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Abstract— In this paper, we consider the infinite horizon
optimal control problem for nonlinear systems. Under the
conditions of controllability of the linearized system around
the origin, and nonlinear controllability of the system to a
terminal set containing the origin, we establish an approximate
regularized solution approach consisting of a “finite free final
time” optimal transfer problem to the terminal set, and an
infinite horizon linear regulation problem within the terminal
set, that is shown to render the origin globally asymptotically
stable. Further, we show that the approximations converge
to the true optimal cost function as the size of the terminal
set decreases to zero. The approach is empirically evaluated
on the pendulum and cart-pole swing-up problems to show
that the finite time transfer is far shorter than the effective
horizon required to solve the infinite horizon problem without
the proposed regularization.

Index Terms— Nonlinear control, Infinite horizon optimal
control, Control Lyapunov function

I. INTRODUCTION

The goal of an optimal control problem is to find the
control inputs that minimize a given cost function subject to
constraints on the system dynamics. Further, it is desired that
the optimal control problem results in a globally asymptoti-
cally stable closed-loop system. In order to satisfy the global
asymptotic stability requirement, one has to pose an infinite
horizon control problem, i.e., where the cost is an infinite
sum. Although there exists infinite horizon optimal control
law for specific, mostly linear, systems, obtaining an optimal
solution for an infinite horizon nonlinear control problem is
a very challenging task owing to the infinite horizon [1]. In
this work, we propose an approximate solution to the infinite
horizon optimal control problem by turning the problem into
an equivalent finite horizon problem.

The infinite horizon optimal control problem may equiv-
alently be posed as the stationary Dynamic Programming
(DP) problem for discrete-time systems, or the stationary
Hamilton-Jacobi-Bellman (HJB) equation in continuous time
systems [1, 2] which turns the sequential decision making
problem into a single step decision making problem given
one knows the optimal cost function. It is also well known
that the optimal solution to the stationary HJB equation
is a globally asymptotically stabilizing control Lyapunov
function [3, 4, 5]. However, the solution is computationally
intractable owing to Bellman’s dreaded “curse of dimension-
ality” [1, 2]. Thus, there is a very large literature on Approx-
imate DP (ADP) and Reinforcement Learning that seeks to
alleviate the curse of dimensionality. Approximate dynamic
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programming methods [6, 7] typically use aggregation meth-
ods [8, 9] or various function approximation methods [10,
11] to give an approximately optimal policy/value function
with a high confidence. Reinforcement learning [12] and
approximate dynamic programming are typically used in the
same sense, though the keyword reinforcement learning is
often associated with a model-free approach where one does
not have “explicit” knowledge of the model, and instead,
seeks to improve the control policy by repeated interac-
tions with the environment while observing the system’s
responses. The repeated interactions, or learning trials, allow
these algorithms to compute the solution of the dynamic
programming problem (optimal value/Q-value function or
optimal policy) without explicitly constructing the model of
the unknown dynamical system. Standard RL algorithms are
broadly divided into value-based methods, like Q-learning
[13], and policy-based methods, like policy gradient algo-
rithms [14]. Recently, function approximation using deep
neural networks has significantly improved the performance
of reinforcement learning algorithms, leading to a growing
class of literature on ‘deep reinforcement learning’ [15, 16,
17, 18]. Despite the success on relatively higher dimensional
problems than previously possible, the inherent variance in
the solution [19, 20] renders them unreliable and the training
time required of these methods remain prohibitive.

