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Abstract— We study the optimization problem of choosing
strings of finite length to maximize string submodular functions
on string matroids, which is a broader class of problems than
maximizing set submodular functions on set matroids. We
provide a lower bound for the performance of the greedy
algorithm in our problem, and then prove that our bound
is superior to the greedy curvature bound of Conforti and
Cornuéjols. Our bound has lower computational complexity
than most previously proposed curvature bounds. Finally, we
demonstrate the strength of our result on a sensor coverage
problem.

I. INTRODUCTION

In sequential decision-making and optimal control, we
commonly face the problem of choosing a set of actions over
a finite horizon to maximize a given objective function. In
numerous cases those objective functions display the dimin-
ishing return property, otherwise known as submodularity, in
many real-life applications such as document summarization
[1], feature selection [2], and optimizing viral marketing
strategies on social media [3]. However, computing the
optimal solution of this class of problems becomes more
intractable with the increasing size of the action space
and growing horizon. The aforementioned unmanageable
computations have motivated people to approximate optimal
solutions. One widely used approximation method is the
greedy algorithm, in which we select the action maximizing
the incremental gain of the objective function at each step.

Previous work has mostly been devoted to providing
performance guarantees for the greedy algorithm applied to
submodular set functions on set matroids such as in [4], as
well as the seminal result from Nemhauser et al., which
provides a guarantee of the greedy algorithm yielding an
objective value that is at least 1/2 of the optimal one over a
finite general set matroid, and 1− e−1 over a finite uniform
set matroid [5]. Later on, different types of computable
curvatures were introduced by Conforti and Cornuéjols in
[6]. Of particular relevance was that of the greedy curvature,
which in numerous cases allowed for improvement upon the
1− e−1 lower bound in [5]. More recently, other notions of
curvature have been developed such as elemental curvature
[7], partial curvature [8], and extended greedy curvature [9],
which are computed and their subsequent values are used in
a formula bounding the performance of the greedy algorithm.

This work is supported in part by the AFOSR under award FA8750-20-
2-0504 and by the NSF under award CNS-2229469.

B. Van Over, B. Li, E. K. P. Chong and A. Pezeshki are with the Depart-
ment of Electrical and Computer Engineering, Colorado State University,
Fort Collins, CO 80523, USA. Email: {b.van over, bowen.li,
edwin.chong, ali.pezeshki}@colostate.edu

Others have considered more general problems of maxi-
mizing functions on strings such as [10] and [11]. The sim-
ilarity between the present work and those of [11] and [10]
is worth noting in that both works investigate the problem
of maximizing functions on strings with some conditions
similar to string submodularity. In fact, our notions of string
matroid and string submodularity coincide exactly with [11].
The main distinction of our results is that the bound we
present is computable, while those of [10] and [11] rely on
curvatures that are intractable to compute for large domains.

In our work, we improve upon the greedy curvature bound
presented by Conforti and Cornuéjols in [6], and show that
the resulting bound can be reduced to a simple quotient. The
strength of our work lies in the following three attributes:

• Our bound has a wide scope of applicability to string
submodular functions on two classes of finite rank string
matroids.

• Our bound is always computable.
• Our bound is provably superior to the greedy curvature

bound in [6].
The rest of the paper is organized as follows. Section II

introduces all the mathematical preliminaries regarding the
string optimization problems and how to translate between
set and string matroids. Section III presents some previous
results on the performance bound of greedy algorithm, in-
cluding the classical bound and some curvature bounds. Our
bound and the relevant theoretical contributions are shown
in Section IV, followed by the numerical demonstration on
sensor coverage problem in Section V.

