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Abstract— This paper proposes a data-driven control (DDC)
strategy for nonlinear automated vehicles, employing a multi-
description coding (MDC) mechanism based on scalar quanti-
zation to address the challenges of data dropouts and limited
bandwidth in networked communication environments. The de-
veloped MDC-based communication protocol enhances system
robustness by reducing the probability of data dropout. It
achieves this by transmitting multiple descriptions of source
data through diverse channels, incorporating quantization and
index reassignment to efficiently alleviate bandwidth con-
straints. Based on the reconstructed real-time data, a novel
data-driven controller and a parameter estimation algorithm
are designed, offering adaptability to varying driving conditions
and rapid response in dynamic environments. A numerical
simulation showcases the potential of the proposed approach
as a reliable and efficient solution for the speed problem in
nonlinear automated vehicles with challenging communication
environments.

Index Terms— Nonlinear automated vehicles, data-driven
control; multi-description coding mechanism, data dropouts,
limited bandwidth.

I. INTRODUCTION

Central to the field of automotive technology is the domain
of speed control in automated vehicles, a factor influenc-
ing the safety and efficiency of autonomous transportation
systems. Various strategies have been proposed to achieve
optimal performance in terms of vehicle stability and energy
efficiency [1], [2]. However, most of them are model-based
control methods. For nonlinear automated vehicles, data-
driven control (DDC) techniques [3], [4] have been explored,
which dynamically adjust vehicle speed using real-time sen-
sor data.

DDC schemes are proving to be highly effective in nav-
igating the complex and fluctuating environments that are
typical of autonomous driving, but their effectiveness is
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heavily reliant on the consistent availability of reliable real-
time data from an array of sensors and navigation systems
[5]. In practical scenarios, the integrity of these data streams
is often compromised by challenges such as data dropouts
or limited bandwidth in networked communication channels.
Addressing these issues is becoming increasingly important,
particularly in the context of nonlinear automated vehicles,
where network limitations impact the control algorithms.

To address the challenges associated with network
limitations, researchers have explored several strategies.
Among these techniques, predictive control methods [6] and
compensation-based cooperative model free adaptive itera-
tive learning control methods [7] are commonly employed
to mitigate the effects of data dropouts, while bandwidth
limitations are often handled using quantization-based and
event-based control techniques [8]. Despite these advances,
the literature reveals a gap in comprehensive research ad-
dressing both data dropouts and bandwidth constraints si-
multaneously in automated vehicles. Recently, some studies
have introduced quantified coding communication protocols
[9], [10] to alleviate these network communication issues,
showing promising results. However, the application of these
studies to the specific speed control problems in complex
nonlinear automated vehicle systems has not been studied
before.

In response to the aforementioned gap, this paper pro-
poses an innovative DDC approach for nonlinear automated
vehicle systems, which features novel structural design and
algorithm implementation. The developed control method
integrates a multi-description coding (MDC) mechanism [9],
[11] with scalar quantization, enabling multiple quantized
data streams to be transmitted over independent network
channels. This method of data transmission across multiple
channels significantly reduces the probability of simultane-
ous data loss, thereby alleviating the issue of packet dropouts.
Furthermore, considering that scalar quantizers can convert
floating-point numbers into fixed-bit integers, substantially
reducing data size, such quantized data can decrease the
demand on network bandwidth without sacrificing excessive
information. Thus, incorporating scalar quantization within
the MDC framework is key to ensuring data integrity and ef-
ficient transmission, offering a robust solution to the complex
speed control challenges in nonlinear automated vehicles.
Moreover, the proposed MDC-based DDC approach uniquely
operates without the need for explicit model information,
relying completely on I/O data. This characteristic is advan-
tageous in handling the complexities of nonlinear automated
vehicle systems.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

R, Z, and N represent the sets of real, integers, and non-
negative integers, respectively. N+ denotes the set of positive
integers. P{A} means the occurrence probability of the event
‘A’. E{A} stands for the expectation of event ‘A’ to occur.
For a ∈ Z and b ∈ N+, a = b⌊a

b ⌋+ ⟨ab ⟩ is true, where ⌊a
b ⌋

and ⟨ab ⟩ are the quotient and rest obtained on dividing a by
b, respectively. Include the symbol ∧ which is the logical
“AND”, and ∨ is the logical “OR”.

B. System Model

The following assumptions are made to simplify the
system dynamics [12]:

Assumption 1: The tire longitudinal slip is considered
negligible, and the powertrain dynamics are modeled as a
first-order inertial transfer function.

