
Gradient Dynamics in Linear Quadratic Network Games with
Time-Varying Connectivity and Population Fluctuation

Feras Al Taha, Kiran Rokade, Francesca Parise

Abstract— In this paper, we consider a learning problem
among non-cooperative agents interacting in a time-varying
system. Specifically, we focus on repeated linear quadratic
network games, in which the network of interactions changes
with time and agents may not be present at each iteration.
To get tractability, we assume that at each iteration, the
network of interactions is sampled from an underlying random
network model and agents participate at random with a given
probability. Under these assumptions, we consider a gradient-
based learning algorithm and establish almost sure convergence
of the agents’ strategies to the Nash equilibrium of the game
played over the expected network. Additionally, we prove, in
the large population regime, that the learned strategy is an ϵ-
Nash equilibrium for each stage game with high probability.
We validate our results over an online market application.

I. INTRODUCTION
The prominence of big data analytics, Internet-of-Things,

and machine learning has transformed large societal and
technological systems. Of special interest are systems in
which a large number of independent agents interacting over
a network structure make strategic decisions, while affected
by the actions of other agents. Examples include pricing
in demand-side electricity markets, supply chain manage-
ment, wireless networks, public goods provision, financial
exchanges, and international trades, among others. In many
settings, agents lack information or computational capabil-
ities to determine a priori the best strategy to guide their
decisions. Instead, agents need to learn their best action over
time based on observations of their rewards and other agents
actions, while adapting to changes in their environment.

Standard models of learning dynamics assume that the
population of agents and their underlying network of interac-
tions are static. However, in systems with large populations
and high-volume interactions, this assumption is not realistic
since individuals may enter and leave the system, leading to
fluctuations in the population size, and participating agents
might change their interconnections with other agents over
time. It then becomes unclear whether players can reach a
stable outcome in this nonstationary environment.

Accordingly, there is a need for a theory of multi-agent
learning in dynamic network settings in which the composi-
tion of the agents and their interactions can change over time.
In this paper, we start addressing these issues by focusing
on gradient play dynamics in linear quadratic network games
with time-varying connectivity and dynamic population.
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To obtain a tractable framework, we model the time-
varying network of interactions and population of agents as
stochastic network realizations from an underlying known
distribution. Using stochastic approximation methods [1], we
demonstrate that for linear quadratic network games, when
all agents follow a projected gradient descent scheme, they
almost surely converge to a Nash equilibrium of the game
played over the expected network. Moreover, by using con-
centration inequalities, we show that with high probability,
the learned strategy profile is an ϵ-Nash equilibrium of the
game played over any realized network, where ϵ decreases
as the population size increases.

Regarding related work, learning in time-varying settings
with dynamic populations has been previously studied for
games with a special structure such as congestion games,
bandwidth allocation, markets, first-price auctions or public
good games [2], [3], [4], [5]. The efficiency of outcomes in
such games was investigated for low-adaptive-regret learning
[2] and later generalized to low-approximate-regret learning
[6], under the assumption that the population size is fixed.
The setting with a changing number of agents was studied
for congestion games in [7]. Similarly, the effect of changing
populations has been studied in the context of truthful
mechanism design [8], [9], [4]. None of these works cover
the setting of network games considered in this paper.

In terms of learning dynamics to reach Nash equilibria in
static noncooperative games or multi-agent settings, many
schemes have been studied. These include fictitious play
[10], parallel and distributed computation [11], projection-
based algorithms (e.g., projected gradient dynamics) [12],
and regret minimization (e.g., no-regret dynamics) [13].
Among these, a growing literature considered learning dy-
namics for static aggregative and network games focus-
ing, for example, on best response dynamics [14], [15],
projection-based algorithms [16], [17], forward–backward
operator splitting [18], [19], passivity-based schemes [20],
[21], distributed asynchronous schemes [22], [23], and state-
dependent costs [24], among others.

