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Abstract— We present new learning dynamics combining (in-
dependent) log-linear learning and value iteration for stochastic
games within the auxiliary stage game framework. The dynamics
presented provably attain the efficient equilibrium (also known
as optimal equilibrium) in identical-interest stochastic games,
beyond the recent concentration of progress on provable conver-
gence to some (possibly inefficient) equilibrium. The dynamics
are also independent in the sense that agents take actions
consistent with their local viewpoint to a reasonable extent rather
than seeking equilibrium. These aspects can be of practical
interest in the control applications of intelligent and autonomous
systems. The key challenges are the convergence to an inefficient
equilibrium and the non-stationarity of the environment from a
single agent’s viewpoint due to the adaptation of others. The log-
linear update plays an important role in addressing the former.
We address the latter through the play-in-episodes scheme in
which the agents update their Q-function estimates only at the
end of the episodes.

I. INTRODUCTION

Shapley introduced stochastic games (SGs) as a gener-
alization of Markov decision processes (MDPs) to non-
cooperative multi-agent settings [1]. Since MDPs are the basis
of reinforcement learning, SGs have also attracted significant
interest as an ideal model for multi-agent reinforcement
learning. Examples include planning for intelligent and
autonomous systems [2]. Shapley also showed that Markov
stationary equilibrium exists in discounted SGs with finite
state and action spaces similar to the existence of a stationary
solution in MDPs. Apart from the studies focusing on the
computation of the stationary equilibrium in SGs, recently,
there has also been a growing interest in determining whether
non-equilibrium adaptation of learning agents reach stationary
equilibrium in SGs, e.g., [3], [4], [5], [6], similar to the
extensive literature on learning in the repeated play of games,
e.g., see [7]. However, in identical-interest SGs, also known
as stochastic teams, reaching possibly inefficient equilibrium
may not be desirable in control and optimization applications.
For example, efficient learning in which agents reach efficient
equilibrium has been studied extensively for games with
repeated play, e.g., [8], [9], [10]. However, very limited results
exist on efficient learning in stochastic games, as reviewed
in detail later.

In the auxiliary stage game framework, we can view SGs
as agents are playing a stage game associated with the state
visited. The payoffs of these stage games, called Q-functions,
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depend not only on the immediate reward they receive but also
on the rewards they will receive in future stages, often referred
to as the continuation payoff. However, the continuation
payoff depends on the evolving strategies of the agents.
Hence, the stage games are not necessarily stationary. The
non-stationarity of stage games is acknowledged as one of
the main challenges for learning in SGs [11]. There is no
straightforward generalization of the existing results from
repeated play setting that address efficient learning, e.g.,
[8], [9], [10] into SGs. Recently, the two-timescale learning
framework addressed the non-stationarity issue for the best
response and fictitious play dynamics [3], [4]. However,
these learning dynamics do not necessarily reach efficient
equilibrium even in identical-interest SGs.

In this paper, we present the new logit-Q learning dynamics,
combining log-linear learning and value iteration for efficient
learning in SGs. We also present the independent logit-Q
learning dynamics to address the coordination burden in the
synchronous (in turn) update of actions inherent to the log-
linear learning. We show the almost sure convergence of
the Q-function estimates to the globally optimum Q-function
of the underlying identical-interest SG in both logit-Q and
independent logit-Q dynamics. We also verify the convergence
of the learning dynamics via numerical examples.

Independent and simultaneous adaptation of agents poses
the key challenges of: i) achieving the global optimum rather
than converging to an inefficient equilibrium and ii) the non-
stationarity of the environment from each agent’s perspective.
The former one is addressed in the log-linear learning for the
repeated games yet the convergence results, such as [8], are
in the sense that only the optimal solution is stochastically
stable. On the other hand, the latter one is viewed as a core
issue in multi-agent reinforcement learning [2] and in learning
in SGs, as discussed above.