Assumption 2: The vehicle is modeled as a rigid, symmet-
rical body, focusing primarily on primary dynamic responses.

Assumption 3: Interactions between pitch/yaw motions
and longitudinal dynamics are disregarded to simplify the
vehicle model.

Consider an automated vehicle system with the following
nonlinear dynamics [13], [14]:

v̇ =
1

m
(
ϖ

R
T − CAv

2 −mgl), (1)

where v ∈ R represents the velocity of the vehicle; T ∈ R is
the driving/braking torque; ϖ is the mechanical efficiency of
driveline; m and R are the vehicle mass and the tire radius,
respectively; CA is the lumped aerodynamic drag coefficient;
g is the acceleration due to gravity; l is the coefficient of
rolling resistance. Let the sampling time as h, system (1)
can be discretized as:

v(t+ 1) =v(t) +
hϖ

mR
T (t)− hCA

m
v2(t)− hgl

=:f(v(t), u(t)),
(2)

where u(t) := T (t) is the input; f(·) is a nonlinear function,
and the partial derivative of f(·) with respect to input u(t)
as ∂f(·)

∂u(t) =
hϖ
mR , which means that the partial derivative with

respect to u(t) is continuous and bounded, and the control
direction is fixed.

Assumption 4: System (2) satisfies the general Lipschitz
condition, that is, the inequality |∆v(t + 1)| ≤ b|∆u(t)|
holds for ∆u(t) ̸= 0, where ∆v(t + 1) ≜ v(t + 1) − v(t);
∆u(t) ≜ u(t)− u(t− 1); and b > 0 is a positive constant.

Remark 1: Assumption 4 is reasonable within practical
scenarios as it reflects the physical and engineering limita-
tions inherent in the rate of change of an automated vehicle’s
speed. For example, to mitigate the impacts of sudden or
unpredictable changes on safety and comfort, the design
of the control system must ensure that the speed changes
remain within a predictable and controllable range under all
operating conditions.

Lemma 1: Consider the nonlinear automated vehicle sys-
tem (2) satisfying Assumption 4 and ∆u(t) ̸= 0. By resorting

to the compact-form dynamic linearization method [15],
system (2) can be described by the following dynamic linear
data model:

v(t+ 1) = v(t) + ϕ(t)∆u(t), (3)

where u(t) and v(t) are the control input and system output,
respectively; ϕ(t) = hϖ

mR + ∆v(t)
∆u(t) (1−

hCA

m (v(t) + v(t− 1)))

represents the time-varying parameter satisfying |ϕ(t)| ≤ b.
The parameter ϕ(t) captures all the complex dynamics of the
nonlinear system and can be estimated online.

C. Problem Description

The main objective of this work is to design a DDC
scheme to ensure the stability of the complex nonlinear
automated vehicle system described in (2) with data dropouts
and limited bandwidth. First, to mitigate the effects of packet
dropouts caused by limited communication bandwidth, poor
transmission network quality, and other factors, we propose
a MDC transmission mechanism that reduces the probability
of data loss through redundant channels. Building on this,
the paper further develops a DDC algorithm to ensure the
stability of the system.

Channel

System

Plant Encoders

1

2

Control
action

Decoders
Controller

2

1

0

Fig. 1. Block diagram of MDC-based DDC method.

As shown in Fig. 1, the system output speed v(t) is
encoded into two descriptions, v1(t) and v2(t), which are
transmitted through two independent channels and subse-
quently decoded to produce the data v̂(t) for controller
design. The control input u(t) is updated according to the
designed control law to ensure that the system output v(t+1)
tracks the desired velocity v∗d . Mathematically, the following
condition should be satisfied:

lim
t→∞

|e(t+ 1)| ≤ L, (4)

where e(t + 1) = v∗d − v(t + 1) represents the speed error;
L is a positive constant.