An alternative “direct” approach to the HJB is to solve the
underlying infinite horizon optimal control problem given a
particular initial state. The field of Model Predictive Control
(MPC) takes this approach to solving the infinite horizon
problem, however, owing to the infinite horizon nature of
the involved optimal control problem, MPC solves a “fixed
final time” finite horizon problem in its stead, takes the
first control action, and repeats the process once at the
next state [21, 22]. The “stabilizing ingredient” for the
asymptotic stability of the MPC approach is the use of a
suitable terminal cost function in the optimization problem
that is a control Lyapunov function for the system in some
terminal set containing the origin [21]. Nonetheless, the
domain of attraction of the MPC law can be undesirably
small, and thus, different methods have been suggested to
increase the domain of attraction [23, 24, 25]. Alternatively,
one can eschew the use of a terminal cost function and
set using a suitable long horizon [26], but this typically
leads to intractability owing to very long prediction horizons
[27]. Our approach to solving the infinite horizon problem
is similar to MPC in that we “directly” solve the optimal
control problem but the key difference is that given a state,
we solve a “free-final time” problem for insertion into a
terminal set in which the optimal linear feedback law is
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asymptotically stabilizing and/or a good approximation of the
true optimal cost function. We can then establish the global
asymptotic stability of the resulting feedback law under a
mild nonlinear controllability assumption, and also show that
the approximation converges to the true optimal cost function
as the size of the terminal set is reduced to zero. Finally, there
is no need for replanning in the approach. The limitation is
that we do not consider state or control constraints in the
problem.

The primary contribution of this paper is a tractable
direct approach for the solution of infinite horizon optimal
control problems that is globally asymptotically stabilizing
for nonlinear systems under the conditions of controllability
of the system linearization around the origin, and a nonlinear
controllability assumption into a terminal set containing the
origin. The rest of the paper is organized as follows: we
introduce the problem in Section II, the solution approach
is detailed in Section III including the heuristic idea behind
the construction, and the method is tested on empirically on
several nonlinear systems in Section IV.

II. PRELIMINARIES

Consider the following problem which we want to solve:

J∗
∞(x) = min

{ut}

∞∑
t=0

c(xt, ut); given x0 = x (1a)

subject to the dynamics: xt+1 = f(xt, ut), (1b)

where xt ∈ Rn represents the state of the dynamical system,
ut ∈ Rp represents the control input to the dynamical
system, and c(xt, ut) is the incremental cost incurred in
taking control action ut at state xt. The above problem is
an infinite horizon optimal control problem (IH-OCP), and
thus, solving the problem is, in general, intractable owing to
the infinite horizon of the problem.

Our goal in this work is to develop a tractable approach
to solving the above problem by transforming the problem
into a suitable finite horizon problem.

Given that we can obtain a solution to the IH-OCP Eq. (1),
it is well known that the infinite horizon cost-to-go J∞(·)
satisfies Bellman’s equation [1, Ch.7]:

J∗
∞(x) = min

u
{c(x, u) + J∗

∞(f(x, u))}. (2)

Given that c(x, u) > 0 ∀ (x, u) ̸= (0, 0), one may
see that J∗

∞(·) is a Control Lyapunov Function (CLF) for
the dynamical system in Eq. (1b), and thus, the control
feedback policy implicitly defined by the optimal cost-to-
go function J∗

∞(·), globally asymptotically stabilizes the
dynamical system Eq. (1b). The proof is straightforward and
shown below.

Corollary 1: Let J∗
∞(x) satisfy the Bellman equation

Eq. (2), then it is a control Lyapunov function for the system
in Eq. (1b) that renders the origin globally asymptotically
stable.

Proof: Let u∗
t be the control action at state xt accord-

ing to the Bellman equation, where (xt, u
∗
t ) is the system

trajectory given x0 = x. Then:

J∗
∞(xt) = c(xt, u

∗
t ) + J∗

∞(f(xt, u
∗
t )).

⇒ J∗
∞(xt) > J∗

∞(xt+1) (since c(xt, u
∗
t ) > 0).

⇒ J∗
∞(xt) → 0 as t → ∞ ,

where the last line follows from the fact that J∗
∞(xt) is

bounded below by zero, and thus, strict monotonicity of
the sequence {J∗

∞(xt)} implies that the sequence has to
converge to zero. This holds for any choice of x. Since
J∗
∞(x′) = 0 only at the origin, this implies the trajectory

xt → 0 as t → ∞ and the result follows.
Further, suppose that if there exists a J∞(·) such that it

satisfies the Bellman Eq. (not necessarily optimal)

J∞(x) = min
u

{c(x, u) + J∞(f(x, u))}, (3)

then J∞(·) also is a CLF that renders the origin globally
asymptotically stable (GAS).

