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Abstract— We present a model predictive control framework
that uses varying prediction horizons according to the current
forecasted uncertainties and estimated distance of the terminal
state from its desired state. Our results suggest that the space
of such optimal horizons, which we call horizon maps, is well
structured for linear systems, meaning that it can be easily
learned using tools from machine learning. Our approach is well
suited for real-time control and can scale to higher dimensional
systems. We also perform an analysis on the required quality
of the datasets used to learn the horizon maps and conclude
with results of this framework using an externally-driven,
constrained linear quadratic regulator problem.

I. INTRODUCTION

Model Predictive Control (MPC) has become ubiquitous
in the realm of robotics. It has been successfully employed
in multiple real systems, from ground and aerial vehicles
performing aggressive maneuvering tasks [1], [2], to legged
robots performing agile locomotion [3], [4]. This is in part
due to its ability to find actions based on a performance
index that takes into account its predicted future states over
a specified horizon. Using this knowledge and doing this
iteratively, it is able to correct most deviations arising from
model mismatches and uncertainties.

While its success has been prominent in real and complex
systems, it is still bound to be efficient only on systems that
meet certain conditions. For instance, when used in high-
dimensional systems, it is often used under the assumption
that the underlying system dynamics are approximately lin-
ear [5]. This assumption degrades rapidly as the system de-
viates from its linearized trajectory. In addition, errors in the
modeled noise or in other external inputs to the system will
cause the state prediction to worsen with prediction horizon.
Since the horizon is often chosen based on heuristics, it can
also limit the controller in being able to find a solution or
might waste computational time by using excessively long
horizons when they are not needed [6].

Finding a suitable horizon in real time can easily increase
the computation time of the optimization problem as it can
turn the problem into a mixed-integer program, or it can
require solving the MPC several times. Instead, if the set of
optimal horizons varies smoothly, we can learn this landscape
offline and predict values online at no computational cost. In
order to find such a suitable horizon, we define a performance
metric that trades off proximity to the desired state at the end
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Fig. 1: Forecast errors accrue with increasing horizons
in MPC. A controller plans its control actions û for the
next H steps based on a nominal model while using external
forecasts ŝ. However, the real system will evolve according
to the true model as it is perturbed by s, hence ending in
a different state xk+H . A proper horizon must be chosen
to avoid accumulating errors while approaching its desired
terminal state.

of the horizon and takes into account a forecast error model
to penalize accruing costs with larger horizons.

Several alternatives to the fixed-time MPC problem have
been previously considered. A common alternative is to solve
the standard MPC problem by keeping the number of time
steps fixed but including the duration of the time step, e.g.,
∆t, in the optimization variable [7], [5], effectively changing
the overall prediction horizon. However, this also changes
the fidelity of the approximation of the continuous-time
dynamics, especially as ∆t becomes large. Fast solutions to
the free-time LQR problem have also been proposed using
several methods, such as bilevel optimization [8], Differ-
ential Dynamic Programming [9], and move blocking [10].
However, these are derived explicitly using the classical cost
function for variable-horizon MPC consisting of quadratic
penalties in the state and control inputs, plus a linear penalty
on the time to completion. A strategy similar in spirit to the
previously mentioned ones is the Adaptive Horizon MPC
(AHMPC) [11]. The approaches that resemble ours the most
are [12], [13] and are indeed inspired by the idea of using
AHMPC in combination with techniques from reinforcement
learning and machine learning. These, however, differ from
our formulation, in that we take into account a model of
forecast errors, i.e., knowledge on how much the system is
anticipated to diverge with planning time.

Given the current state of the art, our contributions are
the following: (1) we derive an optimization formulation
that finds an optimal horizon for MPC such that it leverages
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reaching a target state and deviating from the optimal cost
due to forecast errors growing with the horizon, (2) we
derive an algorithm to construct optimal horizon maps that
can be used in a real-time manner with an MPC controller
with a single MPC computation, and (3) we show that our
MPC controller with learned horizons achieves comparable
performance to a long, constant-horizon MPC controller
while using an approach that scales to higher dimensional
systems.