When considering non-stationary environments, the set-
ting of agents communicating according to a time-varying
network is not novel in the control literature. Specifically,
a large literature focused on cooperative problems such as
consensus/gossip algorithms [25], [26] as well as distributed
optimization [27] over time-varying networks, mainly based
on an assumption of uniform connectivity over contiguous
intervals of time. Similar results have been derived for dis-
tributed Nash equilibrium seeking in noncooperative games
[19], [28], [29], [30] and for averaging algorithms over
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randomized networks with gossip communication [31], [32].
One common property of these works is that despite the
changing communication network, the underlying problem
to solve (achieving consensus, optimizing some objective in
a decentralized fashion, or reaching a Nash equilibrium) is
time-invariant. In contrast, in this paper, agents take part in
a different network game at every iteration. Thus, the Nash
equilibrium that the players are trying to learn is itself time-
varying since their payoff function depends on the time-
varying network. The question at hand is then not solely
about the convergence of agents’ strategies, but also about
the nature of the learned strategy and its relation to the time-
varying stage games. We show that, in our setting, strategies
converge to the equilibrium of the game played over the
expected network and that this is approximately optimal for
large populations. Finally, convergence of optimistic gradient
descent in games with time-varying utility functions has
recently been studied in [33]. Our model is different as
it applies to network games in which payoff-variability is
due to variability of interconnections. Moreover, we consider
a setting in which the population itself may vary, with
agents joining and leaving the system. Open multi-agent
systems with random arrivals and departures of agents have
been recently studied for cooperating homogeneous agents
in consensus dynamics [34] or optimal resource allocation
problems [35]. We instead focus on non-cooperating agents
with network interactions.

Paper organization: The rest of the paper is organized
as follows. Section II presents the repeated network game
setup and recaps known results on learning dynamics in static
environments. Section III introduces the main results on
the convergence of gradient dynamics and the suboptimality
guarantees of the learned strategy for a time-varying network
and fixed population. Section IV extends these results to dy-
namic populations. Section V demonstrates the convergence
of the proposed projected gradient dynamics with numerical
simulations and Section VI concludes the paper. Omitted
proofs can be found in a companion paper online [36].

Notation: We denote by [v]j the jth component of a vector
v ∈ Rn and by Aij the ijth entry of a matrix A ∈ Rm×n.
We denote the Frobenius norm of a matrix by ∥ · ∥F and
the Euclidean norm of vectors and matrices by ∥ · ∥2. The
symbol In denotes the n × n identity matrix. The operator
ΠX [·] denotes the projection onto the set X . The symbol ⊗
denotes the Kronecker product. Given n matrices A1, . . . , An

of appropriate dimensions, we let diag(A1, . . . , An) denote
the matrix formed by stacking A1, . . . , An block-diagonally.
Given vectors x1, . . . , xn, we let [xi]i∈{1,...,n} denote the
vector formed by stacking x1, . . . , xn vertically.

II. RECAP ON LINEAR QUADRATIC GAMES OVER
STATIC NETWORKS

We present a recap of known results for static games.

A. One shot game

Consider a linear quadratic (LQ) game played by a popula-
tion of agents indexed by i ∈ N := {1, . . . , N} over a static

network with no self-loops, represented by an adjacency
matrix Ã ∈ [0, 1]N×N . Each agent i ∈ N aims at selecting
a strategy si ∈ Si ⊆ Rn to minimize a cost function

Ji(si, s−i, Ã) =
1

2
s⊤i Qisi − s⊤i

(
θi +

α

N

N∑
j=1

Ãijsj

)
(1)

where s−i := [sj ]j∈N\{i} ∈ R(N−1)n is the strategy profile
of all other agents, α ∈ R models the strength of network
effects, Qi ∈ Rn×n and θi ∈ Rn are parameters modeling
agent specific heterogeneity, and Qi = Q⊤

i ≻ 0. Let S :=∏
i∈N Si be the set of all strategy profiles of the game. Given

a strategy profile s := [si]i∈N ∈ S and a network Ã, the
term 1

N

∑N
j=1 Ãijsj represents the local aggregate sensed

by agent i. We denote this LQ game by G(Q, θ, α, Ã) where
θ := [θi]i∈N and Q := diag(Q1, . . . , QN ).

