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Abstract— In stochastic and dynamic environments, the abil-
ity to infer an accurate model of the underlying dynamical
system is crucial for ensuring objectives such as responsiveness,
performance, or reliability. We present a novel approach to
update predictive models of discrete-time, stochastic, dynamical
systems in an online fashion. Our approach is based in
physics-informed conditional distribution embeddings, a non-
parametric machine learning technique that approximates an
integral operator to assess the most likely distribution. We
propose an efficient numerical method to update the predictive
model as new data is gathered, employing low-rank updates.
We validate our approach on examples of varying complexity,
including an F-16 ground collision avoidance scenario.

I. INTRODUCTION

For autonomous systems to operate in complex, dynamic,
real-world environments, it is important for them to be
responsive to events and effects that can alter the underlying
dynamics and stochasticity. External disturbances (i.e., wind
gusts), system failures (i.e., faulty sensors, engine failure,
or other malfunctioning elements), and other adverse events
(misclassification in perception or control, unexpected human
input or interaction) can all impact the accuracy of a priori
dynamical system models. Mathematical models can capture
a great deal of autonomous system behaviors, but may
be suspect in environments with significant disturbances.
Physics-informed learning approaches, in which data-driven
methods augment mathematical models, can provide respon-
sivity to changes in the dynamics or the environment, without
ignoring the important knowledge gained from mathematical
models. However, most of these approaches presume data
gathered a priori, and are not responsive to the needs of near
run-time implementation.

Online dynamical learning frameworks seek to address
this problem through a variety of approaches. The Koopman
operator uses a recursive variant of the canonical dynamic
mode decomposition [1, 2], and has shown promise in online
system identification and control of dynamical systems [3, 4].
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Online Gaussian Process (GP) methods have been explored
for their adaptive capabilities in dynamic environments,
including UAV systems and robotic applications [5]–[8]. We
choose to utilize kernel distribution embeddings for their
ability to efficiently incorporate online updates, lack of as-
sumptions on the underlying distribution, and nonparametric
flexibility.

In this paper, we propose a method for near run-time up-
dates to physics-informed kernel embeddings. Kernel embed-
dings of distributions are a class of nonparametric machine
learning techniques that allow the reprsentation of integral
operators and computation of expectations as inner products
in a high-dimensional space of functions known as a repro-
ducing kernel Hilbert space (RKHS). Originally presented
in [9, 10], kernel embeddings have been shown to be useful
for solving approximate reformulations of stochastic opti-
mal control problems, including dynamic programming and
chance-constrained control [11]–[13]. These techniques have
also been applied to Markov models [14]–[16], state filtering
and estimation [10, 17], and policy synthesis [11, 12, 18].

Our main contribution is a method that enables online
updates to data-driven predictive models via kernel embed-
dings of distributions through low-rank updates to the kernel
embedding. Using kernel distribution embeddings to learn
the stochastic kernel that describes the system dynamics
and uncertainty, we develop an efficient update method for
the kernel embedding by exploiting the structure of the
empirical kernel embedding estimate that can be computed
as low rank matrix updates. We presume a moving window
of observations, and seek efficient computational methods
to update the embedding that exploits the similarity of the
data at each time step. Our approach involves use of rank-
one updates to account for adding the most recent sample,
and removing the oldest sample. Our approach functions
similarly to those based in Cholesky decomposition and QR
decomposition, broadening the suite of numerical methods
that could be employed for run-time updates for kernel
embeddings.

The rest of the paper is organized as follows: In section
II we present the mathematical preliminaries on our system
model and physics informed kernel embeddings, followed
by our problem formulation. In section III we provide our
proposed approach and algorithms for the addition and
removal of data of the kernel based predictive model. In
Section IV we provide a comprehensive analysis of accuracy,
scalability, and computational efficiency, followed by a prac-
tical application of our method on an F-16 aircraft model. We

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7548



provide some concluding remarks and future work directions
in Section V.