Thus, another goal for us in solving Eq. (1) is to construct
CLFs as in Eq. (2)/ (3), such that they render the origin GAS.

III. SOLUTION TO THE INFINITE HORIZON OPTIMAL
CONTROL PROBLEM

Define the following finite-horizon optimal control prob-
lem (FH-OCP):

JT
∞(x) = min

{ut}

T−1∑
t=0

c(xt, ut) + J̄∞(xT ), (4)

subject to: xt+1 = f(xt, ut)

where J̄∞(·) is a terminal cost function that shall be defined
below. We shall make the following assumptions for the rest
of the paper.

Assumption 1: We assume that the cost function c(x, u)

has a global minimum at (x, u) = (0, 0), i.e., ∂c
∂x

∣∣∣
x=0,u=0

=

0 and ∂c
∂u

∣∣∣
x=0,u=0

= 0, c(0, 0) = 0, and c(x, u) > 0

∀ (x, u) ̸= (0, 0).
Assumption 2: We assume that given any x ∈ X , and any

Ω ⊂ X , such that the origin is in Ω, ∃ a control sequence
{ut}T (x)

t=0 , that ensures xT (x) ∈ Ω for some T (x) < ∞, under
the dynamics defined above (Eq. (1b)).
Assumption 2 is a controllability assumption that ensures
that any state can be controlled into entering the region Ω in
finite time.

Assumption 3: We assume that the linearization of the
dynamical system Eq. (1b) around (0, 0), is controllable.

Given assumptions 1 and 3, we can define the optimal
“linear” infinite-horizon problem:

J̄∞(x) = min
{ut}

∞∑
t=0

(x′
tQxt + u′

tRut), (5a)

subject to: xt+1 = Axt +But, (5b)

where, (Q,R) and (A,B) are obtained by performing a
quadratic expansion of c(x, u), and a linear expansion of
the dynamics in Eq. (1b) around the origin (x, u) = (0, 0).
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Note that owing to the linear controllability assumption
3, J̄∞(·) above may be found by solving the stationary
algebraic Riccati equation, resulting in J̄∞(x) = x′P∞x,
where P∞ is the solution of the stationary Riccati equation.

Definition 1: The terminal cost J̄∞(·) in the finite hori-
zon optimal control problem (Eq. (4)) above is defined
as J̄∞(x) = x′P∞x, where P∞ is the stationary Riccati
equation’s solution.

A. Heuristic Idea

The heuristic idea behind the solution of the infinite
horizon optimal control problem is as follows. Let the
optimal trajectory be given by (x∗

t , u
∗
t ) starting at some

state x. For the optimal cost to be well defined, we need
that

∑∞
t=0 c(x

∗
t , u

∗
t ) < ∞. However, for this infinite sum

to be well defined, the tail sum
∑∞

t>T c(x∗
t , u

∗
t ) → 0 as

T → ∞. Thus, after some finite time, the cost c(x∗
t , u

∗
t )

is necessarily small. Given that due to assumption 1 the
cost c(x, u) = 0 only at the origin, it follows that the
system spends a very large time around the origin. Next,
given assumption 3 that the linearization around the origin
is controllable, it follows that the tail sum of the cost can be
well approximated by the optimal linear cost function found
by solving the stationary Riccati equation, J̄∞, as defined
above. Thus, the infinite horizon cost may be split into two
parts: a “transfer cost” to get the system into the region Ω
where the linear approximation holds, and a linear regulation
cost for regulation to the origin once within Ω (see Fig. 1).
Thus, the basic idea is to turn the infinite horizon problem
into a finite horizon problem by approximating the tail sum
of the cost by the optimal linear cost function and find the
optimal insertion time T ∗(x) from state x into the region
Ω along with the associated optimal control. As the region
Ω gets smaller, we get better approximations of the optimal
cost function and obtain the optimum in the limit. However,
even for a finite Ω, this procedure results in the construction
of a CLF that renders the origin GAS. In fact, we can get
an uncountable number of such CLFs based on the choice
of our incremental cost function c(x, u).