Definition 1 (ϵ-Nash equilibrium): Given ϵ > 0, a strat-
egy profile s̄ ∈ RNn is an ϵ-Nash equilibrium of the game
G(Q, θ, α, Ã) if for all i ∈ N , we have s̄i ∈ Si and

Ji(s̄i, s̄−i, Ã) ≤ Ji(si, s̄−i, Ã) + ϵ for all si ∈ Si. (2)

If (2) holds for ϵ = 0, then s̄ is a Nash equilibrium.
It is well known that the Nash equilibria of convex games

can be characterized by using the game Jacobian

F (s, Ã) := [∇siJi(si, s−i, Ã)]i∈N (3)

which is a map composed of each player’s cost gradient with
respect to their own strategy. For LQ games, this is

F (s, Ã) =
[
Qisi − θi −

α

N

N∑
j=1

Ãijsj

]
i∈N

= Qs− θ − α

N
(Ã⊗ In)s.

A classic approach to characterizing Nash equilibria is to
interpret them as solutions to variational inequalities (see
[12], [37] for general games and [14] for network games).
We summarize this relation in the following lemma, after
introducing an assumption that guarantees existence and
uniqueness of the Nash equilibrium.

Assumption 1 (Equilibrium uniqueness):
(i) For each i ∈ N , Si is nonempty, convex and compact.

There exists a compact set S̄ ⊆ Rn such that Si ⊆ S̄
for all i, and smax := maxs∈S̄ ∥s∥2 < ∞.

(ii) The following relation holds

λmin(Q)− |α|
N

∥Ã∥2 > 0. (4)
Lemma 2.1: (Variational inequality equivalence, [12,

Proposition 1.4.2], [14, Proposition 1 and Proposition 2])
Suppose that Assumption 1-(i) holds. Then, the strategy
profile s̄ is a Nash equilibrium of G(Q, θ, α, Ã) if and only
if it solves the variational inequality V I(s, F (·, Ã)), that is,
(s−s̄)⊤F (s̄, Ã) ≥ 0, ∀s ∈ S. If, additionally, Assumption 1-
(ii) holds, then, F is strongly monotone and the equilibrium
is unique.
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B. Learning dynamics in repeated games

Consider now a repetition of the stage LQ game defined
in Section II-A, played over the static network Ã. Suppose
that each agent i tries to learn the equilibrium iteratively by
using the projected gradient dynamics

sk+1 = ΠS [s
k − τF (sk, Ã)], (5)

where sk is the strategy profile at iteration k ≥ 0, s0 ∈ S ,
and τ > 0 is a fixed step size.

Remark 1: To implement their learning dynamics

sk+1
i = ΠSi

[
ski − τ

(
Qis

k
i − θi − α

N

∑N
j=1 Ãijs

k
j

)]
,

player i ∈ N only requires knowledge of their current
strategy, their cost function parameters, and their current
local aggregate. The player does not need to observe the
network realization Ã.

The dynamics in (5) can be shown to converge under a
mild assumption on the step size.

Lemma 2.2: (Gradient play over a static network, [12,
Theorem 12.1.2]) Suppose that Assumption 1 holds. Let
L := λmax(Q)+ |α|

N ∥Ã∥2 be the Lipschitz constant of F and
µ := λmin(Q)− α

N ∥Ã∥2 be the strong monotonicity constant
of F . If the step size τ satisfies 0 < τ < 2µ/L2, then for
any initial strategy profile s0 ∈ S , the gradient dynamics
described in (5) converge to the unique Nash equilibrium of
the game G(Q, θ, α, Ã).
The Lipschitz and strong monotonicity constants used in
Lemma 2.2 are computed, e.g., in [14].