The key property of our dynamics is to let agents play-in-
episodes. Within an episode, they play stage games whenever
the associated state gets visited without any update on the Q-
function estimates, as illustrated later in Figure 1. Therefore,
their act is always consistent with the stage game they play.
We consider two update schemes for the Q-function update: In
the average value update, agents take the empirical average
of the payoffs received in the repeated play of the stage
games within the episode. In the frequent value update, agents
assign the value of a state as the payoff of the corresponding
stage game associated with the action profile most frequently
played. Both are consistent with the (desired) uncoupled
nature of the dynamics. The former ensures convergence to the
optimal solution approximately with an approximation error
characterized. The latter ensures convergence to the optimal
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solution exactly. Furthermore, these update schemes make the
stage games stationary within an episode and allows agents to
converge to efficient equilibria at each stage game through the
(independent) log-linear learning dynamics to a certain extent.
Therefore, the update of continuation payoff approximates the
value iteration in MDPs. Increasing episode lengths across
episodes combined with the contraction property of the value
iteration yield that agents can attain the globally optimum
solution in the limit. The increasing episode lengths play a
similar role with the step sizes vanishing at two different
timescales in the two timescale learning framework used in
[3] and [4].

There are a few studies addressing efficient learning in SGs,
such as [12], [13], and [14]. In [12], the authors presented a
learning dynamic for identical-interest SGs based on the
adaptive play. Quite contrary to our uncoupled learning
dynamics, theirs has a coupled structure due to the off-policy
learning of game structure including a maximization over joint
actions of all agents. Notably, in [13], the authors focused on
decentralized learning of efficient equilibrium in SGs. Their
key idea is to focus on stationary pure strategies so that
the underlying SG can be viewed as a (huge) normal-form
game in which actions correspond to stationary pure strategies
(since there are only finitely many contrary to a continuum
of stationary mixed strategies). This reduces the problem to
the repeated play of this (huge) normal-form game. They
addressed the unknown state transitions and no access to
opponent actions through learning-in-phases in which there
is no update of strategies. In that sense, their dynamics have
a flavor more similar with the actor-critic methods where two
different timescales are used in the reverse order with our
approach. In other words, the approaches differ in terms of
learning-in-phases vs playing-in-episodes. Lastly, in [14], we
address efficient learning in stochastic teams with a vanishing
step size used in the value function update different from
the episodic scheme presented. However, the dynamics there
provably reach a neighborhood of the efficient equilibrium
with a more involved convergence analysis. Recall that logit-
Q learning dynamics with the frequent value update reaches
the exact efficient equilibrium.

The paper is organized as follows. We describe identical-
interest SGs in Section II and the new classical and indepen-
dent logit-Q dynamics in Section III. Then, we present the
convergence results in Section IV, and an overview of their
proofs in Section V. In Section VI, we show the performance
of the algorithm with numerical examples. We conclude
the paper with some remarks in Section VII. An appendix
includes the proof of a technical lemma.

II. IDENTICAL INTEREST STOCHASTIC GAMES
Formally, an n-agent SG is a dynamic game played

over infinite horizon that can be characterized by the tuple
〈S,A, r, p〉. At each stage, the game visits a state s from a
finite set S and each agent i simultaneously takes an action
ai from a finite set Ai to collect stage-payoffs.1 Similar to

1The formulation can be extended to state-variant action sets rather
straightforwardly.

MDPs, stage-payoffs and transition of the game across states
depend only on the current state visited and current action
profile a = {ai}ni=1 played. Particularly, p(s′|s, a) for each
(s, a, s′) denotes the probability of transition from s to s′

under action profile a, and ri : S × A → R denotes the
stage-payoff function of agent i. We specifically consider the
identical-interest SGs, also known as stochastic teams, where
there exists r : S × A → R such that ri(s, a) = r(s, a) for
all (i, s, a).

We let agents randomize their actions according to a
strategy determining the probabilities of actions to be played.
They choose their strategies to maximize the expected sum of
discounted stage-payoffs with the discount factor γ ∈ [0, 1).
For example, the objective of player i is given by

E
[∑∞

k=0
γkr(sk, ak)

]
, (1)

where (sk, ak) denotes the pair of state and action profile
at stage k and the expectation is taken with respect to the
randomness on (sk, ak) for each k ≥ 0.