II. PRELIMINARIES & PROBLEM FORMULATION

Notation: We denote the sets of real numbers as R, and
natural numbers as N. Given a space E and N ∈ N we
denote the Cartesian product EN ∆

= E × · · · ×E (N times).
We denote the Borel σ-algebra on a topological space X by
BX , and the expectation operator with respect to Q as EQ.

A. System Model

Let X ⊆ Rn be the state space of the system

xt+1 = f(xt, wt), (1)

where xt ∈ X is the state at time t, and ω = (ωt)t∈N is a
stochastic process characterizing a disturbance on the system.
The system (1) evolves from an initial condition x0 ∈ X ,
which may be drawn from an initial distribution P0 over a
finite time horizon t = 0, 1, . . . , N for N ∈ N. As shown
in [19], the system dynamics in (1) can equivalently be
represented using a stochastic kernel Q : BX ×X → [0, 1],
which is a Borel-measurable function that maps a probability
measure Q(· | x) to every x ∈ X on the measurable space
(X ,BX ).

We presume that the system dynamics (1) are unknown,
meaning that we do not have direct knowledge of the
dynamics themselves nor their uncertainty. Consequently,
the stochastic kernel Q is likewise unknown. However, we
assume that we do have knowledge of an approximation of
the dynamics,

x̄t+1 = f̃(x̄t). (2)

and knowledge of the last M observations of (1), in which
an observation consists of pairs that describe the state at a
given time, and the observed state at the next time step. That
is, we define the sample set St = {(xi, yi)}t−1

i=t−M−1, with
yi ∼ Q(·|xi−1) as the set consisting of M observations.
We distinguish these M samples over this time horizon with
the sample gathered at the (t+ 1)th time step, that is, st =
(xt, yt) for yt ∼ Q(· | xt). For ease of notation, we define the
set with previous and current observations (i.e., with M + 1
observations in total), as

S+
t = {(xt−M−1, yt−M−1), . . . , (xt−1, yt−1), (xt, yt)}.

(3)
These sets are depicted for clarity in Fig. 1.

B. Physics-Informed Kernel Embeddings for State Prediction

Let k : X × X → R be a symmetric, positive definite
kernel function on X . According to the Moore-Aronszajn
theorem, there exists a corresponding reproducing kernel
Hilbert space H consisting of functions from X to R that
has the following properties:

1) for every x ∈ X , k(x, ·) ∈H , and
2) for every x ∈ X and g ∈ H , g(x) = 〈g, k(x, ·)〉H ,

which is known as the reproducing property.
The reproducing property is key to our approach, since

it allows us to evaluate any function in the RKHS as an

St st

S+
t St+1

time

. . . . . .

Fig. 1: The data St contains M samples, gathered from time
t−M − 1 to time t− 1. Upon observation of the sample st
at time step t, we construct S+

t = St∪ st, then we construct
St+1 = S+

t \st−M−1 as the M samples associated with time
step t+ 1.

inner product. As shown in [10], given a probability measure
Q(· | x), we can represent the expectation operator with
respect to Q(· | x) as an element µ : X →H in an RKHS,
known as the kernel distribution embedding, such that for
any function g ∈ H , the expectation of g with respect to
Q(· | x) can be computed via the reproducing property,

EQ(·|x)[g(x′)] = 〈g, µ(x)〉H . (4)

However, in practice since the stochatic kernel Q is un-
known, we do not have access to the kernel mean embedding
µ directly. Instead, we can compute an empirical estimate µ̂
of µ using the collected data sample St. As in shown [20],
the empirical estimate µ̂ can be computed as the solution to a
regularized least-squares problem that includes an additional
bias term in order to account for the approximate knowledge
of the system dynamics in (2). Given a sample S and an
estimate f̃ as in (2), the biased regularized least-squares
problem is given by

min
g∈V

1

2λ

M∑
i=1

‖k(yi, ·)− g(xi)‖2H +
1

2
‖g‖2V − 〈g, g0〉H , (5)

where xi denotes the ith state of the system and yi ∼
Q(·|xi−1), λ > 0 is a regularization parameter that is
strictly positive to ensure the problem is well-posed, V is
a vector-valued RKHS consisting of functions from X to
H , and g0(x) = k(f̃(x), ·) is a bias term that encodes prior
knowledge of the dynamics such that for any g ∈H ,