II. MATHEMATICAL PRELIMINARIES

A. Problem Setup

We define a string of length n comprised of elements
from a set A to be an ordered n-tuple A = (a1, ..., an)
where ai ∈ A for all 1 ≤ i ≤ n, and the length is denoted
by |A| = n. The empty string, denoted by ∅, will have length
zero. In our work the set A will be referred to as the action
set and any element a ∈ A will be referred to as an action.
We then let A∗ be the universal action set, i.e. the set of
all strings comprised of actions from A of arbitrary length.
When we want to restrict to the subset of all strings whose
length is less than or equal to some fixed finite number K,
the set is denoted by A∗

K .
On strings we define the binary operation of concatena-

tion, denoted by ·, which takes strings A = (a1, ..., ak) and
B = (b1, ..., bl) belonging to A∗ and produces the new string

A ·B = (a1, ..., ak, b1, ..., bl) ∈ A∗.
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We say that two strings A,B ∈ A∗ are equal if |A| = |B|
and ai = bi for all i = 1, . . . , |A|. We define the partial
ordering ≼ on A∗ to be A ≼ B if and only if B = A ·L for
some L ∈ A∗.

As in [11] we say that a function f : A∗ → R is string
submodular if

1) f has the forward monotone property, i.e., ∀A ≼ B ∈
A∗, f(A) ≤ f(B).

2) f has the diminishing returns property, i.e., ∀A ≼ B ∈
A∗,∀a ∈ A that are feasible at A and B, f(A · a) −
f(A) ≥ f(B · a)− f(B).

Remark 1. For brevity of notation, we denote f(A·a)−f(A)
by ρa(A) and call this quantity the discrete derivative on
string A. We also say that when A·a belongs to the restricted
domain of our function, then a is feasible at A. Besides, we
will assume that f(∅) = 0 for the rest of the paper, since if
not, we may replace f by f − f(∅).

In the present work we consider the restriction of string
submodular functions f : A∗ → R to subsets A∗

K ⊂ A∗ for
a finite K and seek to solve the optimization problem:

max
A∈A∗

K

f(A).

The solution to the above problem will be referred to as
the optimal strategy and is denoted OK = (o1, ..., oK).
Unfortunately finding the optimal strategy is intractable in
general, and so we approximate f(OK) using the output of
the greedy algorithm. The greedy algorithm is defined as
follows:

Greedy algorithm. A string GK = (g1, ..., gK) is called
greedy if ∀i = 1, ...,K,

gi ∈ argmax
g∈A

f((g1, ..., gi−1, g)).

To get an idea of how close the greedy strategy is to
optimal, we seek to place a lower bound on the quantity
f(GK)/f(OK), known as the performance bound.

Remark 2. Our result on the performance bound will hold
when the following two properties are true for our string
matroid:

1) Each component oi of the optimal strategy OK =
(o1, ..., oK) exists as a string of length one in the string
matroid.

2) Each individual component oi of the optimal string is
feasible for the greedy strategy computed up to stage
i−1 for i = 1, ...,K, in other words, oi is feasible for
the string Gi−1 = (g1, ..., gi−1).

We can guarantee that these two conditions are satisfied for
two classes of string matroids. The first is finite rank uniform
string matroid, and the second is string matroid arising from
a finite rank set matroid. We elaborate further on this in Sec.
IV.

In the following two subsections, we introduce the notion
of a finite rank set matroid to motivate the definition of a
finite rank string matroid, and then show that a subset of

rank K string matroid can be obtained from a rank K set
matroid in a structure preserving way.

B. Finite Rank String Matroid

Definition 1. Let N be any ground set, and X a family of
subsets of N . We say that (N,X) is a finite rank K set
matroid if

1) |S| ≤ K, for all S ∈ X .
2) S ∈ X and T ⊂ S implies T ∈ X for all S ∈ X .
3) For every S, T ∈ X where |T |+ 1 = |S|, there exists

j ∈ S \ T such that T ∪ {j} ∈ X .

Remark 3. The sets S ∈ X are referred to as independent
sets and an independent set of maximal length is known
as a basis. The size of a basis is referred to as the rank
of the matroid. In the present paper we will define set
submodularity of functions on set matroids and their discrete
derivatives in the same manner as we did for string matroids,
with the exception that the partial ordering is changed from
≼ to ⊂, and the concatenation of strings is replaced with the
union of sets.