The organization of the remainder of this paper is de-
scribed next. We formally define the problem we are inter-
ested in solving in Sec. II. In Sec. III, we detail our approach
to solve this problem through the use of optimal horizon
maps. Then, we present a set of numerical experiments and
studies on the horizon maps. Lastly, we conclude with a short
discussion and directions of future work in Sec. V.

II. PROBLEM STATEMENT

Consider the receding horizon controller scenario depicted
in Fig. 1. At the current state, xk, the controller finds an
optimal control input sequence such that it can reach a
desired target set in the following H steps while satisfying its
state and control constraints. The predicted state evolution is
based on a nominal system model, whose state at time k+H
is denoted by x̂k+H . However, due to external perturbations,
s, the real dynamics of the system may differ from the
modeled one, causing the real state to evolve differently from
the anticipated state trajectory, ending at xk+H , instead.

A discrete-time linear system that captures these modeling
discrepancies is the input-driven linear dynamical system
presented in [14],

xk+1 = Axk +Buk + Csk, (1)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rn×p are time-
invariant matrices that determine the next state of the system
based on the current state xk ∈ Rn, control input uk ∈ Rm,
and external timeseries sk ∈ Rp, at the current time step
k ∈ N. Note that the external input sk is unknown to the
controller and is unaffected by the controller. In the best
scenario, a forecast of this input, ŝk, can be modeled and
provided to the controller to obtain better performance.

As in the classical LQR problem, we consider a quadratic
cost performance index. Due to the time-invariant nature of
the cost and dynamics, we re-write our running cost to start
from k = 0. Hence, for a given horizon H ∈ Z+, the next
control action is obtained from the following MPC problem:

minimize
x̂,û

H−1∑
k=0

(
x̂⊤
k Qkx̂k + û⊤

k Rkûk

)
+ x̂⊤

HQH x̂H (2a)

subject to x̂k+1 = Ax̂k +Bûk + Cŝk (2b)
x̂0 = x0 (2c)
x̂k ∈ X , ûk ∈ U (2d)
x̂H ∈ Xf , (2e)

where constraints (2b) and (2d) are enforced for all time
steps k ∈ {0, · · · , H−1}. The set of admissible and terminal

Fig. 2: Model of exponential growth of errors with
horizon. Model (4) considers errors that can be bounded,
linear, and also exponentially growing with horizon.

states are denoted by X and Xf , respectively, with Xf ⊆ X .
Similarly, the set of admissible inputs is denoted by U .
Lastly, Q ∈ S≥0 and R ∈ S>0 are positive semi-definite
and positive definite matrices penalizing state regulation and
control effort, respectively. The forecasted state and control
trajectories are contained in x̂ = [x̂⊤

0 , · · · , x̂⊤
H ]⊤ ∈

Rn(H+1) and û = [û⊤
0 , · · · , û⊤

H−1]
⊤ ∈ RmH . We will

use bold fonts to denote concatenated vectors or matrices,
accordingly.

We wish to solve the MPC problem (2) using the horizon
H such that its terminal state is closest to our desired
equilibrium point while penalizing the marginal difference in
control cost to forecast errors. Thus, a suitable time horizon
for the MPC problem is obtained by solving the following
bilevel optimization problem:

minimize
H

x̂⊤
HPx̂H + Ve(H; ŝ− s)

subject to (x̂∗, û∗) ∈ S(H;x0),
(3)

where S(H;x0) is the set of solutions to the horizon-
parameterized MPC problem (2). P ∈ S>0 is a positive
definite matrix penalizing deviations of the terminal state
from the origin, and Ve(H, s) is an error function that
penalizes deviations from our true dynamics based on the
horizon length H and errors in the external inputs ŝ and s.

The optimal horizon returned by problem (3) is tailored to
a problem that uses additional information about anticipated
forecast errors. This generalization encapsulates the special
case of penalizing time to completion by using, e.g., a linear
or exponential penalty on the horizon, but also allows for
inclusion of other error models. Since this is a bilevel mixed
integer program, it is hard to solve in real time simply using
brute-force methods.

III. APPROACH

In its general form, the bilevel optimization problem (3)
can be difficult to solve analytically. In particular, the upper-
level problem is an optimization problem over a positive
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integer variable. The first cost term, x̂⊤
HPx̂⊤

H , depends on
the horizon implicitly through the solution of the lower-level
(MPC) problem, meaning that for any horizon H , a new
terminal state, x̂H will be obtained. Consequently, a new
terminal cost will be accrued. On the other hand, the second
cost term can be an explicit function of the horizon.