〈g, g0(x)〉H = 〈g, k(f̃(x), ·)〉H = g(f̃(x)). (6)

As shown in [20], the problem in (5) admits a closed-form
solution, given by

µ̂(x) = (Φ> − Φ̃>)WK(x) + k(f̃(x), ·), (7)

where Φ and Φ̃ are feature vectors, with elements Φi =
k(yi, ·) and Φ̃i = k(f̃(xi), ·), W = (G + λI)−1, where
G ∈ RM×M is a matrix with elements Gij = k(xi, xj),
and K(x) ∈ RM is a vector that depends on x with
elements Ki(x) = k(xi, x). As discussed in [20], the
empirical estimate µ̂ in (7) has a simple intuitive explanation.
The estimate µ̂ consists of two terms: a data-driven part
(Φ> − Φ̃>)WK(x) that captures the difference between
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the approximate dynamics and the data, and a correction
term k(f̃(x), ·) that shifts the learned function such that it is
centered around the bias.

The solution to (7) scales with dimension O(n3) which is
excessive for near run-time implementations.

C. Problem Formulation

We seek a computationally efficient approach to solving
(7), that exploits the fact that with a moving horizon of
samples, many of the encoded data points already exist in
the Hilbert space.

Specifically we seek to solve the following:

Problem 1. Given an embedding µ̂t, which is an evaluation
of (7) based on a set of M prior samples St and on the
approximate dynamics (2), as well as the latest observation
st, we seek to compute

EQ(·|xt)[xt+1], (8)

in a computationally efficient manner that exploits the inter-
section between samples St and St+1, i.e., the overlap due
to the moving horizon.

We seek to avoid the direct computation of a matrix
inversion at each time step. There are a variety of solutions
to Problem 1 that employ methods in linear solvers, such
as Cholesky decomposition [21] or QR methods [22, 23].
We propose here an alternative to these approaches, based in
block matrix partitions, because it exploits known structure.
Numerical solvers may be tailored to particular scenarios,
and so the approach we provide is complementary to those
based in Cholesky decomposition or QR approaches. We
propose a method that efficiently computes the inverse in (7)
for the embedding at time t + 1 by exploiting its structural
similarity to the embedding at time t.

Our method efficiently updates the kernel embedding (7)
by incorporating new data points and removing the oldest
ones, utilizing linear algebra techniques such as the Wood-
bury matrix identity and block partitioned matrix inversion
lemmas, providing the same computational efficiency as a
Cholesky decomposition based approach.

III. METHODS

Our approach is to sequentially update the embedding by
first accounting for the new sample, that is, by calculating
the embedding based on sample set S+

t , then by accounting
for removing the oldest sample, which results in calculating
the embedding based on sample set St+1.

A. Adding an Observation

We presume that we have previously computed the em-
bedding (7) using the sample set St. In this subsection, we
seek to update the embedding (7) with the sample set S+

t ,
by exploiting what we already have done to compute St.

We define the embedding associated with set S+
t as

µ̂+(x) = (Φ>+ − Φ̃>+)W+K+(x) + k(f̃(x), ·). (9)

We seek to compute (9) efficiently, by exploiting the solution
to (7).

We note that we can use matrix decomposition to rewrite
the elements of (9) in terms of the elements of (7), that is,
of the embedding associated with the set St. Specifically, the
feature vectors Φ+ and Φ̃+ can be written as

Φ+ =

[
Φ

k(yM+1, ·)

]
, Φ̃+ =

[
Φ̃

k(f̃(xM+1), ·)

]
. (10)

We also note the vector K+(x) ∈ RM+1 and the matrix
W+ ∈ R(M+1)×(M+1) can also be decomposed, as

K+(x) =

[
K(x)

k(xM+1, x)

]
(11)

W+ =

([
G K(xM+1)

K(xM+1)> k(xM+1, xM+1)

]
+ λI

)−1

.

