables, and ◦ denotes function
composition. As a linear operator, Kt admits eigenpairs
(λ, φ) such that Ktφ = φ ◦ Ft = eλtφ where λ ∈ C
and φ ∈ F are the Koopman eigenvalue and Koopman
eigenfunction, respectively.

The infinitesimal generator of Kt associated with f0,
referred to as the Koopman generator, is defined as Lf0 =
limt→0

Kt−I
t , where I is the identity operator, and turns out

to be the Lie derivative Lf0 = f0 · ∇, with eigenpair (λ, φ),
φ̇ = Lf0φ = λφ Given a set of eigenpairs {(λi, φi)}ni=1, the
Koopman Canonical Transform (KCT) [13] of the control-
affine system (1) is φ̇ = Λφ +

∑m
i=1 Lfiφui, where Λ =

diag([λ1, · · · , λn]), φ = [φ1, · · · , φn], and Lie derivatives
for the control terms are Lfi = fi · ∇.

Suppose the set of eigenfunctions is sufficiently large, such
that φ span an invariant space for Lfi , i.e., each of Lfi

can be represented using a l × l matrix Di, Lfiφ = Diφ,
then the KCT can be brought to a bilinear form [16], φ̇ =
Λφ +

∑m
i=1 Diφui. Often it is difficult to directly obtain

the eigenfunctions of Kt, and instead it is more convenient
to learn the bilinear dynamics in a lifted coordinates via a
mapping z = ϕ(x) ∈ Rn, e.g., parametrized by a neural
network, leading to the commonly used Koopman Bilinear
Form (KBF) [16], [27],

ż = Az+

m∑
i=1

Bizui. (2)

The eigendecomposition A = ΦΛΨH reproduces the Koop-
man eigenvalues Λ and the Koopman eigenfunctions φ =
ΨHz, where □H denotes conjugate transpose. The original
states are recovered from an inverse mapping x = ϕ−1(z) ≡
ψ(z). In standard KBF [13], ϕ−1 is a linear mapping, but
nonlinear versions of ϕ−1 have also been proposed, e.g., in
[19], [28].

B. Learning of KBF Model

The KBF model is usually identified from data, that is
typically obtained at finite sampling rate. Suppose there are
K sampled trajectories with inputs, each having N + 1

steps; denote the dataset D = {(x̂(k)
i ,u

(k)
i )Ni=0}Kk=1. The

parameters to be learned from D include the system matrices

Γ = [A,B1,B2, · · · ,Bm]

and the encoder ϕ and decoder ψ.
A brutal force formulation to learn KBF is an ODE-

constrained optimization problem. Without loss of general-
izability, we show the case for one trajectory data.

min
Γ,ϕ,ψ

Le(z;ϕ,D)+Ld(z;ψ,D)+Lr(ϕ,ψ;D), s.t. (2) (3)

where three loss terms are introduced: (1) Encoder loss:
Le = 1

(N+1)n

∑N
i=0 ∥ϕ(x̂i)− zi∥2, (2) Decoder loss: Ld =

1
(N+1)r

∑N
i=0 ∥x̂i −ψ(zi)∥2, (3) Reconstruction loss: Lr =

1
(N+1)r

∑N
i=0 ∥x̂i −ψ(ϕ(x̂i))∥2. The term Le = 0 is a

necessary condition for satisfying the invariant space as-
sumption in KBF formulation, Ld penalizes on the N -step
prediction error at each of N steps, and Lr penalizes on the
reconstruction error. In addition, sometimes a regularization
term R(D) is included to improve the model generalizability.

However, due to the ODE constraint, optimizing problem
(3) requires an adjoint ODE solver, that is expensive to
evaluate; also a generic adjoint solver does not leverage the
bilinear structure of KBF for training efficiency.