O

Fig. 1: Schematic illustrating the strategy to solve the infinite horizon optimal control
problem

B. Optimality of the Finite Horizon Optimal Control Prob-
lem

In the following, we shall establish the optimality of the
FH-OCP (4), in particular, that JT

∞(x) → J∗
∞(x) for all

x ∈ X .
To this end, define the set:
Ωε = {x : |J̄∞(x)−J∗

∞(x)| < ε, and J̄∞(x) = x′P∞x ≤
Mε}, i.e., Mϵ is chosen such that in the level set Ωε, the error
between the linear optimal cost function and the true optimal
cost function is less than the tolerance ϵ. The set above
defines a sub-level set of the optimal linear cost function
in which the cost function is ε−close to the true (unknown)
optimum J∗

∞(x).
For simplicity, we will consider the cost c(x, u) to be

quadratic in the following. Due to paucity of space, the
proofs for the results below are given in the extended version
[28].

Lemma 1: There exists a finite time Tε < ∞, such that
the solution to the FH-OCP (4) for T = Tε, denoted by
(xε

t , u
ε
t ) is such that J̄∞(xT ) = xε′

T P∞xε
T ≤ Mε for the

first time, i.e., for any T < Tε, J̄∞(xT ) = xε′

T P∞xε
T > Mε.

The basic idea in the proof for the result above is that if the
optimal trajectory never enters Ωε, J

T → ∞ starting from x,
however, since there is a feasible trajectory with J̄ < ∞, we
can always find a suitable finite time T where the cost of the
optimal control is above J̄ thereby contradicting optimality
at that time T .

Lemma 2: Given the time Tε that the solution to Eq. (4)
first hits the set Ωε, the optimal solution Tε satisfies:
|JTε

∞ (x)− J∗
∞(x)| ≤ ε.

Corollary 2: Let T ′ < T, then the solution to Eq. (4) for
T, T ′ follow: JT ′

∞ (x) ≥ JT
∞(x). The proof follows from the

last part of the proof to lemma 2 above.
Theorem 1: Given any x ∈ X , limT→∞ JT

∞(x) →
J∗
∞(x).

Proof: We just showed in lemma 2 that given any ε > 0,
we may find Tε(x) < ∞ such that: |JTε

∞ (x)− J∗
∞(x)| ≤ ε.

Further, owing to corollary 2, JT
∞(x) ≤ JTε

∞ (x) for any T >
Tε. Noting that JTε

∞ (x) > J∗
∞(x), it follows that |JT

∞(x) −
J∗
∞(x)| ≤ ε ∀ T > Tε(x), this establishes that JT

∞(x) →
J∗
∞(x) for any x ∈ X .

C. An Alternative Construction
In the following, we define a sub-optimal construction that

nonetheless furnishes a Control Lyapunov Function (CLF)
that renders the origin globally asymptotically stable for the
dynamical system Eq. (1b).

Let the region of the attraction (ROA) of the linear
controller corresponding to the terminal cost function J̄∞
be D. Suppose that we define a set Ω ⊂ D as follows:
Ω = {x : J̄∞(x) = x′P∞x ≤ M}, which is a level set
of J̄∞(·) that is constrained in the ROA D.
Fix M < ∞, and consider the problem:

J∞(x) = min
ut,T

T−1∑
t=0

c(xt, ut) + max
(
J̄∞(xT ),M

)
, x /∈ Ω,

J∞(x) = J̄∞(x) = x′P∞x, x ∈ Ω. (6)
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Please note that the above optimization problem has a free
final time T that needs to be optimized over in conjunction
with the control action ut. The rationale behind posing the
above problem is that the optimal control transfers the system
from any state x to the boundary ∂Ω of the set Ω, from where
the linear controller takes over to regulate to the origin. Since
Ω is within the region of attraction D, the linear controller
can always regulate to the origin regardless of the insertion
point on the boundary.