(12)

The matrix W+ is symmetric and positive semi-definite (as
is W ). However, computing the inverse in (12) is the main
difficulty to real-time computation. We seek an alternative to
compute (12), that takes advantage of our knowledge of W ,
K(x), and Φ, and employs only matrix multiplication and
addition.

Proposition 1 (Matrix inversion lemma, [24], Prop. 2.8.7).
Consider a partitioned matrix A = [ A12 A12

A21 A22
] ∈ Rn×n, with

block diagonal elements A11 ∈ Rn1×n1 and A22 ∈ Rn2×n2

of dimensions n1 + n2 = n, that are invertible, then the
partition block matrix inversion of A can be written as:[

A11 A12

A21 A22

]−1

=

[
F 0
0 H

] [
I −A12A

−1
22

−A21A
−1
11 I

]
(13)

where F = (A11 − A12A
−1
22 A21)−1 and H = (A22 −

A21A
−1
11 A12)−1.

The factored form in (13) requires inversion of A11 and
A22, the expression in H , and the expression in F .

Lemma 1 (Woodbury matrix identity [25]). Let B be an
invertible matrix, and let U , C, and V be conformable ma-
trices, meaning the dimensions are suitable for the operation
given. Then,

(B1 +UB2V )−1 = B−1
1 −B

−1
1 U(B−1

2 +V B−1
1 U)−1V B−1

1

(14)

By partitioning W+ with A11 = G+λI , A12 = K(xM+1),
A21 = K(xM+1)T , and A22 = k(xM+1, xM+1)+λ, we see
that A22 and H are scalar, i.e., n1 = M,n2 = 1 for n =
M + 1. Further, using these substitutions along with Lemma
1 with B1 = W−1, U = −K(xM+1), B2 = (k + λI)−1,
V = K(xM+1)T , we can simplify F as

F =
(
W−1 −K(k + λ)−1KT

)−1

= W +WK(k + λ−KTWK)−1KTW

= W +WKHKTW

(15)

where, with a slight abuse of notation, we use K to
indicate K(xM+1). Hence by using 15, the solution to µ̂+ in
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(9) is found by computing W+ using W , without explicitly
computing the matrix inverse. We present the algorithm for
computing W+ from W in Algorithm 1.

Algorithm 1 Computing W+ from W

Input: W , K(x), st
Output: updated matrix W+

1: A22 ← k(xM+1, xM+1) + λ
2: T ← K>WK
3: H ← (A22 − T )−1

4: F ←W +WKHK>W

5: W+ ←
[
F 0
0 H

] [
I −KA−1

22

−K>W I

]
6: Return W+

B. Removing an Observation

In this section we consider a similar problem, that is, we
seek to compute an update to the embedding (7) after remov-
ing the oldest observation, without explicitly recomputing the
matrix inverse term in (7). We remove the oldest measure-
ment from S+

t , and compute the embedding associated with
St+1,

µ̂−(x) = (Φ>− − Φ̃>−)W−K−(x) + k(f̃(x), ·). (16)

We assume we have access to (9) and its components,
Φ+,K+, and W+, and seek to compute W−. We rewrite
the feature vectors Φ+, vector K+(x) ∈ RM and the matrix
W+ ∈ RM×M as:

Φ+ =

[
Φ−

k(y1, ·)

]
(17)

K+(x) =

[
K−(x)
k(x1, x)

]
(18)

W+ =

([
G− K(x1)

K(x1)> k(x1, x1)

]
+ λI

)−1

. (19)

We rewrite W+ as (G+ + λI)−1 to make explicit the
structure within the matrix.

Lemma 2 (Inverse of partitioned matrix, [26]). Given a
partitioned matrix A = [ A12 A12

A21 A22
] ∈ Rn×n, with block

diagonal elements A11 ∈ Rn1×n1 and A22 ∈ Rn2×n2 of
dimensions n1 + n2 = n, that are invertible, the inverse of
A can be written as[
A11 A12

A21 A22

]−1

=

[
F −FA12A

−1
22

−A−1
22 A21F A−1

22 +A−1
22 A21FA12A

−1
22

]
(20)

with F = (A11 −A12A
−1
22 A21)−1 ∈ Rn1×n1 .