Taking inspiration from the previous definition and from
[11] we can define a finite rank string matroid:

Definition 2. Let A be our action set, and X ⊂ A∗. Then
X is a finite rank string matroid if

1) |A| ≤ K for all A ∈ X .
2) If B ∈ X and A ≼ B, then A ∈ X .
3) For every A,B ∈ X such that |A| + 1 = |B|, there

exists an a ∈ A∗ which is a component of B such that
A · a ∈ X .

Remark 4. Similar to the above, we define the rank of X
to be the length of the largest strings which by the second
axiom must all be the same size. When X = A∗

K , then we
say that X is the uniform string matroid of rank K.

C. String Matroid Arising from Set Matroid

We now discuss how we can identify a set matroid with a
string matroid in a structure preserving way. Let (X,N) be a
set matroid of finite rank, and S a set in X . Define the string
permutation set of S to be StrP (S) = {(s1, ..., s|S|) ∈
N |S| : si ̸= sj when i ̸= j , si ∈ S}. The universal action
set whose actions come from the ground set N of the finite
rank set matroid (N,X) will be denoted by A∗(N,X). We
then define the map ϕ : X → P(A∗(N,X)) by ϕ(S) =
StrP (S). The string matroid of rank K corresponding to
(N,X) is then defined to be

A∗
K(N,X) =

⋃
S∈X

ϕ(S).

To establish some results, we will need to translate be-
tween A∗

K(N,X) and (N,X) and to do so we define the map
ψ : A∗

K(N,X) → (N,X) by ψ(A) = S where A ∈ ϕ(S)
for some S ∈ X .
Remark 5. Some obvious properties of the map ψ worth
noting are

1) If A ≼ B ∈ A∗
k(N,X), then ψ(A) ⊂ ψ(B) ∈ X .

1258



2) For S ∈ X and {j} ∈ X such that S ∪ {j} ∈ X , and
A ∈ ϕ(S), a = ϕ({j}), we have ψ(A · a) = S ∪ {j}.

Given that we want to maximize functions on strings, we
now define a way of translating functions on set matroids to
functions on string matroids:

Definition 3. Let f be a function on a matroid (N,X).
Then the string extension f̃ : A∗

K(N,X) → R is defined as
f̃(A) := f(ψ(A)).

Remark 6. Notice that in the way we defined our string
extension, f̃ is only determined by the components of the
string and not their order. Therefore f̃ does not take different
values on strings which represent permutations of the same
set.

We may now prove our translation results.

Lemma 1. If (N,X) is a finite rank K set matroid, then
A∗

K(N,X) is a finite rank K string matroid.

Proof. The fact that A∗
k(N,X) is rank K follows from the

fact that (N,X) is rank K and that any A ∈ ϕ(S) for
S ∈ X must satisfy |A| ≤ K. Let B ∈ A∗

K(N,X), and
A ≼ B. Then by the first observation in Remark 5 we
see that ψ(A) ⊂ ψ(B), and since ψ(B) ∈ X , ϕ(ψ(B)) ⊂
A∗

K(N,X), which means that B ∈ A∗
K(N,X) as desired.

Lastly we see that if A,B ∈ A∗
K(N,X) are strings such

that |B| = |A|+ 1, then |ψ(B)| = |ψ(A)|+ 1. By the third
set matroid axiom we have the existence of an element of
ψ(B) which can be added to ψ(A). This exact element can
be concatenated to A in order to produce another string in
the string matroid.

Lemma 2. If f is a set submodular function on a set matroid
(N,X), then the string extension f̃ is string submodular on
A∗

K(N,X).

Proof. Note that the forward monotone condition is a result
of both observations of Remark 5 combined with the set
submodularity of f . Now suppose that A ≼ B, and a is
feasible for both A and B, then

f̃(A · a)− f̃(A) =f(ψ(A · a))− f(ψ(A))

≥f(ψ(B · a))− f(ψ(B))

=f̃(B · a)− f̃(B)

as desired.