III. GAMES OVER TIME-VARYING NETWORKS

The well-known results summarized in the previous sec-
tion hold for a static network of interactions. In many
realistic settings however, interactions among the agents may
change across repetitions of the game and agents may not
always be participating. In this section, we consider learning
dynamics in time-varying networks. These results are then
extended in Section IV to the case of dynamic populations.

More specifically, we here assume that the network of
interactions is random, and at every repetition k = 0, 1, 2, . . .
of the stage game, a new independent network realization
Ak ∈ [0, 1]N×N is sampled as follows: for all i ∈ N ,
Ak

ii = 0 (no self-loop) and for i ̸= j, Ak
ij is sampled

from a distribution with bounded support1 in [0, 1] and with
mean Āij ∈ [0, 1]. In the case where Ak

ij is a Bernoulli
random variable, Āij can be interpreted as the probability
that player j contributes to the local aggregate of player i.
More generally, Ā = E[Ak] represents the expected network
of interactions, where we set Āii = 0 for all i ∈ N .

A. Motivating example

We motivate this time-varying setting by presenting an
example in the context of online markets.

Example 1 (Dynamic pricing game): Consider an online
market with N sellers. Each merchant i ∈ N sells a product i

1Restricting the support to the unit interval is without loss of generality.
One can easily extend this paper’s results to any bounded convex support.

at a price si ∈ R+ determined daily. On each day k =
0, 1, 2, . . . , a new set of M customers arrives. Each customer
c ∈ {1, . . . ,M} decides which products to purchase. The
demand of customer c on day k for product i can be modeled
as an affine demand function [38]

dc,ki = d̄i − η
(
ski + α

N

∑N
j=1 A

c,k
ij skj

)
(6)

where ski is the price of product i on day k, d̄i is the
maximum demand that a customer can have for product i,
η > 0 is the price sensitivity, α ≥ 0 models the degree of
influence that the price of other products has on the demand
of product i, and Ac,k

ij ∼ Ber(Āij) is a Bernoulli random
variable that indicates whether customer c is interested in
co-purchasing product i with product j on day k. The mean
Āij ∈ [0, 1] can be interpreted as the likelihood of this event.

The total demand for product i can be obtained by
aggregating the demands of all customers:

dki =
∑M

c=1 d
c,k
i =

∑M
c=1

(
d̄i − η

(
ski + α

N

∑N
j=1 A

c,k
ij skj

))
= Md̄i − η

(
Mski + α

N

∑N
j=1

∑M
c=1 A

c,k
ij skj

)
= M

(
d̄i − η

(
ski + α

N

∑N
j=1 A

k
ijs

k
j

))
where Ak

ij := (1/M)
∑M

c=1 A
c,k
ij is a random variable rep-

resenting the average complementarity of products i and j,
with mean E[Ak

ij ] = Āij . Given this demand, each merchant
tries to maximize their profit, i.e., minimize the cost

Ji(s
k
i ,s

k
−i, A

k) = −ski d
k
i

= −skiM
(
d̄i − η

(
ski + α

N

∑N
j=1 A

k
ijs

k
j

))
= M

(
η(ski )

2 − ski

(
d̄i − η α

N

∑N
j=1 A

k
ijs

k
j

))
. (7)

This online market competition can be interpreted as a
repeated LQ game on a dynamic network Ak that changes
daily to capture different daily customer preferences. Sellers
may learn how to price their products using a gradient
descent scheme. Note that the gradient in this case is

∇siJi(s
k
i , s

k
−i, A

k) = −dki + ηMski , (8)

hence, the only information seller i requires to compute their
current gradient update is the total number of customers and
the quantity of product i sold on the previous day.

In the next section, we characterize the asymptotic behav-
ior produced by gradient updates in time-varying settings, as
motivated by the previous example, for general LQ games.