We partition (19) to employ Lemma 2 with W+ =
[ A11 A12

A21 A22
]. We can then solve for W− directly.

W− = F−1 (21)

= A11 −A12A
−1
22 A21 (22)

With (22), the solution to µ̂− in (16) is readily com-
putable without an inverse. We summarize this process in

Algorithm 2.

Algorithm 2 Removing an Observation
Input: matrix W+

Output: updated matrix W−
1: Partition W+ ∈ RM+1×M+1 as: W+ ← [ a b

c d ] , such
that a ∈ RM×M , b = c> ∈ RM , and d ∈ R.

2: W− ← a− bd−1c
3: Return W−

C. Updating the embedding

We combine the steps in Sec. III-A and Sec. III-B at every
time step, as described in Algorithm 3. This algorithm has a
computational complexity of O(n2), whereas calculating (7)
directly via inversion incurs a computational complexity of
O(n3).

Algorithm 3 Updating the kernel embedding with a moving
horizon sample set
Input: St, st, W , K(x), µt

Output: µ̂t+1

1: S+
t ← St ∪ st

2: Rewrite K+(x) with observation st via (11)
3: Compute W+ using Algorithm 1 with W , K+(x), st
4: St+1 ← S+

t \st−M−1

5: Compute W− using Algorithm 2 with W+

6: µ̂t+1 ← µ̂− via (16)
7: Return µ̂t+1

The output of Algorithm 3 provides a computationally
efficient solution to update the empirical embedding µ̂t+1,
addressing Problem 1 by utilizing low-rank updates to incor-
porate new data while minimizing computational complexity.
Unlike [20], which focuses on incorporating prior system
knowledge into kernel embeddings, our approach enables
real-time updates, making it well-suited for dynamic envi-
ronments.

D. Stability & Convergence

We wish to characterize the stability of the algorithm and
the conditions for its convergence. We rely on the theory
of algorithmic stability, which seeks to derive generalization
error bounds for learning algorithms, and provides a means
to estimate the risk, or generalization error, using a type of
sensitivity analysis. Unlike other approaches, such as [27],
which seek to determine uniform convergence to the mean,
sensitivity analysis seeks to determine how much a variation
in the training data can influence the estimate provided by
a learning algorithm. In our case, this is particularly useful
since the bounds describe the stability of (5) in response to
changes in the sample set (such as data being removed or
altered).

The risk, denoted by R(µ̂), measures the expected loss
(error) of the solution µ̂ to the regularized least-squares
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problem in (5), and is defined as

R(µ̂) =

∫
X
‖k(x′, ·)− µ̂(x)‖2H Q(dx′ | x). (23)

However, we cannot compute the risk directly since Q is
unknown. Thus, we seek to bound the risk by its empirical
counterpart. Given a sample S, the empirical risk, denoted
by RS(µ̂), also known as the empirical error, measures the
actual loss of the learning problem, and is defined as

RS(µ̂) =
1

2λ

M∑
i=1

‖k(x′i, ·)− µ̂(xi)‖2H +
1

2
‖µ̂‖2V − 〈µ̂, f0〉V .

(24)

As shown in [28], the (unbiased) regularized least-squares
problem (5) is algorithmically stable and admits finite sample
bounds. An extension of this to the biased case is trivial and
directly follows [28] Theorem 1. We present these bounds
in Theorem 3 for this extension.