Notice that, in SGs, agents play a normal-form game
associated with the state visited at each stage where the
payoffs of these stage games, called Q-functions, are of the
form

Q(s, a) := E
[∑∞

k=1
γkr(sk, ak)|s0 = s, a0 = a

]
, (2)

and the corresponding value of state, called value function is
defined as

v(s) := E
[∑∞

k=1
γkr(sk, ak)|s0 = s

]
, (3)

In an SG, we say that a strategy is stationary if it depends
only on the current state (and not on the time). Similar to
the existence of a stationary optimal solution in MDPs, there
also exists a stationary equilibrium in SGs such that agents
do not have any incentive to change their stationary strategies
unilaterally [15]. Furthermore, specifically in identical-interest
SGs, there also exists a stationary equilibrium, called efficient
stationary equilibrium, attaining the global maximum of the
common objective (1). The (unique) value function and the
(unique) Q-function associated with an efficient stationary
equilibrium, respectively, denoted by v∗ : S → R and Q∗ :
S ×A→ R, satisfy the following fixed-point equations for
all (s, a), and s :

v∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p(s′|s, a)v∗(s
′)
}
, (4)

Q∗(s, a) = r(s, a) + γ
∑

s′∈S
p(s′|s, a) max

a′∈A
{Q∗(s′, a′)},

and v∗(s) = maxa∈A{Q∗(s, a)} for all s. The uniqueness
follows from the contraction property of the right-hand side.
Indeed the right-hand side in (4) is the Bellman operator we
would have if it was a (single-agent) MDP.

III. EPISODIC (INDEPENDENT) LOGIT-Q
LEARNING

An important question is how an agent would/should play.
The rich literature on learning in games has studied this
question for the repeated play of the same normal-form game.
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Fig. 1. A figurative explanation for the logit-Q learning dynamics in an SG with four states. The circles shaded represent the state visited at the
corresponding stage and the agents play the associated stage game only at those times. The arrows represent the flow of state transitions in time. The same
color is used within an episode to highlight that the same normal-form games are getting played repeatedly.

As previously discussed, agents also play a normal-form
stage game associated with the state visited at each stage in
SGs. However, the payoffs of these stage games, Q-functions,
depend both on the stage-payoff received immediately, e.g.,
γkr(sk, ·), and the expected continuation-payoff to be re-
ceived in future stages, e.g., γkE

[∑∞
l=k+1 γ

l−kr(sl, al)
]

since sk+1 ∼ p(·|sk, ·) as can be seen in (2). The latter
is ambiguous and possibly non-stationary by depending
on the future play. Hence, in SGs, the agents are not
necessarily playing the same stage game repeatedly whenever
the associated state gets visited.

To address the ambiguity of the future play, we use the
standard approach to let agents estimate the value of a
state, called value function, based on the history of their
interactions as if the agents would play in the future as they
played in the past. To mitigate the non-stationarity issue, we
propose to let agents update their value function estimates
(and therefore, the payoff of the stage games) only at certain
stages. We call the time between two consecutive updates
as an episode. Correspondingly, the agents play stationary
stage games, i.e., follow the (independent) log-linear learning
dynamics, described precisely later, within each episode, as
illustrated in Figure 1. We re-emphasize that this play-in-
episodes scheme has a similar flavor with the two-timescale
learning framework studied in [3], [4] in addressing the
non-stationarity issue. Furthermore, it is consistent with the
differences in the evolution pace of choices and preferences
as studied in the evolutionary game theory literature.

We denote the value function and Q-function estimates for
episode t = 1, 2, . . . by v(t) : S → R and Q(t) : S ×A→ R,
respectively. Based on v(t)(·), the agents can construct the
Q-function estimate (and therefore, the payoff of the stage
games) for the next episode (t+ 1) according to

Q(t+1)(s, a) = r(s, a) + γ
∑

s′∈S
p(s′|s, a)v(t)(s

′), (5)

with Q(1)(s, a) = r(s, a), for all (s, a). For the update of
v(t), we consider two schemes. Firstly, the agents can take
the empirical average of payoffs received in the associated
stage games, i.e.,

vave(t) (s) =
∑

a∈A
η(t)(s, a)Q(t)(s, a), ∀s, (6)

where η(t)(s, a) := c(t)(s, a)/c(t)(s) is the sampled fre-
quency of (s, a), corresponding to the number of times
that a gets played in state s, c(t)(s, a), divided by the
number of times that s gets visited, c(t)(s), within episode
t. Alternatively, they can estimate it as the payoff associated
with the action profile played the most frequently within the
latest episode, i.e.,

vfreq(t) (s) =
1

|Afreq
(t) (s)|

∑
a∈Afreq

(t)
(s)
Q(t)(s, a), ∀s, (7)

where Afreq
(t) (s) := argmaxa∈A{η(t)(s, a)}.2 Both schemes

(6) and (7) result in a value function estimate common
among agents, and therefore, the stage games always have
the identical interest structure throughout the underlying
SG. Furthermore, both are also consistent with the (desired)
uncoupled nature of the dynamics.