A more widely-used approach is to discretize the KBF
model (2) with a time step size ∆t. Assuming a zeroth-
order hold of input uk at time tk and a sufficiently small
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∆t, discrete-time KBF takes the following form of up to
first-order time accuracy [29]

zk+1 = Adzk +

m∑
i=1

Bd,izkuk,i ≡ Akzk (4)

where Ad = I + A∆t, Bd,i = Bi∆t, and Ak =
Ad +

∑m
i=1 Bd,iuk,i is effectively a family of matrices

parametrized by Γ. Subsequently, the optimization is reduced
to an equality-constrained formulation,

argmin
Γ,ϕ,ψ

Le + Ld + Lr (5a)

s.t. zk = Akzk−1, k = 1, · · · , N (5b)
z0 = ϕ(x̂0) (5c)

which will be referred to as single-level optimization (SLO).
Note that the equality-constrained form of SLO is chosen

for the sake of clarity, and it is equivalent to the more
commonly used unconstrained formulation (e.g., [23]–[25],
[28]), since the N + 1 intermediate variables {zk}Nk=0 can
be solved exactly from the N + 1 constraints, starting
from (5c). Particularly, when N = 1, the SLO reduces
to a single-step formulation [23]–[25], with encoder loss
Le = 1

Nn

∑N
k=1 ∥ϕ(x̂k)−Ak−1ϕ(x̂k−1)∥2, and decoder

loss Ld = 1
Nr

∑N
k=1 ∥x̂k −ψ(Ak−1ϕ(x̂k−1))∥2.

For the learning of KBF, the SLO formulation poses
three potential concerns. First, the time discretization of
the learned KBF model is first-order time accurate; this
may result in the error accumulation that impairs predictive
accuracy over long time horizon, and may also pose a
challenge when learning dynamics sampled at low frequency.
Second, for mathematical rigor, the validity of KBF hinges
on the satisfaction of Le = 0 for the invariance of Koopman
subspace. However, in the sum of losses, upon convergence
of the model training, each loss term would typically reach
a small but nonzero value, and a nonzero Le indicates an
inaccurate KBF operator that produces error in the time
horizon of N considered in the training. During the pre-
diction, the error may start to accumulate within a short
time horizon, and limit the long-term predictive capability.
Third, while the SLO can be written in an unconstrained form
and compatible with common deep learning frameworks, the
dynamics losses have a recursive formulation that involves
nested evaluation of the intermediate variables z, leading
to a high computational cost in the backpropagation during
training on the order of O(N2), i.e., a quadratic (or at
least superlinear) growth with respect to the length of time
horizon; this renders the learning process inefficient.

III. LEARNING KOOPMAN OPERATOR USING BI-LEVEL
OPTIMIZATION

We present a new bi-level optimization (BLO) to resolve
the potential issues of SLO.

A. Integral formulation

First, to minimize the model error due to time discretiza-
tion, we employ a general formulation based on numerical

integration. Given a control input u(t), integrate on both
sides of (2) over [t0, tN ],∫ tN

t0

żdt =

∫ tN

t0

Az+

m∑
i=1

Bizui(t)dt

⇒ zN = z0 +

N∑
i=0

wiAizi, (6)

where wi are the weights for numerical integration using
evenly spaced data points, which are obtained using the
standard composite Newton-Cotes formulae, e.g., trapezoid
rule for first-order accuracy and Simpson’s 3/8 rule for third-
order accuracy. When k = 1 and [w0, w1] = [∆t, 0], (6)
reduces to the zeroth-order hold formulation.

Next, using the integral form, SLO simplifies to

argmin
Γ,ϕ,ψ

Lb
e + Lb

d + Lr (7a)

s.t. (6)
zk = ϕ(x̂k), k = 0, · · · , N − 1 (7b)

with new encoder and decoder losses: Lb
e =

1
Nn ∥ϕ(x̂N )− zN∥2 and Lb

d = 1
Nr ∥x̂N −ψ(zN )∥2.

The new single dynamics constraint (6) may appear
“weaker” when compared to the explicit multi-step
dynamics constraints in the standard SLO formulation, but it
more accurately represents the long-horizon KBF dynamics
at the order of numerical integration.