In the next result, we show that the optimal time for the
problem posed above is the first time that the solution to the
problem posed above hits the boundary of the set Ω.

Lemma 3: The optimal time T ∗(Ω) for the optimal con-
trol problem (Eq. (6)) is finite and is the first time T that the
solution to Eq. (6) hits the set Ω.

Proof: Note that Eq. (6) is the exact same as Eq. (4) as
long as xT /∈ Ω. Thus, lemma 1 implies that the first hitting
time of Ω, say T ∗(Ω), is finite. Furthermore, corollary 2
implies that JT

∞(x) < J
T (Ω)
∞ (x) for any T > T (Ω), where:

JT
∞(x) = min

ut

T−1∑
t=0

c(xt, ut) + J̄∞(xT ). (7)

Let T > T (Ω) and let the optimal trajectory be {x̃t, ũt}
for the time T according to the OCP in Eq. (6). Then:

JT
∞(x) =

T−1∑
t=0

c(x̃t, ũt) + max
(
J̄∞(x̃T ),M

)
. (8)

Since T > T (Ω), J̄∞(x̃T ) < M , and thus,
max(J̄∞(x̃T ),M) = M . Noting that T (Ω) is the first time
the solution to Eq. (6) hits ∂Ω, JT

∞(x) > J
T (Ω)
∞ (x), and the

result follows.
Next, we show that the sub-optimal cost function thus
constructed satisfies the Bellman equation.

Lemma 4: The optimal cost J∞(x) corresponding to OCP
Eq. (6) satisfies the Bellman equation for any x /∈ Ω :

J∞(x) = min
u

[c(x, u) + J∞(f(x, u))].

Proof: Let us denote the terminal cost function
in the optimal control problem Eq. (6) as Φ(xT ) =
max

(
J̄∞(xT ),M

)
. Then for any x /∈ Ω:

J∞(x) = min
ut,T

[
T−1∑
t=0

c(xt, ut) + Φ(xT )

]
, (9)

= min
u0

min
{ut}T−1

t=1 ,T

[
c(x, u0) +

T−1∑
t=1

c(xt, ut) + Φ(xT )

]
,

= min
u0

[
c(x, u0) + min

{ut}T−1
t=1 ,T

T−1∑
t=1

[c(xt, ut) + Φ(xT )]

]
.

Noting that x1 = f(x, u0) and

J∞(f(x, u0)) = min
{ut}T

t=1,T

T−1∑
t=1

[c(xt, ut) + Φ(xT )] ,

it follows that: J∞(x) = minu[c(x, u) + J∞(f(x, u))],
establishing the result.

Note that the reason J∞(·) satisfies the stationary Bellman
equation is due to the free final time T in the problem
formulation as otherwise the sum would be time varying.
Then, owing to the fact that J∞(·) satisfies the Bellman
equation, one has:

Corollary 3: The optimal cost function J∞(·) of the OCP
Eq. (6) is a control Lyapunov function that renders the origin
of system Eq. (1b) global asymptotically stable.

Proof: It is straightforward that for any x /∈ Ω,
since J∞(.) satisfies the Bellman equation outside of Ω, a
trajectory following the optimal control has to hit Ω. Now,
since Ω is within the domain of attraction D of the linear
controller, J̄∞ is a CLF for the system and the state xt → 0,
as t → ∞. Thus, the optimal cost function J∞(.) is a CLF
for the system.
We note here that the CLF J∞(.) as defined is continuous but
not necessarily smooth, in particular, there is a continuous
but non-smooth transition at the boundary of Ω for any finite
M .

Furthermore, one can also establish the following conver-
gence result. Given M < ∞, define:

JM
∞ (x) = min

ut,T

[
T−1∑
t=0

c(xt, ut) + max
(
J̄∞(xT ),M

)]
,

(10)

where recall that Ω = {x : J̄∞(x) = x′P∞x ≤ M}.
Theorem 2: Given the optimal control problem (Eq. (10)),

the solution satisfies: limM→0 J
M
∞ (x) = J∗

∞(x) for all x ∈
X .