III. MAIN RESULTS

A. Multiple Description Coding Communication Protocol

To enhance the robustness and reliability of the auto-
mated vehicle system, particularly in scenarios with data
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dropouts, and to ensure effective and continuous operation
in unstable network environments, this module proposes a
MDC communication protocol. The main steps of the MDC
mechanism, including the encoding and decoding processes,
are outlined in detail below:

Encoding Process: The purpose of this process is to
quantize the source v(t) and utilize the following index
assignment functions E1(·) and E2(·) to generate two de-
scriptions v1(t) ∈ Z and v2(t) ∈ Z, which are transmitted
through two independent channels.v1(t) = E1

(
Q
(
v(t)

))
,

v2(t) = E2

(
Q
(
v(t)

))
,

(5)

where v(t) is the input to the encoders; v1(t) and v2(t) are
the output of the encoders 1 and 2, respectively; Q

(
v(t)

)
is

the scalar uniform quantizer, designed as

Q
(
v(t)

)
= ϱ(t), 2

(
ϱ(t)− 1

)
ς ≤ v(t) ≤ 2ϱ(t)ς, (6)

where ϱ(t) ∈ Z is the output of scalar uniform quantizer, and
ς is the quantization density. Let the quotient κ1(t) = ⌊ϱ(t)

3 ⌋,
and the remainder κ2(t) = ⟨ϱ(t)3 ⟩. The index assignment
functions E1(·) and E2(·) are defined as

E1(·) =



κ1(t), if κ2(t) = 0,

κ1(t), if κ2(t) = 1 ∧ κ1(t) even,

κ1(t) + 1, if κ2(t) = 1 ∧ κ1(t) odd,

κ1(t) + 1, if κ2(t) = 2 ∧ κ1(t) even,

κ1(t), if κ2(t) = 2 ∧ κ1(t) odd,

κ1(t)− 1, if κ2(t) = −1 ∧ κ1(t) even,

κ1(t), if κ2(t) = −1 ∧ κ1(t) odd,

κ1(t), if κ2(t) = −2 ∧ κ1(t) even,

κ1(t)− 1, if κ2(t) = −2 ∧ κ1(t) odd,

(7)

and

E2(·) =



κ1(t), if κ2(t) = 0,

κ1(t) + 1, if κ2(t) = 1 ∧ κ1(t) even,

κ1(t), if κ2(t) = 1 ∧ κ1(t) odd,

κ1(t), if κ2(t) = 2 ∧ κ1(t) even,

κ1(t) + 1, if κ2(t) = 2 ∧ κ1(t) odd,

κ1(t), if κ2(t) = −1 ∧ κ1(t) even,

κ1(t)− 1, if κ2(t) = −1 ∧ κ1(t) odd,

κ1(t)− 1, if κ2(t) = −2 ∧ κ1(t) even,

κ1(t), if κ2(t) = −2 ∧ κ1(t) odd.

(8)

Decoding Process: Index ϱ(t) is estimated based on the
received data, and subsequently decoded using the estimated
values ϱ̂(t) to obtain the decoded output v̂(t). Mathemati-
cally, this can be described as:

v̂(t) = (2ϱ̂(t)− 1)ς, (9)

-3 -2 -1 0 1 2 3

-3 -9 -8

-2 -7 -6 -4

-1 -5 -3 -2

0 -1 0 2

1 1 3 4

2 5 6 8

3 7 9

Fig. 2. Index assignment (The one-dimensional scalar quantized output
ϱ(t) is mapped using the index assignment functions E1(·) and E2(·),
producing the coordinate pair (v1(t), v2(t)), which can be transmitted
separately through two distinct channels).

where ϱ̂(t) is the estimated index of ϱ(t), satisfying

ϱ̂(t) =


z0
(
v1(t), v2(t)

)
, if c1(t) = 1 ∧ c2(t) = 1,

z1
(
v1(t)

)
, if c1(t) = 1 ∧ c2(t) = 0,

z2
(
v2(t)

)
, if c1(t) = 0 ∧ c2(t) = 1,

ϱ̂(t− 1), if c1(t) = 0 ∧ c2(t) = 0,

(10)

where z0(t), z1(t), and z2(t) are the central decoding
function of decoder 0, and two side decoding functions of
decoders 1 and 2, respectively, which are designed as

z0(t) =



3v1(t), if v1(t) = v2(t),

3v1(t)− 1, if v1(t) = v2(t) + 1 ∧ v2(t) even,

3v1(t)− 2, if v1(t) = v2(t) + 1 ∧ v2(t) odd,

3v1(t) + 2, if v1(t) = v2(t)− 1 ∧ v2(t) even,

3v1(t) + 1, if v1(t) = v2(t)− 1 ∧ v2(t) odd,

z1(t) = 3v1(t),

z2(t) = 3v2(t),

and ci(t), (i = 1, 2) are stochastic variables satisfying
Bernoulli distribution

P{ci(t) = 0} = c̄i,

P{ci(t) = 1} = 1− c̄i,
(11)

where ci(t) = 1 means the i-th channel works well; other-
wise, data dropouts occur in the i-th channel; c̄i ∈ [0, 1], i =
1, 2 are known constants. Let