B. Bi-level optimization

Next, to mitigate the second issue of SLO, (7) is reformu-
lated in a BLO form,

argmin
ϕ,ψ

Lb
e + Lr (8a)

s.t. min
Γ

Lb
e (8b)

s.t. (6), (7b) (8c)

The inner optimization solely minimizes the encoder loss
with respect to the system matrices Γ, and would achieve
at least the approximate satisfaction of the invariance of
Koopman subspace, meaning an accurate enforcement of
Koopman dynamics over time horizon of length N . The
outer optimization minimizes the losses with respect to the
autoencoder {ϕ,ψ}, while the decoder loss Lb

d is removed;
the argument is that, when the reconstruction loss Lr is
minimized, the fact that the encoder loss Lb

e is always
minimized would imply a sufficiently low decoder loss.

C. Algorithm for solving bi-level optimization

Subsequently, we present an algorithm for solving BLO
at a cost of O(N) to resolve the third issue of SLO.

The inner optimization (8b)-(8c) is converted to an un-
constrained one, minΓ ∥∆z− Γξ∥2, where zi = ϕ(x̂i),
∆z = zN − z0, ξ =

∑N
i=0 wiyi, and y =

[z⊤, u1z
⊤, u2z

⊤, . . . , umz⊤]⊤.
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For a dataset of K trajectories, define Z =
[∆z(1),∆z(2), · · · ,∆z(K)] and Ξ = [ξ(1), ξ(2), · · · , ξ(K)],
and the unconstrained BLO formulation is

argmin
ϕ,ψ

LK
e (Γ,ϕ,ψ) + LK

r (ϕ,ψ) (9a)

s.t. min
Γ

LK
e (Γ,ϕ,ψ) (9b)

where

LK
e =

1

K(N + 1)n
∥Z− ΓΞ∥2

LK
r =

1

K(N + 1)r

∑
i,j

∥∥∥x̂(j)
i −ψ(ϕ(x̂(j)

i ))
∥∥∥2

Despite its complexity of two levels, the BLO problem
may be solved at relative ease leveraging the coordinate
descent strategy. This is because the system matrices Γ
are only solved in the inner optimization (9b), and kept
fixed in the outer optimization (9a); vice versa for the
autoencoder parameters ϕ,ψ. At the inner level, due to its
simple quadratic structure, (9b) has a closed-form solution
Γ = ΞY+, where □+ denotes pseudo-inverse. At the
outer level, one may employ a typical learning framework
based on stochastic gradient descent (SGD) methods, e.g.,
RMSProp or Adam, to minimize the loss. A similar strategy
is employed in [23], [24], where a one-step discrete-time
formulation was used.

Algorithm 1 Learning algorithm for Koopman with control
based on bi-level optimization

Input: Dataset of K trajectories, length of time horizon N ,
number of epoches Nep, number of batches Nb for SGD,
order of numerical integration P .

Output: Model parameters {Γ,ϕ,ψ}.
1: Initialize {Γ(1),ϕ(1),ψ(1)}
2: for n = 1, 2, · · · , Nep do
3: Form matrices Z and Ξ from all data using order P .

▷ O(νNK)
4: Fix {ϕ(n),ψ(n)}, solve (9b) for Γ(n+1). ▷ O(ν2K)
5: Shuffle and split the data into Nb batches.
6: for i = 1, 2, · · · , Nb do
7: Form matrices Zi and Ξi from the ith data batch

using order P . ▷ O(νNK/Nb)
8: Fix Γ(n+1), and update {ϕ,ψ} using Zi and Ξi.

▷ O(NK/Nb)
9: end for

10: end for

D. Computational complexity analysis

The complete Koopman learning algorithm based on BLO
is listed in Alg. 1 and the computational cost of each major
step is labelled. The details are discussed further as follows.