D. Summary and Assumptions for Following Results

The main distinctions between a uniform string matroid
and the one arising from a set matroid are the notions of
permutation invariance of the actions and whether or not
repetition of actions is allowed. In a uniform string matroid,
different orders of the same actions can produce different
outputs. Also, the same action can appear multiple times in
a string. For a string matroid arising from a set matroid, the
repetition of any action in a string is not allowed and the
outputs of different orders the same actions are invariant to
permutations.

The assumptions we have made about our functions and
their domains so far have some recurring implications worth
discussion here. All the analysis from the main results in
Sec. IV is based on these assumptions.

Assumption 1. f is a forward monotone.

Being forward monotone guarantees that ρa(A) ≥ 0.
Combining this fact with the third string matroid property
above, we obtain that the greedy algorithm will produce a
string of the same length as the optimal string.

Assumption 2. f is submodular.

The second string matroid property guarantees that A ∈ X
for any A ≼ B with B ∈ X . So we can always compute
the discrete derivative along any singleton string. Combining
this with the string submodularity assumption, we see that
for any a that is feasible for a string A, ρa(A) ≤ ρa(∅). In
other words, the discrete derivative on the empty set bounds
the discrete derivative on any larger string A for which a is
feasible. The aforementioned fact also enables us to deduce
that ρa(A)/ρa(∅) ≤ 1 when ρa(∅) > 0. Lastly, notice that
both of these properties guarantee that ρg1(∅) is the largest
possible discrete derivative of f .

III. PREVIOUS WORK

Most of the previous work regarding guarantees of the
performance bound of the greedy strategy has been focused
on the case where the domain is a finite set matroid, and can
be placed into one of the following three categories. The
work with string functions and string matroids happens to
suffer from the same setbacks as the work on set matroids
in category 2, so those results are included there.

Category 1. Classical Results and Algorithms

Such results as in [5] guarantee that the greedy strategy
will have an output of f that is at least 1/2 of the output of
f on the optimal set for all set submodular functions on set
matroids. When the set matroid is assumed to be uniform, we
then have 1−e−1 for the performance bound. The downside
of such results is that the greedy algorithm may yield high
performance bound under weak subdmobularity. The above
results only produce conservative bound in that case.

Category 2. Computationally Difficult Curvature

Other attempts at providing solutions to the problem, such
as [7] and [8], propose different notions of curvature which
seek to measure the degree to which returns are diminished
for the function f , and then establish bounds using these
curvatures. Wang et al. proposed the elemental curvature in
[7], which is defined as

αe = max
S⊂X,i,j∈X\S,i ̸=j

ρi(S ∪ {j})
ρi(S)

,

while in [8], Liu et al. introduced notion of partial curvature
defined as

αp = max
j∈S∈X

ρj(S \ {j})
ρj(∅)

.

1259



These curvatures are computable for very small matorids, but
become computationally infeasible for large finite matroids.
In a similar vein, the curvatures mentioned in [11] and [10]
for string functions are also computationally intractable in
general.

Category 3. Computationally Feasible Curvature

Conforti and Cornuéjols proposed the greedy curvature
in [6], which is specific to each f and its corresponding
matroid (N,X). This is the first computable curvature
whose value is then used to yield the performance bound.
Most recently, Welikala et al. proposed extended greedy
curvature, which is also computable alongside the execution
of greedy algorithm and specific to submodular functions
and their set matroid domains [9]. Unfortunately, it requires
computing greedy actions beyond the horizon K, which
exceeds the domain on which the original problem is defined.

The present work focuses on improving the greedy
curvature bound in [6]. Specifically, the greedy curvature
was defined as:

αG = 1− min
j∈Ni

min
1≤i≤K

ρj(Gi−1)

ρj(∅)

where N i = {j ∈ N \Gi−1 : Gi−1 ∪ {j} ∈ X, ρj(∅) > 0}.
Allowing α to denote the second term in the expression for
the greedy curvature above, we can write αG = 1− α.