Assumption 1: The forecast error of the externally-driven
input grows with time according to

∥ŝ0:k − s0:k∥ ≤ aHkα (4)

with error magnitude aH ∈ R+ and exponential rate α ∈ R+.
The forecast error assumption (4) is shown in Fig. 2

for multiple values of α. Intuitively, this means that the
external series forecast error is either bounded (if α < 1), or
grows unbounded with time (if α ≥ 1). This assumption is
further validated using a real data set in Sec. IV. In addition,
assumption (4) also equips the upper-level cost function with
the property that, as the horizon increases, the first term
will tend to decay as the system approaches the origin,
and the second term will increase as our long-term state
forecast becomes less reliable. We show in the Appendix that
although this problem can be further simplified, it remains
a computationally complex integer program. Our proposed
algorithm results in a computationally faster approach since
it results in a function evaluation, rather than solving the
mixed integer problem. Hence, we opt to continue using the
bilevel problem description.

To further motivate the choice for the cost landscape
of problem (3), consider again the lower-level MPC prob-
lem (2). Following the derivations from [14], the analytical
solution to the input-driven LQR problem is given by

u∗ = −K−1κ(x0, s) (5)

with

K := blockDiag(R,H) +

H−1∑
k=0

M⊤
k QMk,

κ(x0, s) :=

H−1∑
k=0

M⊤
k Q(Ak+1x0 +Nks),

where blockDiag(R,H) corresponds to a block diagonal
matrix containing the matrix R, H times along its diagonal.
Furthermore, Mk and Nk correspond to the block matrices
of the dynamics written as a function of the control and
external input vectors, parameterized by the initial state, x0:

xk+1 = Ak+1x0 +Mku+Nks, (6)

where Mk = [AkB Ak−1B · · · B 0] ∈ Rn×mH and
Nk = [AkC Ak−1C · · · C 0] ∈ Rn×pH . Let J(û;x0, s) be
the total cost of the MPC problem, as given in (2a). Then,
as shown in [14], the cost difference accrued from using
a nominal model over the real model is quadratic in the
forecast error according to

J(û;x0, ŝ)− J(u∗;x0, s) = (̂s− s)⊤ΨΨΨ(̂s− s), (7)

where ΨΨΨ := L⊤KL and L :=
H−1∑
k=0

M⊤
k QNk.

Fig. 3: Optimal horizon for varying α’s. (Left) Optimal
cost to problem (13) for multiple α’s in the forecast predic-
tion error (4). (Right) Optimal horizon for the corresponding
α, found numerically from the plot in the left.

Using assumption (4) and control cost (7), we can solve
the bilevel optimization problem (3) by solving

minimize
H

∥x̂H∥2P + ∥aH(range(H, p))α∥2ΨΨΨ
subject to (x̂, û) ∈ S(H;x0),

(8)

where ∥ · ∥P denotes the P -weighted norm, e.g., ∥x∥2P :=
x⊤Px, and range(H, p) := [0 · 1⊤ 1 · 1⊤ · · · (H − 1) ·
1⊤]⊤ ∈ RpH and (·)α denotes the component-wise α-
exponent operator. The weighting matrix, P , of the norm in
the first cost term of (8) can be obtained from the solution
to the Discrete-time Algebraic Riccati Equation, i.e.,

P = DARE(A,B,Q,R). (9)

To sum up, (8) is an integer programming problem with
convex objective function. Hence, we later use a neural
network to approximate its optimal solution, reducing the
bilevel optimization problem (3) to problem (2) using learned
optimal horizons. For derivation details, see the Appendix.

Similarly, the weight in the second cost term, ΨΨΨ, is also
determined from system matrices (A,B,C) and performance
matrices (Q,R), as well as the current horizon H . Thus, the
cost of (8) is completely determined from the problem at
hand, given knowledge of the forecast errors.