α(t) =

{
1, if c1(t) + c2(t) ̸= 0,

0, if c1(t) + c2(t) = 0.
(12)

The decoded output v̂(t) can be expressed as follows:

v̂(t) =

{
v(t)− ṽ(t), if α(t) = 1,

v̂(t− 1), if α(t) = 0,
(13)

where ṽ(t) = v(t)− v̂(t) is the decoding error.

7389



For α(t) = α(t − 1) = · · · = α(t − (τ(t) − 1)) = 0 and
α(t− τ(t)) = 1, we have

v̂(t) =v
(
t− τ(t)

)
− ṽ

(
t− τ(t)

)
, (14)

where τ(t) ∈ N, τ(t) ≤ N < ∞, and N ∈ N. For simplicity
of exposition, we omit the time argument and, hence, use τ
instead of τ(t) hereafter. Hence, we have

P


τ−1∑
j=0

α(t− j) = 0, α(t− τ) = 1


=(c̄1c̄2)

τ (1− c̄1c̄2),

(15)

indicating that the decoded output at time t is dependent on
the values at a previous time t−τ , given a series of conditions
is satisfied by the parameter α(t), i.e.,

∑τ−1
j=0 α(t− j) = 0,

and α(t− τ) = 1.
Remark 2: The use of Bernoulli distribution random se-

quences to model multipath data losses provides several
advantages. Firstly, the Bernoulli model (11) is simple and
computationally efficient, making it suitable for real-time
applications. Secondly, it captures the stochastic nature of
data losses, which is essential for accurately representing
the random occurrences of packet dropouts in a networked
control system. In addition, the primary assumption of this
model is that the duration of simultaneous and continuous
data loss in both channels is bounded, as specified in (14)
and (15). This assumption is reasonable because, in many
practical systems, the probability of prolonged simultaneous
data loss across multiple independent channels is low.

Remark 3: According to (5) and (9), we know that the
MDC approach splits data streams into multiple, indepen-
dently encoded descriptions, each sent over different network
channels. It allows the system to reconstruct the original data
with minimal loss, even if some packets are lost, thereby
increasing tolerance to network instabilities. Additionally,
we can adjust the quantization density ς based on network
conditions, ensuring critical information can be transmitted
when bandwidth is limited. This communication mechanism
optimizes data transmission for reliability, making it ideal for
automated vehicle systems where consistent, accurate data
communication is crucial for safety and efficiency.

B. Data-Driven Control Scheme
In this subsection, we develop a MDC-based DDC control

scheme, enabling the automated vehicle with the capability to
maintain desired speed levels even under suboptimal network
transmission conditions. The control scheme is outlined as
follows:

u(t) =u(t− 1) +
ρ

λ+ |ϕ̂(t)|
(
v∗d − v̂(t)

)
, (16)

ϕ̂(t) =ϕ̂(t− 1) +
η∆u(t− 1)

µ+ |∆u(t− 1)|2
(
∆v̂(t)

− ϕ̂(t− 1)∆u(t− 1)
)
,

(17)

ϕ̂(t) = ϕ̂(1), if
∣∣∣ϕ̂(t)∣∣∣ ≤ ε ∨ |∆u(t)| ≤ ε

∨ sign
(
ϕ̂(t)

)
̸= sign

(
ϕ̂(1)

)
, (18)

where ϕ̂(t) is the estimated value of ϕ(t) with the initial
value of ϕ̂(1); 0 < ρ < 2/(N + 1) and 0 < η < 2 are step-
size coefficients; λ > b and µ > 0 are weight coefficients,
b is the upper bound of |ϕ(t)|; ε > 0 is a sufficiently small
scalar; ∆v̂(t) ≜ v̂(t)− v̂(t− 1).

Remark 4: The DDC scheme based on MDC primarily
differs from traditional PID in its robust handling of data
transmission under unstable network conditions. Traditional
PID control schemes might not focus as intensely on these
network-specific challenges, concentrating more on adapting
to system dynamics using real-time data. Furthermore, unlike
the control method in [9], which is based on an index
function, controller (16) is founded on feedback principles
and previously decoded data to compensate for simultaneous
packet loss events.