B. Learning dynamics

In this nonstationary environment, the Nash equilibrium
is time-varying. Despite this, we show that agents learn to
play a suitable fixed strategy, provided that they use a time-
varying, diminishing step size τk to ensure convergence of
their gradient-based learning dynamics

sk+1 = ΠS [s
k − τkF (sk, Ak)] (9)

where k ≥ 0, and s0 ∈ S. The diminishing step size is
needed to compensate for the network variability.
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Assumption 2 (Step size): For all k, the step size τk satis-
fies τk > 0, τk → 0,

∑∞
k=1 τ

k = ∞ and
∑∞

k=1(τ
k)2 < ∞.

In the following, we show that the gradient dynamics (9)
converge almost surely to the Nash equilibrium of the LQ
game played over the expected network Ā = E[Ak].

Proposition 1: Suppose that Assumptions 1 (for Ã = Ā)
and 2 hold. Then, the gradient dynamics in (9) converge to
the unique Nash equilibrium of the game played over the
expected network Ā almost surely, for any s0 ∈ S.

Proof: We first rewrite the dynamics as

sk+1 = ΠS [s
k − τk(F (sk, Ā) + F (sk, Ak)− F (sk, Ā)︸ ︷︷ ︸

=:wk

)],

(10)

resulting in stochastic gradient play with random iteration
noise wk. Using stochastic approximation theory [1, Theo-
rem 3.2], it suffices to verify that F is Lipschitz and strongly
monotone (guaranteed by Lemma 2.2), and that {wk}k≥0 is a
zero-mean, finite variance process to guarantee almost sure
convergence to the solution s̄ of the variational inequality
V I(s, F (·, Ā)). Lemma 7.1 in the Appendix proves that the
desired properties of wk hold. By Lemma 2.1, s̄ is then a
Nash equilibrium of the game with network Ā.

If agents compute their gradient updates with noisy local
aggregate data, convergence can still be achieved provided
that the noise is additive, zero-mean, and with bounded
variance (as it can be absorbed in the perturbation vector wk).

The following corollary justifies why the Nash equilibrium
of the game played over the expected network is a reasonable
policy to learn, by showing that with high probability, it
results in an approximate equilibrium for any iteration.

Corollary 1: Suppose that Assumption 1 (for Ã = Ā)
holds. Fix any k ≥ 0 and any δ > 0. Then, with probability
at least 1 − δ, the Nash equilibrium of the LQ game
G(Q, θ, α, Ā) played over the expected network Ā is an ϵN,δ-
Nash equilibrium to the stage game G(Q, θ, α,Ak) played
over the network Ak with

ϵN,δ := 2|α|s2max

√
n ln (2nN/δ)

2N
.

We note that ϵN,δ does not depend on the cost parameters
Qi and θi. Also, for any confidence δ > 0, ϵN,δ decreases as
the population size N grows. This corollary can be proven
by using matrix concentration inequalities, similarly to the
approach in [39, Lemma 14].

IV. GAMES OVER DYNAMIC POPULATION

In this section, we generalize the previous setting by
considering a dynamic population, where players randomly
enter and leave the game from one repetition to the other.
For example, in the online market setting introduced in
Example 1, sellers might lack supply for their products or
decide to not sell their items on certain days. This can
be modeled in the following way. If a player does not
participate in a particular iteration, then their strategy does
not update in that iteration, resulting in dynamics where a

subset of components are updated at a time, similarly to
random coordinate descent dynamics.

Let P k ∈ {0, 1}N×N be a diagonal matrix such that the
random variable P k

ii ∼ Ber(P̄ii) represents whether player i
is participating (P k

ii = 1) in the game at iteration k or not
(P k

ii = 0), with P̄ii > 0 for all i ∈ N . Then, the network
realization over which the game is played at time k is AkP k