In the first and the most standard version of the log-linear
learning we consider, which was originally introduced by
[16], agents respond to the latest action of others in turn.
At the first play of each stage game specific to a state, the
agents take arbitrary actions. Then, they keep track of the
latest action played by each agent i at each state s until and
excluding stage k, denoted by αik(s). Every agent except a
randomly chosen one according to the uniform distribution
over agents, say i, takes the latest action they have taken
in the associated state. Then, agent i takes action ai drawn
according to the distribution σi(Qi(t)(sk, ·, α

−i
k (sk))), where

σi : R|Ai| → ∆(Ai) is the soft-max function given by

σi(z)[a] =
ez[a]/τ∑
a′ e

z[a′]/τ
∀z ∈ R|A

i|, (8)

where τ > 0 is a temperature parameter ensuring that each
action gets played with some positive probability.

Though the update-in-turn plays an important role in the
convergence of the log-linear learning dynamics, certain
structured relaxations minimizing the coordination among
agents are also possible. One of the most critical structural
relaxations is to let agents independently decide to change
their actions. Therefore, in the second version of the log-
linear learning we consider, agents independently respond to

2For a finite set A, we denote its number of elements by |A|.
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Algorithm 1 Episodic Logit-Q Dynamics

Require: each agent keeps track of {αjk(s)}(j,s)∈[n]×S
1: for each episode t = 1, 2, . . . do
2: input: Q(t)(s, a), described in (5) using vave or vfreq

3: for each stage l = κ(t), . . . , κ(t+1) − 1 do
4: input: Current state sl
5: each agent i plays{

ai(sl) ∼ σi(Q(t)(sl, ·, α−il (sl))) if he/she is picked
ai(sl) = αil(sl) otherwise

6: output: Count of realizations: c(t)(s), c(t)(s, a)
7: end for
8: compute: η(t)(s, a) = c(t)(s, a)/c(t)(s) ∀(s, a),
9: output:

vave(t) (s) =
∑
a η(t)(s, a)Qave

(t) (s, a)

or
vfreq(t) (s) = 1

|A(t)(s)|
∑
a∈A(t)(s)

Qfreq
(t) (s, a)

10: end for

the latest action of others, see [8, Section 4] for an extended
introduction. As before, at the first play of each stage game
specific to a state, the agents take arbitrary actions. Then
starting from the first play, they again keep track of the
latest action played by each agent i at each state s until and
excluding stage k, denoted by αik(s). Then, at each play of
the stage game, in contrast to the classical log-linear learning,
every agent independently decides on whether to change
their actions with some probability ω. An agent, say i, that
decides to change their action, take action ai drawn according
to the distribution σi(Qi(t)(sk, ·, α

−i
k (sk))). We refer to this

dynamics as independent logit-Q dynamics.
We emphasize that our approach differs from pure algo-

rithmic solutions used in decentralized/distributed control
or dynamic/mathematical programming applications as it
is based on a classical behavioral model. Furthermore, we
emphasize that both Algorithms 1 and 2 have an uncoupled
nature as agents do not operate on the joint action profile
contrary to the coupled learning algorithms that tackle the
Markov team problems that involve maximization over joint
action profiles, e.g., Team Q-learning introduced in [17].

Algorithm 1 and Algorithm 2 provide a description of
the classical and independent logit-Q dynamics respectively.
There, the agents know the stage-payoff function and transi-
tion probabilities but the extension into the case where they
do not know but estimate the stage-payoffs and transition
probabilities can be found in the preliminary version of this
paper [18].

IV. MAIN RESULTS

In this section, we characterize the convergence properties
of Algorithms 1 and 2. The following theorem character-
izes the convergence of Q-function estimates in irreducible
identical-interest SGs. We say that an SG is irreducible if

Algorithm 2 Episodic Independent Logit-Q Dynamics

Require: each agent keeps track of {αjk(s)}(j,s)∈[n]×S
1: for each episode t = 1, 2, . . . do
2: input: Q(t)(s, a), described in (5) using vave or vfreq

3: for each stage l = κ(t), . . . , κ(t+1) − 1 do
4: input: Current state sl
5: each agent i independently plays{

ai(sl) ∼ σi(Q(t)(sl, ·, α−il (sl))) w. p. ω
ai(sl) = αil(sl) w. p. (1 - ω)