Conforti and Cornuéjols then used the greedy curvature to
prove the following lower bound on the performance of the
greedy algorithm.

Theorem 1. The ratio f(GK)/f(OK) is bounded below by
1− αG (K − 1) /K [6].

With some simple algebraic manipulation, we can write
their lower bound as 1/K + α (K − 1) /K. Such a form
for the bound will simplify the proofs presented in the next
section.

IV. MAIN RESULTS

With most of the preliminaries out of the way, we can
now state the main idea underlying this paper. In order to
compute a lower bound for the ratio f(GK)/f(OK), we find
a computable upper bound for f(OK), i.e. f(OK) ≤ B, so
that f(GK)/B ≤ f(GK)/f(OK). The smaller the difference
between B and f(OK), the better the lower bound will be.

Lemmata 1 and 2 guarantee that the computations per-
formed involving the objective function defined on set ma-
troids will be equal to computations involving the string
extension of that objective function on the corresponding
string matroid. Therefore for the rest of the paper, we will
work in the uniform string matroid case. The conditions
mentioned in Remark 2 are satisfied for both rank K uniform
string matroids, as well as string matroids arising from finite
rank set matroids. In the case of rank K uniform string
matroids, those conditions hold due to the fact that any action
is feasible at any stage, and we allow for strings with repeated
actions.

As for the string matroids arising from set matroids, we
only need the following lemma to establish this fact. When
the lemma is applied to the basis of the optimal set in the
corresponding set matroid, it guarantees that (g1, ..., gi−1, oi)
is always a string in the string matroid.

Lemma 3. The elements of any basis in a finite rank
matroid ΩK = {ω1, ..., ωK} ∈ X can be ordered so that
ρωi(Gi−1) ≤ ρgi(Gi−1). Furthermore, if ωi ∈ GK ∩ ΩK ,
then ωi ≡ gi [6].

Remark 7. The proof of this statement is identical to the
original proof presented in [6], since the assumption of finite
rank and the third matroid property guarantee that all bases
will be the same finite size. Thus all that remains is to
proceed with the same proof by induction.

For the remainder of the paper we will assume that our
string matroid X is of finite rank K and either (1) the
uniform string matroid or (2) a string matroid arising from
a set matroid.

In order to construct a lower bound that beats the greedy
curvature bound in [6], we create two upper bounds for
f(OK) and choose the best of the two by taking their mini-
mum. To introduce these new bounds we need the definitions
that follow, wherein we frequently use elements from the
set XG

i = {a ∈ X : ρa(∅) > 0, a is feasible at Gi−1}.
The bounds we derive here dominate the greedy curvature
bound in [6] when applied to both types of string matroids
mentioned above.

Definition 4. For i = 1, ...,K, define

αi := min
a∈XG

i

ρa(Gi−1)

ρa(∅)
.

Remark 8. From the discussion under Assumption 2, we see
that a nondecreasing f produces ρa(A) ≥ 0 for all A ∈ X
and that ρa(Gi−1)/ρa(∅) ≤ 1. The above observation tells us
that 0 ≤ αi ≤ 1 for i = 1, ...,K with α1 = 1 by definition.
Lastly, α defined along with greedy curvature can be written
as α = min1≤i≤K{αi}Ki=1.

Definition 5.

S(GK , α) :=

{∑K
i=1

1
αi
ρgi(Gi−1) α > 0

∞ α = 0

We now introduce our first upper bound.

Lemma 4. The sum S(GK , α) is an upper bound for f(OK).

Proof. When α = 0 the result is trivial. We argue that the
following chain of inequalities holds:

f(OK)
(1)
=

K∑
i=1

ρoi(Oi−1)
(2)

≤
K∑
i=1

ρoi(∅)

(3)

≤
K∑
i=1

1

αi
ρgi(Gi−1).