(when P k
ii = 0, the corresponding column in the adjacency

matrix is set to zero such that player i does not affect any
other players participating in the game).
Consider the following gradient dynamics for each player i

sk+1
i =

ΠSi

[
ski − τk

P̄ii
∇siJi(s

k
i , s

k
−i, A

kP k)
]

ifP k
ii = 1,

ski ifP k
ii = 0,

(11)

where k ≥ 0, and s0i ∈ Si. Note that in (11), each player i
scales their gradient step by 1/P̄ii to compensate for missing
updates when P k

ii = 0.
Despite these random interruptions to the sequence of

strategy updates, we show that the players learn to play the
Nash equilibrium of the game G(Q, θ, α, ĀP̄ ) played over
the expected network ĀP̄ . Similar to Proposition 1, the key
step to prove this result is to rewrite the dynamics (11) as
stochastic gradient dynamics converging to the aforemen-
tioned Nash equilibrium.

Proposition 2: Suppose that Assumptions 1 (with Ã =
ĀP̄ ) and 2 hold. If ∥θi∥ ≤ θmax for all i ∈ N , then, the
gradient dynamics described in (11) converge to the unique
Nash equilibrium of the LQ game played over the expected
network ĀP̄ almost surely, for any s0 ∈ S.

Similar to Corollary 1, the Nash equilibrium of the ex-
pected network can be shown to be an approximate Nash
equilibrium to the stage game with high probability.

Corollary 2: Suppose that Assumption 1 (for Ã = Ā)
holds. Fix any k ≥ 0 and δ > 0. Then, with probability
at least 1− δ, the Nash equilibrium of the LQ game played
over the network ĀP̄ is an ϵN,δ-Nash equilibrium to the
stage game played over the network AkP k, with

ϵN,δ := 2|α|s2max

√
n ln (2nN/δ)

2N
.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments demon-
strating the convergence of gradient dynamics for the dy-
namic pricing game presented in Example 1 for both the
static and the dynamic population settings presented in
Sections III and IV, respectively.

Consider a market with N sellers, where each seller is
endowed with a product whose demand has price sensitivity
η = 1. Let α = 0.8 be the strength of network effects on
the demand of every product. We consider two categories of
products, namely category 1 and category 2. The probability
that a customer is interested in co-purchasing products from
categories m and l is denoted by āml, where m, l ∈ {1, 2}.
Thus, in the notation of Example 1, Āij = āml if product i
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Fig. 1. For dynamic network Ak and fixed population size N . Top:
Convergence of product prices sk (averaged over 100 trials) to the Nash
equilibrium price profile s̄ of the game played over the expected network
Ā. Bottom: Maximum suboptimality gap (averaged over 100 trials) across
sellers per iteration as defined in (12).

is in category m and product j is in category l. For the nu-
merical simulations in this section, we set these probabilities
to be ā11 = ā22 = 0.8 and ā12 = ā21 = 0.3. Moreover, let
d̄1 = 2, d̄2 = 10 be the maximum demands a customer can
have for products in categories 1 and 2, respectively.

We first consider the case of static population, in which
all sellers participate in the market every day. Each seller
starts with an arbitrary initial price for their product (set
to zero in our simulations). On each day k, a new set
of M = 100 customers arrives. The total demand dki for
product i on day k is determined by the realization of
the co-purchasing preference matrix Ak sampled according
to the matrix Ā. With the gradient of their cost function
computed as in (8), seller i updates the price of their product
following the projected gradient dynamics in (9) with step
size τk = 1/(Lk). For various values of N , we illustrate in
Fig. 1 (top) the deviation of the resulting sequence of price
profiles {sk}k≥0 from the Nash equilibrium s̄ of the game
played over the expected co-purchasing matrix Ā, averaged
over 100 trials. It can be observed that the prices converge to
the price profile s̄ for each N , as predicted in Proposition 1.