Let dim(ξ) = ν = n(m+1), and typically the number of
trajectories K ≫ ν. At the inner level, forming matrices Z
and Ξ costs O(νNK), and solving the least squares problem
using SVD costs O(ν2K). At the outer level, the cost in each

batch is dominated by forming the matrices, and in total the
cost is O(νNK). Therefore, the computational complexity
of BLO is O(ν(ν +N)KNep) and scales linearly with the
length of time horizon; this is in sharp contrast with the
quadratic (or at least superlinear) growth in SLO.

IV. NUMERICAL SIMULATION

To demonstrate the effectiveness of the proposed approach,
we investigate two example nonlinear systems: a well-studied
two-dimensional nonlinear system in nonlinear control; and
a lightly-damped double pendulum system with dimension
4, which shows that the proposed algorithm can generalize
to higher-dimensional systems.

A. A two-dimension nonlinear system

1) Problem setup: We consider a variant of a well-known
nonlinear system [11]:

ẋ1 = µx1 + u1 + u3x1 (10a)

ẋ2 = λ(x2 − x2
1) + u2 (10b)

where µ = −3 and λ = −2 are pre-defined system param-
eters controlling characteristic time scales, and (u1, u2, u3)
are time-varying controls to the system. The system has an
isolated equilibrium point at xe = ( −u1

µ+u3
,

u2
1

(µ+u3)2
− u2

λ ), and
increasing u3 slows down the convergence to xe,1.

The trajectories for model training and validation were
generated by uniformly sampling initial conditions x0 ∈
[−5, 5]× [−5, 5] with 32 points in both directions, with step
inputs as control that are randomly generated with ui ∈
[−1.8, 1.8]. Another 100 trajectories are randomly sampled
from the same range of x0 and ui. All trajectories were
generated using by 4th order Runge Kutta with a time step
size of 0.08s for 25 steps. All trajectories were normalized
to [0, 1]. During training, when a time horizon of N is used,
using a sliding window of N + 1, a L-step trajectory can
produce K = L−N trajectories for training.

A 4-dimensional embedding space is selected based on
empirical observation, where three dimensions are learned
using a neural network for encoding/decoding, and the re-
maining dimension is set to be 1 for the completeness of the
basis. Based on a cross-validation study, both the encoder and
decoder have 2 hidden layers with Swish activation and have
sizes (16, 16). For all benchmark cases, the model is trained
for 800 epochs with 16 batches using the Adam optimizer,
and learning rates of 0.001 and 0.0001 are used for SLO
and BLO, respectively. For consistency in comparison, all
algorithms are implemented using the JAX package.

2) Results: First, we compare the BLO against a single-
step SLO and a 5-step SLO case in Fig. 1 in terms of
convergence characteristics and prediction accuracy. Due to
the differences in the implementation, only the prediction
losses in the original state space are reported, and the losses
are normalized by their respective initial values, so that the
relative decreases in the loss are compared. The SLO cases
have a similar initial convergence rate and start to show
difficulty to reduce the predictive loss further, presumably
due to the competing effects with the other losses. The
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(a) Convergence history (b) Samples of predicted trajectory

Fig. 1: Baseline performances of BLO and SLO.

(a) SLO (b) BLO

Fig. 2: Effect of horizon length.

BLO shows an initially slower convergence rate but achieves
convergence within 400 epochs. In model prediction, the
BLO model achieves the lowest error of 3.5%, which is
attributed to the more accurate model representation. Among
the SLO formulation, multi-step case (3.7%) is relatively
better than the single-step case (19%), as the former accounts
for longer horizon in the training to achieve better accuracy.

Next, a parametric study is performed on the length of
horizon, as shown in Fig. 2. The SLO starts to show difficulty
in convergence when N > 6, while the BLO consistently
achieves high convergence rate up to N = 25. The SLO-
based training with N > 9 is not performed due to the high
computational cost. Figure 3a shows the model prediction
error, where both SLO and BLO show a decrease in model
error when N is small, however, the error in SLO model
quickly increases when N > 6 while the BLO model error
remains consistently low. Figure 3b compares the growth in
computational cost with increasing horizon length. For each
horizon length, each of the SLO and BLO cases are run
for 5 epochs, the time costs are recorded, and the ratio is
reported. It is clear that the complexity of BLO is O(N)
less than that of SLO, which is attributed to the removal of
the nested formulation from SLO.