6: output: Count of realizations: c(t)(s), c(t)(s, a)
7: end for
8: compute: η(t)(s, a) = c(t)(s, a)/c(t)(s) ∀(s, a),
9: output:

vave(t) (s) =
∑
a η(t)(s, a)Qave

(t) (s, a)

or
vfreq(t) (s) = 1

|A(t)(s)|
∑
a∈A(t)(s)

Qfreq
(t) (s, a)

10: end for

p(s′ | s, a) > 0 for all (s, a, s′) as in [3].3

Theorem 1. Given an irreducible identical-interest SG,
consider that agents follow Algorithm 1. Suppose that the
episode lengths go to infinity, i.e., L(t) := κ(t+1)−κ(t) →∞
as t→∞, e.g., L(t) ∝ t2.
(i) If the agents follow the average value update scheme,

then we have

lim sup
t→∞

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ τ log |A|

1− γ
∀(s, a)

with probability 1.
(ii) If the agents follow the frequent value update scheme,

then we have

lim sup
t→∞

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ = 0, ∀(s, a)

with probability 1.
Correspondingly, the following theorem is the counterpart

of Theorem 1 for Algorithm 2.
Theorem 2. Given an irreducible identical-interest SG,
consider that agents follow Algorithm 2. Suppose that the
episode lengths go to infinity, i.e., L(t) := κ(t+1)−κ(t) →∞
as t→∞, e.g., L(t) ∝ t2.
(i) If the agents follow the average value update scheme,

then we have

lim sup
t→∞

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ τ log |A|+H(ω)

1− γ

∀(s, a), with probability 1, where H(ω) ∈ O(ωn)
is induced by the differences between the stationary
distributions of classical and independent log-linear
updates. Note that H(ω) vanishes as ω → 0.

3Irreducibility assumption can be relaxed by focusing on the recurrent
class that the MG reaches eventually, see the preliminary version of this
paper [18] for detailed discussion.
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(ii) If the agents follow the frequent value update scheme,
then we have

lim sup
t→∞

∣∣Q(t)(s, a)−Q∗(s, a)
∣∣ ≤ τM(ω)

1− γ
,

∀(s, a), with probability 1, where M(ω) ∈ O(n log(ω))
is induced by the differences in the maximizers of the
stationary distributions of classical and independent
log-linear updates. Note that M(ω) vanishes as ω → 0.

Both Theorems 1 and 2 show the almost sure convergence
of the Q-function estimates to a small neighborhood around
Q∗ in both average and frequent value update schemes.

V. PROOFS OF THEOREMS 1 & 2

We defer the reader to the extended version of this paper
[19] for the detailed proof due to the space constraints and
provide an overview of the proof in this section. The proofs
are built upon the observation that if value function estimates
v(t)(s) for each s track the maximum of the Q-function
estimates over action profiles, i.e., maxa∈AQ(t)(s, a), then
the evolution of v(t) across episodes t = 1, 2, . . . approx-
imates the value iteration for MDPs (with single agent).
Hence, the convergence to the global optimum follows.
Therefore, we define a tracking error term, e(t)(s) :=
v(t)(s) − maxa∈A

{
Q(t)(s, a)

}
, on the deviation between

the value function estimates and the maximum of the Q-
function estimates. Thus, our goal is to characterize c ≥
lim supt→∞maxs |e(t)(s)| for Algorithm 1 and Algorithm 2
with both average and frequent value update schemes. To do
so, we use the fact that the action profiles played at every visit
to a specific state forms an irreducible and aperiodic Markov
chain. Particularly, the ergodic theorem for Markov chains,
e.g., see [20, Theorem C.1], yields that sampled frequency of
action profiles played at the specific state s converges to the
stationary distribution of the Markov chain formed by them.
This allows us to characterize the error term for Algorithm 1
since the stationary distribution of the Markov chain induced
by the classical log-linear learning is well-known, e.g., see [8].
However, stationary distribution of the Markov chain induced
by the independent log-linear learning is unknown and very
challenging to characterize, see [8] for a detailed discussion.
Therefore, we rather focus on bounding the distance between
the stationary distributions of the Markov chains induced by
classical and independent log-linear learning. We characterize
a bound by coupling the chains formed by classical and
independent log-linear learning using our novel result on the
analysis of perturbed Markov chains with perturbations. Since
this result can be of independent interest we provide it in
the following lemma. Its proof follows from the proof of
Lemma 2 in [14] with certain modifications. We still provide
the entire proof in [19].
Lemma 3. Consider two chains {ak} and {âk} over the
same state space A. Both form homogeneous, irreducible,
and aperiodic Markov chains with transition kernels P and
P̂ , respectively. Suppose that:

(i) Small Perturbation: There exists some λ ∈ (0, 1] such
that ∥∥∥P̂ (· | â)− P (· | â)

∥∥∥
TV
≤ 1− λ ∀â ∈ A.