For illustration purposes, consider the classic double in-
tegrator dynamics with forecast errors growing at a rate
of ∥ŝ0:k − s0:k∥ = 0.01kα for 0.9 ≤ α ≤ 2.0. The
corresponding upper-level costs for multiple horizons, H , are
shown in Fig. 3 for multiple values of α. It can be seen that
for small horizons, the cost is high even though the prediction
errors are small. This is because the nominal state at the
end of the horizon is expected to be far from the origin.
As the horizon increases, the state is expected to approach
the origin. However, prediction errors also start growing at
different rates, according to the modeled error exponent α.
In particular, forecasted errors diverging faster (i.e., higher
values of α), result in higher costs accruing faster. This is
also seen from Fig. 3, where the corresponding minimum
horizons are shown for multiple α’s. This shows explicitly
that when the forecast error is expected to grow faster with
time, the optimal horizon to choose is a smaller one, meaning
we want to be more conservative as uncertainty about the
future grows.
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Fig. 4: Optimal horizon map. Color bar indicates H∗.

Algorithm 1 Optimal horizon map for MPC (2D)

1: Input: Grid steps ∆1, ∆2 over [x
(1)
min, x

(1)
max] ×

[x
(2)
min, x

(2)
max] ∈ X , system matrices (A,B,C), perfor-

mance matrices (Q,R), forecast error model parameters
aH and α, and maximum horizon Hmax

2: Initialize: x0 ← (x
(1)
min, x

(2)
min)

3: for i = 1, . . . , N1 do
4: for j = 1, . . . , N2 do
5: {Jh}Hmax

h=1 ← {0}Hmax

6: for H = 1, . . . , Hmax do
7: (x̂∗, û∗)← solve problem (2)
8: JH ← cost of problem (8) with x̂∗

H and H
9: end for

10: H∗
(i,j) ← h where min {Jh}h=Hmax

h=1 is attained

11: x
(2)
0 ← x

(2)
min + j ·∆2

12: end for
13: x

(1)
0 ← x

(1)
min + i ·∆1

14: end for
15: Output: Optimal horizon map, H∗

A. Algorithm

Given the nature of the formulation and cost terms, we
expect this behavior to generalize to higher dimensional
systems of the same linear form. We next propose an
algorithm to reduce the burden of the computation time in
solving bilevel problem (3) in a real-time and closed-loop
manner.

Recall that problem (3) is a mixed-integer programming
problem since the optimization variable of the upper-level
problem is an integer, while the optimization variables of
the lower-level problem are continuous. Thus, this poses the
biggest challenge in allowing us to reliably solve problem (3)
fast and accurately. However, solving this problem for mul-
tiple points in a subset of the feasible state space suggests
that the set of optimal horizons might vary smoothly in the
vicinity of a given point. For the double integrator example,
the optimal horizon map over the subset [−2, 2] × [−2, 2]
is shown in Fig. 4. It can be seen that the optimal horizons
decrease monotonically as the state approaches the origin
and, in fact, get smaller towards the origin.

Fig. 5: Combined neural network and MPC controller
scheme. At each time step, the current state xk is passed to
the NN, which in turn outputs the estimated optimal horizon:
Ĥ∗. The module traj scaler adjusts the previous solu-
tion of the MPC according to the size of the new horizon.
This is then used to warm start the the solver at the current
iteration, for which Ĥ∗ is used.

To this end, we leverage offline MPC simulations to
construct a discrete optimal horizon map. We then aim to
learn a general form of this map using a Neural Network
(NN), which also allows us to obtain a pseudo-optimal
horizon in a real-time loop without qualitatively sacrificing
optimality. We first explain the procedure to construct the
optimal horizon map following Algorithm 1 assuming n = 2,
however, this readily extends to systems with n > 2. Besides
the system and performance matrices (A,B,C) and (Q,R),
and the external input error forecast model parameters aH
and α from (4), we need a grid map for which the map
is constructed. For ease of clarity, assume a map covering
[x

(1)
min, x

(1)
max]× [x

(2)
min, x

(2)
max], where the superscript indicates

the element in the state variable, i.e., (x(1), x(2)) ∈ R2.
Denote the distance between two points along the first
direction by ∆1 and along the second direction by ∆2. Then,
we start our algorithm from one corner of the grid map,
as indicated in line 2. We then start the iteration process
along the N1 grid points along the first direction and along
the N2 grid points along the second direction. In line 5,
we reset the sequence of cost for the current initial state,
x0, to zero. Then, we populate this sequence of costs for
multiple horizons by first solving the MPC problem (2),
then recording the upper-level cost incurred by this optimal
solution, as shown in lines 6-9. This results in costs such
as the ones shown in Fig. 3, for a fixed α. After iterating
through all horizons, we store the horizon resulting in the
minimum cost in the optimal horizon map, H∗

(i,j), where
the sub-indices indicate the corresponding coordinates in the
grid. In line 11, we simply move “up” on the grid and use
this new value as our next initial state. Similarly, in line 13,
we move to the “right”. This algorithm outputs the optimal
horizon map shown in Fig. 4.