Equality (1) follows from a telescoping argument, and in-
equality (2) follows from the submodularity discussion in
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Assumption 2. To see inequality (3), we show that the second
sum is termwise larger than the first. Being termwise greater
is a result of the following three facts: (1) αiρoi(∅) ≤
ρoi(Gi−1) ≤ ρgi(Gi−1) given that by the definition of αi ≤
ρoi(Gi−1)/ρoi(∅); (2) gi maximizes the discrete derivative at
Gi−1; and (3) ρoi(Gi−1) exists when X is a uniform string
matroid or a string matroid arising from a set matroid.

We then construct the second upper bound for f(OK) that
is useful in the event that α = 0, and exploits the fact that
under our assumptions any action is feasible for the empty
set.

Definition 6. Let r1 := g1, and

ri := argmax
a∈X\{r1,...,ri−1}

ρa(∅)

for i = 2, ...,K. Then define R :=
∑K

i=1 ρri(∅).

We then see that f(OK) =
∑K

i=1 ρoi(Oi−1) ≤∑K
i=1 ρoi(∅) ≤

∑K
i=1 ρri(∅) = R given that the largest K

values for ρri(∅) will bound all other discrete derivatives by
the discussion in Assumption 2, including those along the
optimal set OK .

In the next definition, we combine both of these upper
bounds for f(OK) to obtain the best possible upper bound
of the two.

Definition 7.

B :=

K∑
i=1

1

βi
ρgi(Gi−1)

where βi =

{
αi, R ≥ S(GK , α)
ρgi

(Gi−1)

f(ri)
, R < S(GK , α)

i = 1, · · · ,K.

Remark 9. In a similar manner to the set of αi, we let β =
min1≤i≤K{βi}. An important observation to make is that
f(OK) ≤ B ≤ Kρg1(∅). The second inequality comes from
the fact that all discrete derivatives are bounded by ρg1(∅),
so Kρg1(∅) serves as a crude upper bound for B.

We now begin to establish that f(GK)/B is superior to
the greedy curvature bound in [6].

Theorem 2. The ratio f(GK)/f(OK) is bounded below by
f(GK)/B with

f(GK)

B
≥ 1

K
+ α

K − 1

K
= 1− αG

K − 1

K
.

Proof. As we defined above, B serves the upper bound of
f(OK).

(a) First, we consider the case where α = 0.
The greedy curvature bound becomes 1/K when α = 0.
Note that f(GK)/B ≥ f(GK)/ (Kρg1(∅)) ≥ 1/K,
in which the last inequality is based on the fact that
f(GK) ≥ ρg1(∅) > 0.

(b) We then consider the case where α > 0.
By the definition of α, we see αi > 0 along with
ρgi(Gi−1) > 0 for all 1 ≤ i ≤ K. We can rewrite the

performance bound f(GK)/B in terms of β to compare it
with the greedy curvature bound in [6]:

f(GK)

B
= β +

f(GK)

B
− β

= β +
1

B

(
K∑
i=1

(1− β

βi
)ρgi(Gi−1)

)
(4)

≥ α+
1

B

(
K∑
i=1

(1− α

αi
)ρgi(Gi−1)

)
(5)

≥ α+
1

B
(1− α)ρg1(∅)

(6)

≥ α+ (1− α)
ρg1(∅)
Kρg1(∅)

=
1

K
+ α

K − 1

K
= 1− αG

K − 1

K
.

Inequality (4) follows from the fact that βi either equals αi or
ρgi(Gi−1)/f(ri) for all i = 1, · · · ,K, whichever produces
smaller B, and f(GK)/B must be greater than the bound
when βi = αi. Inequality (5) holds since we only extract
the first term and leave the rest nonnegative terms. Lastly,
B ≤ Kρg1(∅) leads to the result from inequality (6).

V. APPLICATION

The multi-agent sensor coverage problem was originally
proposed in [12] and further analyzed in [13] and [9]. In a
given mission space, we aim to find an optimal placement
of a set of sensors to maximize the chance of detecting
randomly occurring events. Such a problem can be formu-
lated as a set optimization problem and approximated by
greedy solutions. In this section we illustrate the power
of our results by applying them to a discrete version of
the coverage problem. Our simplified version can be easily
generalized to more complicated settings while remaining
under the framework of set optimization.