Proof: The proof is essentially identical to that of
Lemma 2 and Theorem 1.

Finally, note that JM
∞ (·) ̸= J∗

∞(·) for any finite M < ∞.
However, JM

∞ (·) still satisfies Bellman’s equation, and this
is a non-trivial case where satisfying the BE is not sufficient
for optimality.

D. Discussion

In the following, we discuss some of the salient points of
the proposed regularization approach.

Computational efficiency: The approach proposed con-
verges to the optimal cost function as the time horizon T
becomes large, or equivalently, the size of the terminal set
characterized by M becomes small. A valid question is
how is this different from posing a problem without any
terminal cost function and letting the time become large,
where in the limit, the optimal cost function of the finite
horizon problem converges to the optimal infinite horizon
cost? To see the advantage of the proposed approach, let the
optimal transfer time be T ∗

M (x) from a state x into the set
ΩM = {J̄∞ ≤ M}. Further, denote the effective regulation
time required within the set ΩM as TR

M (x). Then, it is easy
to see that T ∗

M (x) << TR
M (x), for any finite M . Therefore,

the optimization problem for our approach has much shorter
horizon when compared to a finite horizon problem without
any terminal cost. This aspect is clearly borne out by our
experiments in the next Section where the effective horizon
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of the problem we need to solve is a small fraction of that
required for the finite horizon problem without any terminal
cost.

Free final time and global asymptotic stability: Another
critical aspect of our approach is the free final time of the
optimization problem from a given state x ∈ X . In fact, we
have already noted that the free final time is the reason that
the approximate cost function JM

∞ (.) satisfies the stationary
Bellman equation, as opposed to a time varying Bellman
equation, thereby establishing global asymptotic stability. If
we fixed the time horizon, then we would be back to the
situation in MPC with the stabilizing ingredient of a terminal
cost/ set constraint, and could only conclude asymptotic
stability locally as in [21]. Physically, this makes sense since
the optimal transfer time from different points in the state
space will be different, and thus, the finite horizon in the
optimal control problem needs to be variable. The free final
time models precisely this aspect of the problem leading to
the GAS closed loop system. The free final time problem
can be solved efficiently by taking a “large enough” horizon
rather than sweeping through time. Due to the argument
above, “large enough” in our case is much smaller than
the “large enough” time required in the problem without a
terminal constraint.

Optimal control solution: Our approach requires the so-
lution of an optimal control problem, and in general, satis-
fying the Bellman equation requires that we find the global
minimum of the nonlinear optimal control problem. In our
recent work [29], we have shown that under the conditions
of affine in control dynamics, and quadratic in control cost
(which can be relaxed to a convex in control cost), satisfying
the minimum principle [30] is also sufficient to assure us of
a global minimum. Albeit the problem is nominally non-
convex, using the Method of Characteristics, we may show
that the trajectories satisfying the minimum principle are
guaranteed to be unique. Further, we have shown that the
iterated LQR (ILQR) algorithm can be guaranteed to satisfy
the minimum principle under relatively mild conditions,
thereby assuring us that we can find the global minimum
[20]. Hence, we use the ILQR approach to solve the optimal
control problem in our experiments in Section IV.

IV. EMPIRICAL RESULTS

The proposed theory is tested with simulations on two non-
linear systems: cart-pole and pendulum. Due to the paucity
of space, the pendulum experiment and some additional
simulations are shown in the extended version [28]. The
simulations were done on MATLAB, using ode45 to simulate
the nonlinear dynamics of the two systems. The list of
experiments performed is shown in Table I. The simulations
are designed to take the system upright from different initial
conditions and balance the pole at the top. The simulations
are run for a total of 150 time-steps with a time discretization
of 0.1s. We take the cost function to be quadratic: c(x, u) =
x′Qx+ u′Ru.