We wish to obtain a pseudo-optimal horizon, Ĥ∗, even
for states x that do not belong to the grid created through
Algorithm 1. Instead of interpolating in between optimal
horizons around the nearest grid point, we treat the horizon
map as a multiclass classification problem. Thus, we train
an NN to learn a mapping from the current state to the
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Fig. 6: Adapting the horizon allows the controller to use long horizons only when needed without degrading
performance. The MPC with the learned horizons (green) will have performance closer to a longer constant horizon
(blue) one while being able to smoothly transition to lower horizons when needed. Choosing a short horizon (orange) from
the beginning will result in poor performance.

corresponding estimated optimal horizon,

Ĥ∗ = ϕ(x0;θ) (10)

where θ denotes the NN model parameters and ϕ : Rn 7−→ N
represents a regressor function. This approach allows us to
scale this same algorithm to higher dimensional systems.

Lastly, since the horizon of the MPC can vary from one
control loop to the next, the size of the state and control
optimization variables will also change. We wish to reuse
our solution from time k to warm-start the solver at time
k+1. To address this, we create a module (traj scaler)
that “stretches” or “compresses” the MPC solution from the
previous time step (prev soln) by scaling the trajectories
and linearly interpolating in between points. The proposed
combined architecture is shown in Fig. 5.

IV. NUMERICAL EXPERIMENTS

We now present our varying-horizon MPC controller and
compare its performance against the constant horizon case.
We then compare the optimal horizon map in three scenarios,
namely when α < 1, when α = 1, and when α > 1,
and motivate scenarios where these modeling parameters
are practical assumptions. We then perform a comparative
analysis on the learned horizon map to determine the impact
of the grid refinement at the time of training. In these studies,
we consider the externally driven double integrator with
external input matrix C = [0.1, − 0.3]⊤, cost matrices
Qk = diag(100, 100) and Rk = 50 ∀ k ∈ [0, H−1], terminal
cost matrix QH = P as given by (9), and aH = 0.01.

A. Performance Against Constant-Horizon MPC

Simulations of the input-driven double integrator are
shown in Fig. 6. The initial state is selected randomly within
the trained space of [−2, 2] × [−2, 2]. An external series
perturbs the state at a rate of α = 1.0. The controller starts
off with a horizon of H = 42 and as it traverses the state
space while approaching the origin, it chooses a shorter
and shorter horizon, until it settles at H = 12 steps. The

gain in computation time is clearly shown in Fig. 9, where
we show the computation times for the constant horizons
H = 40 and H = 10, along with the adaptive horizon
case. The performance of the controller is not compromised,
and evidently, the optimization problem reduces drastically in
size even in this simple example as the optimization variable
û reduces with the horizon, H , from 42 to 12 within the first
few seconds. In Fig. 6, the short constant horizon of H = 10
is chosen for comparison as the simulation steps in between
MPC updates for all cases is chosen to be of 10 time steps.

B. Optimal Horizons for Different Forecast Error Models
We first look at the effect of different error forecast models

in the optimal horizon map to reason how these models
impact the controller’s horizon choice. To this end, we let the
control space be U = R and perform our offline construction
of the horizon map according to Algorithm 1.

The resulting optimal horizon maps for the forecast error
model (4) with α ∈ {0.8, 1.0, 1.2} are shown in Fig. 7. The
area where the horizon is large, e.g., where H > 35 gets
smaller with higher α-exponents, meaning that due to higher
uncertainties at higher horizons, the controller chooses to
plan over shorter horizons.