Theorem 3. Let k be bounded by ρ < ∞. For any M ≥ 1
and any δ ∈ (0, 1), with probability 1− δ, the risk R of the
regularized least-squares problem in (5) is bounded by

R(µ̂) ≤ RS(µ̂) +
σ2ρ2

λM
+

(
2σ2ρ2

λ
+ ρ

)√
log(1/δ)

2M
, (25)

where σ > 0 is a coefficient that depends on the choice of
the kernel function k and bounds the algorithm loss function,

|‖k(x1, ·)− k(x′, ·)‖2 − ‖k(x2, ·)− k(x′, ·)‖2|
≤ σ‖k(x1, ·)− k(x2, ·)‖2. (26)

Theorem 3 shows that the empirical estimate µ̂ converges
in probability to the true embedding µ as the size of the set of
samples increases, and also provides finite sample bound [29]
on the empirical estimate. We can ensure boundness of the
kernel k on ρ, with proof directly following [30, Theorem 2].

IV. NUMERICAL RESULTS

All experiments were performed in Python 3.8.12 on
a 11th Gen Intel i7 processor with 16Gb of RAM. We
utilize the stochastic optimal control using kernel methods
(SOCKS) toolbox [28] to perform the analysis. The code
for this paper is available at https://github.com/
unm-hscl/ortiz-ajthor-dipirro-CDC24.

A. Double integrator system
In this section, we discuss the accuracy and scalability

of the proposed method using an N-dimensional stochastic
chain of integrators in a regulation problem using a linear
feedback controller.

The dynamics are described by

xt+1 =


1 Ns

1
2N

2
s . . . 1

(n−1)!N
n−1
s

0 1 Ns

...
. . .

...
0 0 0 . . . Ns

0 0 0 . . . 1

xt
+
[

1
n!N

n
s . . . 1

2Ns Ns

]T
ut + αωt

(27)

Fig. 2: The proposed method can accurately solve (8) for
2-D integrator dynamics despite a noise scaling factor larger
than the step changes in the dynamics.

where xt ∈ Rn is the state, ut ∈ R is the control input, and
ωt is a random variable with distribution N (0, 1) scaled by
α ∈ [0.01, 1]. We define a linear state feedback controller
u = −Kx with gain matrix K chosen via pole placement to
ensure stability. The sampling time is Ns = 0.1 seconds.
We solve the single step prediction (8) for (27) using a
Guassian kernel function k(x, x′) = exp(−||x − x′||2/2σ2)
with hyperparameters σ = 0.5 and λ = 1e− 3.

1) Accuracy: We explore the accuracy of our method us-
ing the average mean squared error (AMSE) over ten trials as
a function of time, window size γ, and scaled additive noise
α. Figure 2 shows the solution to (8) for n = 2, over a time
horizon of N = 150 time steps, with α = 0.1. The prediction
inaccuracies primarily stem from the large impact of the
noise on the dynamics. The solution is numerically identical
to the prediction method that uses Cholesky factorization
to update W when both approaches are numerically stable.
Both the proposed method and the Cholesky decomposition
method can suffer from numerical instabilities when the
Gram matrix is ill-conditioned [23, §5.3.8]. The Cholesky
decomposition can also become numerically unstable when
the matrix W−1 is near rank deficient [23, §5.3.4].

Figures 3 and 4 depict the average mean square error for
the proposed approach as window size and noise scaling vary,
respectively. We found empirically that for window sizes
less than 10% of the M samples in the moving window,
the proposed method suffers from numerical instability, as
shown in 3. However, when γ > 0.1M , we see an increased
accuracy of prediction. Figure 4 shows the average 10 trial
AMSE of the proposed approach as we scale the noise on the
range [0.01, 1]. As expected, an increased error is observed
as a function of the scaling factor. When sufficient data is
collected to characterize the system and the Gram matrix is
well-conditioned, there is an increase in the prediction error.

2) Scalability: We evaluate the scalability of the proposed
method on (27) for n ∈ [2, 50, 100, . . . , 1000]. As expected,
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Fig. 3: Average mean square error over 10 trials in the
prediction of the states for a 2-D integrator via Algorithm
3, with noise scale α = 0.1. Small window sizes lead to
poor characterization of the system and can lead to numerical
instability with the proposed method. Larger window sizes
improve the accuracy of the prediction.