(ii) Matching Probability: There exists some ε > 0 such that

Pr(ak = âk | ak−1 6= âk−1) ≥ ε,

Then, there exists a coupling over the sequences {âk} and
{ak} such that we have

Pr (âk 6= ak) ≤ (1− ε)k +
1− λ
ε

∀k.

VI. NUMERICAL EXAMPLES

Consider an identical-interest SG with five states and five
agents, and each agent has five actions at each state. We
choose the stage-payoff function and transition probabilities
randomly. To this end, we first draw r(s, a) ∝ r̄ · O(s2)
for each s, where r̄ is chosen uniformly from [0, 1], and
then normalize them by max(s,a){r(s, a)} to obtain rewards
|r(s, a)| ≤ 1 for all (s, a). On the other hand, we first sample
p(s′|s, a) uniformly from [0.2, 1] and then normalize them
to have

∑
s′ p(s

′|s, a) = 1. We set the discount factor γ, τ
and ω as 0.6, 10−3 and 10−2, respectively.

We examine the evolution of value function estimates for
both update scheme vave, as described in (6), and vfreq, as
described in (7), under Algorithm 1 and Algorithm 2. We use
the suffix -ave if agents use the average value update scheme,
and -freq if agents use the frequent value update scheme. We
set the episode lengths proportional to episode index squared,
i.e., L(t) ∝ t2 and note that a run for both Algorithm 1
and Algorithm 2 approximately takes a minute on a laptop
computer equipped with a 2.6 GHz Intel i7-9750H processor,
16 GB RAM and NVIDIA GeForce RTX 2070 graphic card
using Python 3.7.10 in Jupyter Notebook.

In Figure 2, we plot the evolution of the value function
estimates as a result of 20 independent runs. As we have
shown in Theorem 1 and Theorem 2 the value function
estimates converge to the optimal ones in all cases in Figure
2. Observe that vave converges to a small neighborhood
around the solution, as characterized in Theorem 1, while
vfreq converges to the exact solution. We deliberately plot
the small neighborhood from Theorem 1 also for Algorithm
2 to show that for small values of ω Algorithm 2 has almost
identical performance with Algorithm 1.

VII. CONCLUSIONS

We have presented the new logit-Q and independent logit-Q
learning dynamics provably attaining the social optimum in
identical-interest SGs. Unlike many recent results on learning
in SGs attaining possibly inefficient equilibrium, the dynamics
presented converge to an efficient equilibrium almost surely,
by addressing the challenge of equilibrium selection. Unlike
many results on efficient learning in repeated games, our
learning dynamics have convergence guarantees for SGs, by
addressing the non-stationarity of the stage games induced
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(a) Algorithm 1-ave. Logit-Q with vave (b) Algorithm 2-ave. Independent Logit-Q with vave

(c) Algorithm 1-freq. Logit-Q with with vfreq (d) Algorithm 2-freq. Independent Logit-Q with vfreq

Fig. 2. Convergence of the value function estimates after 20 runs of Algorithm 1-ave, Algorithm 2-ave, Algorithm 1-freq, and Algorithm 2-freq,
respectively. From bottom to top, the solid red, green, blue, magenta, and cyan curves represent the evolution of the value function estimates v(t)(s) for
states indexed from 1 to 5, respectively. The error bar around the solid curves represent the maximum and the minimum values of value function estimates
as a result of 20 independent runs in Algorithm 1’s and Algorithm 2’s. The dotted lines represent the actual optimal state values whereas the
dashed lines represent the bound given by the Theorem 1 for the update scheme with vave. For all of the cases, value function estimates are
observed to converge to the optimal values of states.

from agents’ evolving strategies. Furthermore, the dynamics
presented are online in the sense that agents play and learn
simultaneously in a single SG over infinite horizon without
any repeated play.
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