Next we discuss some practical examples representative
of the model (4) for varying α-exponents. The case α < 1
corresponds to a bounded error with increasing horizon
where, in addition, small errors result over small horizons.
This is common in applications such as networked control,
where predictions of future events need to be made in
advance and, thus rely on timeseries models. Consider the
Uber data set containing pick up locations in NYC [15].
Using a state-of-the-art timeseries forecaster, TSAI [16], we
train a forecast model ŝ for the aforementioned system using
multiple modeled horizons, similar to how it is done in [17].
It can be shown that the errors in such model have small
deviations over short horizons but increase with the horizon,
yet become bounded, as seen in Fig. 10. The case of α = 1
corresponds to a linear penalty with horizon. This is practical
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dynamics are expected to deviate faster from the estimated dynamics (higher value of α in (4)), shorter plans are better.
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Fig. 8: Errors in learned horizon maps mostly present in small horizons. Effect of training dataset with different grid
discretizations for the double integrator problem. The left column represents the ground-truth dataset D with 101 × 101
samples, while the middle column shows the output of the NNs with (top row) coarse dataset (21 × 21 samples), (middle
row) the medium size dataset (51× 51 samples), and (bottom row) the fine dataset (101× 101 samples). The right column
shows the prediction errors for the corresponding NNs.

in scenarios where it is desired to penalize long computation
times and has been similarly used in previous works [9].
The last case, corresponding to α > 1 can be reminiscent
of situations where a linear model is assumed to control a
nonlinear system.

C. Horizon Map Grid Size Used in Learned Map

To analyze the effect of different grid discretizations of
X when pre-training the network that predicts the optimal
horizon of MPC, we created three different datasets obtained

by using: a coarse grid, a medium-sized grid, and a fine
grid. These are equidistantly sampled to have 21× 21, 51×
51, and 101 × 101 data points in X = [−2, 2] × [−2, 2].
These are clustered along with their corresponding optimal
MPC horizon H∗ into a collection of training datasets, D =
{Di}nt

i=1, where

Di ≜ {xi
0, (H

∗)i} (11)

and nt denotes the number of data points, e.g., 441 for the
coarse, 2, 601 for the medium, and 10, 201 for the fine grids.
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Fig. 9: Adapting the horizon speeds up the computation
time. The computation time of the adaptive horizon con-
troller decreases with the horizon H , resulting in a safer real-
time execution. The dashed lines indicate average values.
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Fig. 10: Example of real data motivating applicability of
our forecast error model assumption. Errors in forecasted
taxi demand using Uber dataset [15] trained using [16] show-
ing that both the mean forecast errors follow the proposed
exponential model bounded by (4).

We then trained three NN models (one per grid size) to
approximate H∗ and denote the learned horizon Ĥ∗. Each
NN is composed of a 3-layer neural network where the
hidden layers consist of 64 neurons with a tanh activation
function. The outputs of the trained NNs were then compared
with the ground truth dataset D by numerically analyzing
their errors of H∗, as shown in Fig. 8. As expected, the
NN trained with more data points (finer grid discretization)
shows the best approximation to the optimal horizon H∗, but
it is noteworthy that the NN trained with smaller data points
(medium and coarse grid discretization) also predicts fairly
accurately in the state space X .

V. CONCLUSIONS AND DISCUSSION

In this work, we have introduced a framework to find and
use optimal horizons for an MPC setting by considering a

model of the forecast errors and the modeled linear system
dynamics and LQR performance matrices Q and R. We
provided an algorithm that generalizes the sampled space
of optimal horizons to higher dimensions by training an NN
to approximate and generalize this map. We have shown the
performance of our approach used online in a linear system
with externally driven inputs, showing how performance
is preserved while relying on varying (and often shorter)
horizons. We present a study on how these horizon maps
change with varying forecast error models and the effect of
the dimension of the training dataset in the learned horizon
map.

In this study, we focused on accuracy rather than speed
while generating the training data set, hence have left as
future work exploring data efficient methods in learning the
optimal horizon map. Similarly, we plan to additional use
cases in applications related to locomotion and navigation of
complex systems.