IV. STABILITY ANALYSIS

Before focusing on the stability analysis of the automated
vehicle, we first present the following theorem.

Theorem 1: For the nonlinear automated vehicle (2),
which satisfies the Assumption 4, under the developed MDC-
based DDC scheme (16)–(18), the system is guaranteed
to exhibit asymptotic stability. Specifically, the speed error
limt→∞ |e(t+ 1)| ≤ L, L ≥ 0, holds for parameters values
that satisfy the conditions 0 < ρ < 2/(N + 1) and λ ≥ b.

Proof: According to the definition of speed error e(t)
in (4), we have

e(t+ 1) =v∗d − v(t+ 1) = v∗d − v(t)− ϕ(t)∆u(t)

=e(t)− ρϕ(t)

λ+ |ϕ̂(t)|
(
v∗d − v̂(t)

)
=e(t)− Φ(t)

(
v∗d − v̂(t)

)
,

(19)

where Φ(t) = ρϕ(t)

λ+|ϕ̂(t)|
.

For α(t) = 1, we have

e(t+ 1) =e(t)− Φ(t)
(
v∗d − v(t) + ṽ(t)

)
=
(
1− Φ(t)

)
e(t)− Φ(t)ṽ(t).

(20)

For α(t) = α(t− 1) = · · · = α(t− τ +1) = 0, and α(t−
τ) = 1, that is v̂(t) = · · · = v̂(t− τ) = v(t− τ)− ṽ(t− τ),
where 0 < τ ≤ N is an integer. Then, one has

e(t+ 1) =v∗d − v(t)− ϕ(t)∆u(t)

=
(
1− (Φ(t) + Φ(t− 1) + · · ·
+Φ(t− τ))

)
e(t− τ)−

(
Φ(t)

+ Φ(t− 1) + · · ·
+Φ(t− τ)

)
ṽ(t− τ).

(21)

By integrating (20) and (21), it can be established that an
integer τ exists within the range 0 ≤ τ ≤ N , ensuring that
the speed error can be expressed as

e(t+ 1) = (1−Ψ(t))e(t− τ)−Ψ(t)ṽ(t− τ), (22)

where Ψ(t) = Φ(t) + Φ(t − 1) + · · · + Φ(t − τ); t − N ≤
t − τ ≤ t + 1 represents the latest time instant can receive
data from channel 1 or 2.
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Let λ ≥ b, there must exist a constant 0 < M1 < 1 such
that the following inequality holds:

0 < M1 ≤ ϕ(t)

λ+ |ϕ̂(t)|
≤ b

λ+ |ϕ̂(t)|
≤ b

λ+ ε
< 1 (23)

Choosing 0 < ρ < 2/(N + 1), it is guaranteed that

1−Ψ(t) ≤ 1− ρ(τ +1)M1 ≤ 1− ρ(N +1)M1 = b1, (24)

where 0 < b1 < 1 is a positive constant.
According to (6)–(9), we know that the decoding error

satisfies |ṽ(t)| ≤ 5ς for α(t) = 1.
Taking norm on both sides of (22), we have

|e(t+ 1)| ≤
∣∣(1−Ψ(t)

)∣∣ |e(t− τ)|+ |Ψ(t)||ṽ(t− τ)|
≤b1|e(t− τ)|+ ρ(N + 1)M15ς

≤b
t

N+1

1 |e(1)|+ ρ(N + 1)M15ς(1− b
t

N+1

1 )

1− b1
.

(25)
Thus, we can easily acquire

lim
t→∞

|e(t+ 1)| ≤ ρ(N + 1)M15ς

1− b1
. (26)

The proof primarily addresses the time-invariant desired
velocity. For the case where the desired velocity is time-
varying, the speed error will be related to the bound of the
desired velocity.

V. SIMULATION

This section provides a numerical simulation to validate
the effectiveness of the proposed MDC-based DDC method.

The parameters of the automated vehicle system are listed
in Table I [2], [16]. The sampling time h = 1, and the desired
speed is given as

v∗d =

{
25, t ≤ 1000,

15, t > 1000.
(27)

TABLE I
VEHICLE PARAMETERS.