Fig. 4: Average mean square error over 10 trials in the
prediction of the states for a 2-D integrator using Algorithm
3 with window size γ = 50. While the prediction error
increases with larger noise scaling, it still remains robust
to noise, with magnitude < 0.01.

Figure 5 shows a linear increase in the computation time
with dimensionality, associated with the computation time
for the state variable predictions.

We also consider computational time as a function of
window size. Figure (6) shows the average computation time
increases over a window size range γ ∈ [5, 50], up to a
window size of approximately 33% of the total data.

B. F-16 Aircraft

In this section we demonstrate our proposed method in a
more realistic and complex scenario. We consider a ground
collision avoidance scenario for an F-16 aircraft with low
altitude and a negative pitch angle [20, 31, 32] , in which
the aircraft sequences through multiple controllers to first
right the aircraft and then initiate a climb.

We presume that the approximate dynamics (2) are in-
accurate, with gravity parameter that is g = 4.8 m/s2. We
chose this value to intentionally be a different value than is

Fig. 5: Computation time for online updates in Algorithm 3
for the n-D integrator with window size γ = 50 and noise
scale α = 0.1. The computation time increases linearly due
to the additional state elements to be predicted.

Fig. 6: Average computation time for 10 trials to compute
online updates (algorithm 3) over increasing window size γ,
with noise scale α = 0.1. The computation time increases
with increasing window size due to the increased complexity
of the matrix computations.

reflected in simulated data, which reflects the true value of
g = 9.8 m/s2.

The F-16 dynamics are nonlinear, with 13 states and 4
control inputs. The dynamics capture the 6-DOF motion with
a state that consists of velocity vt, angle of attack α, sideslip
β, altitude h, attitude angles roll φ, pitch θ, yaw ψ, and their
respective rates p, q, r, engine power, and two states, pn and
pe, which capture translation along north and east, as in [33].
The plant is built on linearly interpolated lookup tables that
incorporate wind tunnel data describing the engine model,
and other dynamic coefficients. The system is controlled by
three independent LQR controllers that switch at unknown
times during the ground collision avoidance scenario, pos-
ing notable alternations to the closed-loop dynamics during
flight.

As was done in [20], we collect an initial data set with
100 samples. We consider a window size of γ = 300, chosen
to be both large enough to sufficiently capture the system
dynamics, but also small enough to be responsive to the
switch in the dynamics. We use a Gaussian kernel with
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Fig. 7: Upper: Using low-rank updates to physics informed kernel embeddings, we can accurately predict [orange] the true
state [blue] of an F-16 performing a ground collision avoidance maneuver, as shown for velocity, pitch, roll, and altitude.
Lower: The error between the predicted and true state is low as compared to the overall magnitude of the state.

σ = 0.5 and a regularization parameter of λ = 1e− 5.
Figure 7 shows the solution to (8) for state prediction. We

can see that the proposed approach can effectively predict
the states of the system online. As shown in Figure 7, when
the controller switches (shown by the vertical red lines),
the state prediction accuracy decreases, because the data
no longer characterizes the system behavior due to changes
in the underlying controller. However, as time progresses,
and the data replaced with samples corresponding to the
new dynamics, the prediction rapidly returns to be close to
the true dynamics. This importance of this result is that it
demonstrates that the proposed approach can accommodate
significant changes in the dynamics in near run-time.

V. CONCLUSION & FUTURE WORK

In this paper, we presented a novel technique for incor-
porating online updates to kernel embeddings for online
system identification and prediction. We presented algo-
rithms that enable the addition and removal of data to
maintain relevance over time through rank-one updates to the
empirical estimate of the embedding. Our approach avoids
computationally expensive matrix inversions. We analyzed
the accuracy, scalability, and numerical efficiency of our
approach on a chain of integrators, and demonstrated its
efficacy on a ground collision avoidance scenario for an F-16
aircraft. Our approach is computationally efficient for near
run-time applications, and robust to numerical instabilities
in the examples considered. Future directions for research
includes the development of methods to strategically choose
samples online to remove not only the oldest data, but rather
obsolete data.
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