APPENDIX

We consider here a simplified formulation of the bilevel
optimization problem (3) and show that even this case
remains a challenging problem to solve analytically. Consider
timeseries prediction errors satisfying inequality (4). We seek
to find the final horizon H that penalizes both the marginal
difference in control cost to forecast errors and deviations of
the predicted terminal state from its desired terminal state.
The former one can be expressed as a penalty on the terminal
state, while the latter can be expressed as a penalty on the
control cost sensitivity due to forecast errors. In other words,
this can be expressed by

J = x̂⊤
HPx̂H + (s− ŝ)⊤Ψ(s− ŝ) (12)

with Ψ as defined in [18] and s := [s⊤1 , s
⊤
2 , · · · , s⊤H ]⊤ ∈

RpH . The bilevel optimization problem is:

minimize
H

x̂⊤
HPx̂H + (s− ŝ)⊤Ψ(s− ŝ)

subject to (x̂k, ûk) ∈ P1,
(13)

where P1 is the solution to the low-level MPC problem

minimize
x̂,û

H−1∑
k=0

(
x̂⊤
k Qx̂k + û⊤

k Rûk

)
+ x̂⊤

HQx̂H

subject to x̂k+1 = Ax̂k +Bûk + Cŝk,

(14)

with the constraint being satisfied for all k ∈ {0, · · · , H−1}.
Problem P1 constitutes a simplification of problem (2),
which can be formulated, for instance, by implementing
the hard constraints as weighted quadratic soft constraints.
Following [14], the forecasted linear dynamics can be written
as a function of the initial state, the control input vector, and
the forecasted external series, i.e.,

x̂k+1 = Ak+1x0 +Mkû+Nkŝ (15)

with Mk = [AkB Ak−1B · · · B], Nk =
[AkC Ak−1C · · · C], û = [û0 û1 · · · ûk−1], and
ŝ = [ŝ0 ŝ1 · · · ŝk−1]. With this, we can write the solution
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to (2) as û⋆ = −K−1κ(x0, ŝ), with K and κ(x0, ŝ) as
defined in [14]. Substituting û⋆ into the dynamics, we get

x̂H = AHx0 +Mkû
⋆ +Nkŝ (16)

= AHx0 −MH−1K
−1κ(x0, ŝ) +NH−1 + ŝ (17)

=
(
AH−1 −MH−1K

−1κ1

)
x0

+
(
NH−1 −MH−1K

−1κ2

)
ŝ, (18)

where we have re-written

κ(x0, s) =

H−1∑
k=0

M⊤
k QAk+1

︸ ︷︷ ︸
κ1

x0 +

H−1∑
k=0

M⊤
k QNk︸ ︷︷ ︸

κ2

ŝ. (19)

Similarly, the marginal difference in control cost can be
written using (4) as

(s− ŝ)⊤Ψ(s− ŝ) = a2H∥ (range(H, p))
α ∥2Ψ, (20)

where range(H, p) ∈ RpH is a vector composed of vectors
of size p of integers starting from 0 and increasing up to H .
Thus, the bilevel problem (13) reduces to

minimize
H

∥x̂H∥2P + a2H∥ (range(H, p))
α ∥2Ψ

subject to x̂H = f(H;x0, ŝ),
(21)

with

f(H;x0, ŝ) =
(
AH−1 −MN−1K

−1κ1

)
x0

+
(
NH−1 −MH−1K

−1κ2

)
ŝ

which, in turn, reduces to the unconstrained optimization
problem

minimize
H

∥
(
AH−1 −MH−1K

−1κ1

)
x0

+
(
NH−1 −MH−1K

−1κ2

)
ŝ∥2P

+ a2H∥ (range(H, p))
α ∥2Ψ. (22)

Let us analyze the convexity of (22). The first term is
weighted by Ψ, which is positive semi-definite. The terms
inside the P -weighted norm contain the optimization variable
H in either the matrix exponent (e.g., AH−1, or the number
of times A is multiplied) or in the matrix dimensions (e.g.,
MH−1 ∈ Rn×mH ). The second term is weighted by P ,
which is positive definite (since we chose P according to
(9)), and the function in the norm is concave for 0 ≤
α < 1 and convex for α ≥ 1 as seen from Fig. 2. Thus,
the unconstrained cost is the sum of two convex functions
for α ≥ 1. When 0 < α < 1, the Ψ-weighted norm
monotonically approaches a constant, thus resulting in a
function that decays to zero and a function that is always
positive and approaches a constant, leading to a quasi-convex
function.
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