Parameter m ϖ R CA g l
Value 1300 0.88 0.25 1.1 9.8 0.016
Unit kg - m N · s2/m2 m/s2 -

The control parameters are selected as µ = 1.5, η = 0.1,
ρ = 0.2, λ = 2. The initial conditions are set as v(1) = 0,
u(1) = 100, ϕ̂(1) = 0.5. The simulation results of the control
scheme designed in this paper are presented in Figs. 3–
6. In specific, for c̄1 = c̄2 = 0.2, Fig. 3 illustrates the
velocity tracking performance, Fig. 4 presents the estimation
error of the index ϱ̃(t) = ϱ(t) − ϱ̂(t), and Fig. 5 shows
the values of parameter α(t). A critical observation from
Figs. 4–5 is that α(954) = 0, leading to the conclusiton
that the error ϱ̃(954) = 3 > 2. Furthermore, the probability
P{α(t) = 0} = 89/2000 = 0.0445, which approximates the
probability P{c1(t) = c2(t) = 0} = 0.04, and is significantly
lower than P{c1(t) = 0 (or c2(t) = 0)} = 0.2. This analysis
verifies that the proposed MDC communication protocol can

effectively reduce the packet loss probability while ensuring
data transmission accuracy within a certain range. Fig. 6
depicts the system output when c̄1 = 0.97, c̄2 = 0.4.
This is particularly insightful for showcasing the system
performance amidst challenges of high data dropouts. These
figures provide clear evidence of the tracking performance
achieved by the proposed control method.

Additionally, to facilitate a more compresensive compar-
ison, the traditional PID controller u(t) = kp(v

∗ − v̂(t)) +
ki

∑t
i=0(v

∗ − v̂(i)) + kd((v
∗ − v̂(t)) − (v∗ − v̂(t − 1)))

is used, where v̂(t) = c1(t)v(t) + (1 − c1(t))v̂(t − 1),
kp = 0.8, ki = 0.1, and kd = 0.01. The results are
shown as Figs. 3–6 and Tables II–III. Table II shows the
sum of absolute error E =

∑2000
t=1 |e(t)|. When the data loss

probability for both channels is 0.2, the sum of absolute
error E = 3032 in this paper is lower than the E = 3779
of the PID algorithm. As the data loss probability increases,
the control algorithm proposed in this paper continues to
maintain good tracking performance. Table III represents
the computer memory usage of the system output v(600),
which needs to be transmitted over the network. Within the
X86 architecture, integer data types can be defined as 8 bits
and floating-point values as 32 bits (single-precision). It is
evident that integers occupy less memory. The results demon-
strate that the developed MDC-based DDC scheme not only
demonstrates relatively superior tracking performance and
robustness in scenarios with data dropouts in the transmission
channels but also effectively mitigates the issue of limited
bandwidth.
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Fig. 3. System output (data loss probability c̄1 = 0.2, c̄2 = 0.2).
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Fig. 4. The index estimation error ϱ̃(t) = ϱ(t)−ϱ̂(t) (data loss probability
c̄1 = 0.2, c̄2 = 0.2).

TABLE II
COMPARISON OF THE SUM OF ABSOLUTE ERROR

Data loss probability (c̄1 & c̄2) 0.2, 0.2 0.97, 0.4
This paper 3032 3157

PID 3779 4054
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Fig. 5. Data loss moments on both channel 1 and channel 2. (if α(t) =
0 ⇔ c1(t) + c2(t) = 0, it indicates data loss on both channels at time t).
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Fig. 6. System output (data loss probability c̄1 = 0.97, c̄2 = 0.4).

TABLE III
COMPARISON OF THE MEMORY CONSUMPTION

Algorithm This paper PID
v(600) 42 22.4421454928819
Binary 00101010 01000001101100111000100110000100

Bits ≥ 8 ≥ 32

VI. CONCLUSIONS AND FUTURE DIRECTIONS

A. Conclusions

This paper developed a MDC-based DDC scheme for
nonlinear automated vehicles, specifically focusing on chal-
lenges posed by data dropouts and limited bandwidth in
networked environments. The MDC communication protocol
enhances automated vehicle system robustness by managing
multiple data streams, ensuring reliable vehicle operation
under challenging conditions. A data-driven controller and
parameter estimation algorithm has been designed for precise
speed control. The effectiveness of the developed control
scheme is demonstrated through a numerical simulation.

B. Future Directions

To enhance the stability and reliability of automated ve-
hicle systems, we will integrate advanced signal processing
techniques and explore innovative methodogies in commu-
nication theory. This initiative aims to address complexities
such as noise and time-delays, which significantly affect
control system performance. Additionally, we will explore
challenges associated with limited communication data rates
within network communications.
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