Lastly, we also briefly show the effect of bi-level formu-
lation, as shown in Fig. 4, where three cases are considered:
(1) “None”: The BLO loss (8a) is treated as if SLO and
Γ,ϕ,ψ are optimized together with random initial guesses;
(2) “Initial”: Γ is computed only once at the start of training
and used as an initial guess, and then the “None” strategy is
used; (3) “BLO”: The proposed algorithm. The only case that
achieves sufficient convergence is BLO; this is attributed to
the optimality of the system matrix maintained by the inner
optimization.

(a) Error in prediction (b) Cost in training

Fig. 3: Comparison between BLO and SLO.

Fig. 4: Effect of BLO on convergence.

B. Double Pendulum

Next, we consider a damped and controlled double pen-
dulum problem to show the feasibility of the proposed
algorithm for high-dimensional systems.

θ̈1 = (M2L1θ̇
2
1 sin δ cos δ +M2g sin θ2 cos δ

+M2L2θ̇
2
2 sin δ − M̄g sin θ1 + u1)/(L1ρ)− θ̇1 (11)

θ̈2 = (−M2L2θ̇
2
2 sin δ cos δ + M̄g sin θ1 cos δ

− M̄L1θ̇
2
1 sin δ − M̄g sin θ1 + u2)/(L2ρ)− θ̇2 (12)

where δ = θ2−θ1, M̄ = M1+M2, and ρ = M̄−M2 cos
2 δ.

The masses and lengths of the two pendulums are M1 =
1kg (upper), M2 = 1kg (lower), L1 = 1m, L2 = 1m.
The damping terms are added to both pendulums, so as to
create a stable isolated equilibrium point in the system. 320
trajectories were generated with initial conditions randomly
generated for θi ∈ [−10°, 10°] and θ̇i ∈ [−10°/s, 10°/s] and
control ui ∈ [−0.25, 0.25]N. Another 100 trajectories are
generated for test. The embedded space is of dimension 9,
with 8 being learned through an autoencoder, and one added
to be the constant 1. The encoder and decoder hidden state
sizes are (32, 32, 32). all the rest of the details are the same
as those for the first example.

Figure 5 shows the prediction performance of the learned
Koopman model and proposed method performs well for
this higher dimensional system. While the training data is
sampled at 12.5 Hz for 2s, the prediction is performed at 50
Hz for 4s, thanks to the new continuous-time formulation.
The model matches with the truth well with an error of 4.5%.
The SLO produces models that have over 50% error and the
predicted trajectories are not shown; the high error is likely
due to the low data sampling rate, for which the discrete-time
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Fig. 5: Predicted double pendulum dynamics.

formulation is inaccurate.

V. CONCLUSION

This paper presents a bi-level optimization framework
to learn the Koopman Bilinear Form by jointly optimizing
the Koopman embedding and dynamics with explicit and
exact constraints of continuous-time Koopman dynamics.
Our approach produces a continuous-time KBF model that
is more accurate than the commonly used zeroth-order hold
model by construction. Using an integral formulation, a long-
horizon KBF dynamic constraint can be imposed during the
learning process without needing to resort to a multi-step
discrete-time constraint, that is time consuming to evaluate.
Furthermore, using a bi-level optimization strategy, the KBF
dynamics and the nonlinear mapping in a staggered format,
and a high convergence rate in training is achieved.

We validate the proposed approach on two example non-
linear systems with control. Results show that our method
successfully learns the nonlinear dynamics. Comparing to the
single-level optimization method, our method achieves more
accurate prediction with lower prediction error, faster con-
vergence, and higher computational efficiency. Future work
will investigate online model prediction for more complex
physical scenarios, including the aerial vehicle flying in the
wind gust environment. The developed bi-level optimization
framework will be released via our open-source robotic
learning library PyPose [30].
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