Our objective in these experiments is to show that the cost
in our formulation of the FH-OCP converges to the infinite

Exp.# System Initial state Terminal state
1. Cart-pole (x, θ, ẋ, θ̇) (0, 0, 0, 0) (0, π, 0, 0)

2. Cart-pole (x, θ, ẋ, θ̇) (0, 3π/4, 0, 0) (0, π, 0, 0)

TABLE I: Experiments performed
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(e) Terminal regulation cost (Exp.2)
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Fig. 2: Cart-pole swing-up. Note plots labeled (a) - (c) are Exp.1 and (d) - (f) are
Exp.2 in Table I. The results in plots (a) and (d) show that the finite horizon transfer
+ regulation costs converge to the infinite horizon cost after some time T∗ (marked
with a black vertical line). One can also note that the value of T∗ in plots (a) and (d)
are different since the system starts from different initial conditions.

horizon optimal cost: JT
∞(x) = minut

∑T−1
t=0 c(xt, ut) +

J̄∞(xT ), subject to the nonlinear dynamics, converges to the
the optimal cost J∗

∞(x) as T is increased, i.e. For T > T ∗,
|JT

∞(x)− J∗
∞| < ε. The experiments will also show that the

time T ∗ also depends on the initial condition of the system.
To find J̄∞(x), we linearize the system around the origin,

and since the cost is quadratic, we can calculate P∞ at the
origin using the stationary Riccati equation. Hence, J̄∞(x) =
x′P∞x. Using J̄∞(x) as the terminal cost for the FH-OCP,
we solve it for different values of T using the iterative Linear
Quadratic Regulator (iLQR) algorithm for optimization [31].
It has been shown that one can converge to the unique
global optimum for smooth nonlinear problems with control
affine dynamics and quadratic control cost by satisfying the
necessary conditions for optimal control [29], which iLQR
does. So, the problem of local optimum is avoided in our
experiments. After the finite horizon or ‘transfer time’ T ,
we switch the control to the LQR regulator designed at the
origin till t = 150. Since the true infinite horizon problem
cannot be solved, we solve the FH-OCP for T = 150 without
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any terminal cost, as a surrogate for the infinite horizon
cost which is labeled as “Infinite horizon” in the plots. We
note that solving for smaller horizons does not stabilize the
systems to the upright position.

In our plots, the cost mentioned as “Transfer + regulation”
is the total cost of the finite horizon controller and the
regulator. In all four experiments, we will observe that the
total cost converges after some time T = T ∗. It can also be
seen that the converged cost matches the infinite horizon cost.
The experiments also show that the value T ∗ is dependent on
the initial conditions chosen. The expected regulation cost is
calculated using x′

TP∞xT , where xT is the terminal state
of the FH-OCP. The actual regulation is calculated from
the trajectory of the terminal regulator. The mismatch in
expected and actual regulation cost implies that the linear
terminal regulator is not optimal for the state xT .

In practice, one would typically solve the infinite horizon
OCP by formulating it as a finite horizon OCP with a very
large T , which would be computationally very expensive.
In this case, it is T = 150. But by regularizing the finite
horizon OCP using the terminal cost J̄∞(·) as defined in
section III, one can solve it for a much smaller horizon T ∗.
Note that in our experiments, T ∗ < 15 << 150 = T for
both the cases considered, and we achieve near-optimality
as shown in our results. Solving for a smaller horizon is
computationally much cheaper, and also opens up avenues
where one has to replan frequently in a stochastic setting.
Moreover, since the cost-to-go from our formulation is a
control Lyapunov function, it guarantees global asymptotic
stability for the origin.

V. CONCLUSION

In this paper, we have developed a tractable approach
to the approximate solution of nonlinear infinite horizon
optimal control problems that is globally asymptotically
stabilizing and converges to the true optimal solution in the
limit of a vanishing terminal set. Empirical results show
that the practical convergence occurs in a very short time
compared to the effective horizon required for a solution of
the infinite horizon without the free final time and terminal
set regularization employed by the approach. Future work
will involve the incorporation of state and control constraints
and the testing of the approach on a suite of nonlinear
problems with varying degrees of complexity which will
require a data-based generalization leveraging our prior work
[20]. We shall also consider the extension of the approach
to the problem of optimal nonlinear output feedback control
along with a suitable data-based generalization.
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