For each day k, we compute the largest normalized sub-
optimality gap incurred across sellers defined as

ϵ̄k := max
i∈N

∣∣∣∣∣Ji(ski , sk−i, A
k)− J⋆

i (A
k)

J⋆
i (A

k)

∣∣∣∣∣ (12)

where J⋆
i (A

k) := infs∈Si
Ji(s, s

k
−i, A

k) is the cost incurred
by seller i by best-responding to other sellers’ prices. Fig. 1
(bottom) depicts the decrease in the gap ϵ̄k for different
population sizes as a function of k. The oscillations that can
be observed in Fig. 1 (bottom) are due to the variability of

1 10 100 1000 5000
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N=50
N=100
N=250
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100

N=50
N=100
N=250

Fig. 2. For dynamic network AkPk and dynamic population. Top:
Convergence of product prices sk (averaged over 100 trials) to the Nash
equilibrium price profile s̄ of the game played over the expected network
ĀP̄ . Bottom: Maximum suboptimality gap (averaged over 100 trials) across
sellers per iteration as defined in (12) with AkPk instead of Ak .

the network, and are smaller for larger population sizes.
Next, we consider the dynamic population case, where

some sellers may not participate in the market every single
day. Let p̄ = 0.9 be the probability that any seller i ∈ N
participates in the market on a given day. Thus, P̄ = p̄ IN .
In this setting, the sellers use the gradient dynamics in (11)
with a step size of τk = 1/(Lk). The deviation between the
obtained sequence of prices {sk}k≥0 from the Nash equilib-
rium s̄ of the game played over the expected co-purchasing
matrix ĀP̄ is shown in Fig. 2 (top) for various values of
N , averaged over 100 trials. The slower convergence of the
price profile relative to the static population case is expected
since sellers randomly skip updating their prices on certain
days. Similar to the static population case, Fig. 2 (bottom)
presents the largest suboptimality gap across sellers for each
iteration k, averaged across 100 trials. A similar trend to
Fig. 1 (bottom) can be observed with the decrease of ϵ̄k as
a function of N , but with larger oscillations. The latter is
also to be expected given that the network AkP k has more
variability than the network Ak.

VI. CONCLUSIONS

In this work, we have introduced a tractable framework
for learning in network games with time-varying connec-
tivity and dynamic populations. Several extensions and fu-
ture research directions can be considered. For example,
in this paper, we have restricted our attention to myopic
learning dynamics. However, one could define a discounted
cumulative/averaged payoff over all iterations and examine
the outcome of forward-looking dynamics. Other interesting
directions would be to extend the model to generic cost
functions and evolving graphs that densify with time [40].
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VII. APPENDIX
Lemma 7.1: Let {Fk}k≥0 denote an increasing sequence

of σ-algebras such that sk in (9) is Fk-measurable. The
following conditions hold for wk as in (10): (i) E[wk | Fk] =
0, and (ii)

∑∞
k=1(τ

k)2E[∥wk∥22 | Fk] < ∞ almost surely.
Proof: Note that for LQ games, we have

wk = F (sk, Ak)− F (sk, Ā) = − α
N ((Ak − Ā)⊗ In)sk.

Condition (i) holds since

E[wk | Fk] = E
[
− α

N ((Ak − Ā)⊗ In)sk | Fk

]
= − α

N ((E[Ak]− Ā)⊗ In)sk = 0.

Condition (ii) also holds since

E[∥wk∥22 | Fk] = E
[ ∥∥− α

N ((Ak − Ā)⊗ I)sk
∥∥2
2

∣∣Fk

]
≤ E

[
α2

N2 ∥(Ak − Ā)⊗ I∥22∥sk∥22
∣∣Fk

]
(a)

≤ E
[
α2

N2 ∥Ak − Ā∥2FNs2max

] (b)

≤ α2

N2N
3s2max = Nα2s2max

where (a) follows from the fact that the 2-norm is up-
per bounded by the Frobenius norm and (b) follows from
|Ak

ij − Āij | ≤ 1 since both terms take value in [0, 1]. By
Assumption 2, E[ ∥wk∥22 | Fk] ≤ Nα2s2max < ∞ implies
that

∑∞
k=1(τ

k)2E[ ∥wk∥22 | Fk] is upper bounded by the
convergent series Nα2s2max

∑∞
k=1(τ

k)2 and thus converges.
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