The mission space Ω ∈ R2 is modeled as a non-self-
intersecting polygon where K homogeneous sensors should
be placed to detect a randomly occurring event in Ω. For
simplicity of calculation, we assume both the sensors and
the random event can only be placed and occur at lattice
points. We denote the feasible space for sensor placement and
event occurrence as ΩD. Our goal is to maximize the overall
likelihood of successful detection in the mission space.

The likelihood of event occurrence over ΩD is written as
an event mass function R : ΩD −→ R≥0, and we assume
that

∑
x∈ΩD R(x) < ∞. The outputs R(x) may follow a

particular distribution if some prior information is available.
Otherwise R(x) = 1 when no prior information is obtained.
The locations of all the sensors are represented as s =
(s1, s2, · · · , sK) ∈

∏K
i=1 Z2. Each sensor has a finite sensing

range with radius δ and is able to detect any occurring event
with certain probability within the sensing range. Henceforth,
the visibility region of a sensor located at si is denoted by
V (si) = {x | ∥x − si∥ ≤ δ, x ∈ ΩD}. Additionally, the
function p(x, si) = e−λ∥x−si∥ ·1{x∈V (si)}(x) represents the
probability of detecting an event occurring at x for a sensor
placed at si, where λ is the decay rate characterizing how
quick the sensing capability decays along the distance.

1261



Assuming all the sensors are working independently, the
probability of detecting an occurring event at location x ∈
ΩD after placing K homogeneous sensors is p(x, s) =
1 −

∏K
i=1 (1− p(x, si)). Considering the whole feasible

space, we need to employ the event mass function and our
objective function of multi-agent sensor coverage becomes
H(s) =

∑
x∈ΩD R(x)p(x, s). We aim to find s ∈

∏K
i=1 Z2

that maximizes H(s):

s∗ = argmax
s∈Γ

H(s), where Γ = {S ⊆ ΩD : |S| ≤ K}.

If n lattice points in ΩD are available for sensor placement,
we therefore need to choose K out of n locations with
complexity being n!/ (K!(n−K)!). This becomes a set op-
timization problem and exhaustive search is computationally
intractable when n is large. Therefore, greedy algorithm is
an alternative approach for an approximation in polynomial
time. It was proved that the continuous version of H(s) is
submodular in [13], and it is not difficult to verify that its
discrete version is also submodular.

In our experiment, we consider a rectangular mission space
of size 60 × 50 and K = 10 homogeneous sensors are
required to be deployed. For a point p = (x, y), the event
mass function is given by R(x) = (x+ y) / (xmax + ymax),
where xmax = 60 and ymax = 50 are the largest values of
the x and y component respectively for the mission space.
Such a distribution implies that the randomly occurring event
is more likely to happen in the top right corner of the
rectangular mission space.

The comparison of different performance bounds is shown
in Fig. 1. A small decay rate implies good sensing capability
and strong submodularity, under which the greedy strategy
produces a low performance bound. Notice in Fig. 1 that
our bound (red graph) always exceeds the greedy curvature
bound (blue graph) as the theorem states. In addition, we
can observe instances in which our bound is larger than the
1 − e−1, while the greedy curvature bound is below this
value.
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Fig. 1: Comparison of performance bounds under different
decay rates

VI. CONCLUSIONS AND FUTURE WORK

We introduced a new lower bound for the performance
of the greedy strategy for string submodular functions on
uniform string matroids of finite rank, and string matroids
of finite rank arising from set submodular functions on set
matroids. We then provided a proof that our lower bound
is superior to the greedy curvature bound proposed by
Conforti and Cornuejols in [6]. For future directions, we
look to extend the bound to string matroids arising from
independence systems, as well as applications of the bounds
to reinforcement-learning problems.
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