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Abstract— This paper presents a resilient distributed algo-
rithm for solving a system of linear algebraic equations over
a multi-agent network in the presence of Byzantine agents
capable of arbitrarily introducing untrustworthy information
in communication. It is shown that the algorithm causes all
non-Byzantine agents’ states to converge to the same least
squares solution exponentially fast, provided appropriate levels
of graph redundancy and objective redundancy are established.
An explicit convergence rate is also provided.

I. PROBLEM

There has been considerable interest in designing dis-
tributed algorithms for solving a possibly large system of
linear algebraic equations over a multi-agent network, stem-
ming from the work of [1]. A review of this topic can be
found in [2]. While various problem formulations have been
proposed and studied, following [1] we focus on the follow-
ing basic and important information distribution setting.

Consider a multi-agent network consisting of n agents
labeled 1 through n for the purpose of presentation. Each
agent is not aware of such a global identification number,
but is capable of distinguishing between its neighbors. The
neighbor relations among the n agents are characterized by
a directed graph G = (V, E) whose vertices correspond to
agents and whose directed edges (or arcs) depict neighbor
relations, where V = {1, . . . , n} is the vertex set and
E ⊂ V × V is the directed edge set.1 We say that agent i
is a neighbor of agent j if (i, j) ∈ E . The directions of
arcs represent the directions of information flow in that each
agent can receive information only from its neighbors.

Each agent i ∈ V knows a pair of “private” real-valued
matrices (Ari×d

i , bri×1
i ) which are only known to agent i.

The problem of interest is to devise local algorithms, one for
each agent, which will enable all n agents to simultaneously
and iteratively compute the same least squares solution to

*Proofs of some assertions in this paper are omitted due to space
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1We use A ⊂ B to denote that A is a subset of B.

the linear algebraic equation Ax = b where

A =


A1

A2

...
An


r×d

and b =


b1
b2
...
bn


r×1

with r =
∑n

i=1 ri. Such a distributed least squares problem
has been studied in the literature, e.g., [1], [3]–[5]. Let

X ∗ ∆
= argmin

x
∥Ax− b∥22 = argmin

x

n∑
i=1

∥Aix− bi∥22

be the set of all least squares solutions, where ∥ · ∥2 denotes
the 2-norm. It is easy to see from the above equality that the
distributed least squares problem can be reformulated as a
distributed convex optimization problem and thus is solvable
via a vast number of existing distributed optimization algo-
rithms [6], [7]. It is well known that X ∗ = {x : A′Ax =
A′b} and is always nonempty. We will use this fact of least
squares solutions without special mention in the sequel.

In this paper we consider a more challenging variant of
the distributed least squares problem in the presence of
Byzantine agents capable of transmitting arbitrary values to
other agents and transferring conflicting values to different
agents at any time. We use F to denote the set of Byzantine
agents and H to denote the set of normal (non-Byzantine)
agents. Which agents are Byzantine is unknown to normal
agents. It is assumed that the network may have at most
β Byzantine agents. The goal of the normal agents is to
cooperatively reach a consensus at the same least squares
solution to Ax = b.

From the preceding discussion, the resilient distributed
least squares problem just described can also be treated as a
resilient distributed convex optimization problem. It turns out
that very few papers accurately solve this resilient problem
with theoretical guarantees.

The resilient distributed optimization algorithm in [8] is
expected to be applicable to the problem under consideration
with some modification. The algorithm in [8] is based on
the subgradient method (for convex but not necessarily dif-
ferentiable objective functions) and a nonempty X ∗ interior
assumption (cf. Assumption 1 in [8]), and thus specialization
of that algorithm to the problem of interest here needs a
more careful treatment. Moreover, the algorithm in [8] makes
use of time-varying diminishing stepsizes and thus cannot
converge exponentially fast. It is worth mentioning that the
state-of-the-art least squares and distributed least squares
algorithms achieve (at least) exponential convergence. It will
be clear shortly that the problem under consideration is
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closely related to a resilient version of so-called constrained
consensus problem [9]. In general a discrete-time constrained
consensus cannot be reached exponentially fast unless a
certain constrained set regularity condition is satisfied and
exploited in analysis [10]. We will further comment on this
point in the next section.

This paper proposes a resilient distributed least squares
algorithm with guaranteed exponentially fast convergence.
The algorithm follows two quantifiable redundancy notions
in [8],2 namely objective redundancy and graph redundancy,
with the former being tailored for distributed linear equa-
tions. An explicit rate of convergence is derived, reflecting
the effects of quantified levels of both graph redundancy and
objective redundancy.

II. REDUNDANCY

It is easy to see that a multi-agent system without an attack
detection/correction capability is unable to solve the resilient
distributed least squares problem unless certain redundancy
is established. We begin with the objective redundancy.

Definition 1: An n-agent network is called k-redundant,
k ∈ {0, 1, . . . , n − 1}, if for any subsets S1,S2 ⊂ V with
|S1| = |S2| = n− k, there holds3

argmin
x

∑
i∈S1

∥Aix− bi∥22 = argmin
x

∑
i∈S2

∥Aix− bi∥22.

Note that for any nonempty agent subset U ⊂ V ,
argminx

∑
i∈U ∥Aix− bi∥22 is the least squares solution to

the linear equation AUx = bU where

AU =


Aπ(1)

Aπ(2)

...
Aπ(|U|)

 , b =


bπ(1)
bπ(1)

...
bπ(|U|)

 ,

and π : U → U is any permutation map. Thus,

argmin
x

∑
i∈U

∥Aix− bi∥22 = {x : A′
UAUx = A′

UbU}.

The above objective redundancy is a well-defined quantifi-
able notion because of the following properties.

Lemma 1: If an n-agent network is k-redundant, then for
any subsets S,L ⊂ V with |S| = n− k and |L| ≥ n− k,

argmin
x

∑
i∈S

∥Aix− bi∥22 = argmin
x

∑
i∈L

∥Aix− bi∥22.

The lemma is essentially a special case of Lemma 1 in
[8] and immediately implies the following results.

Corollary 1: If an n-agent network is k-redundant, then
for any subset S ⊂ V with |S| ≥ n− k, there holds

argmin
x

∑
i∈S

∥Aix− bi∥22 = X ∗.

2The two notions were prompted by preexisting ones, e.g., [11] and [12];
see detailed discussion in [8, Sections 1 and 2.1].

3We use |S| to denote the cardinality of a set S.

Corollary 2: If an n-agent network is (k + 1)-redundant
with k ≥ 0, then it is k-redundant.

More can be said.

Proposition 1: If an n-agent network is k-redundant with
k ≥ 1, then X ∗ =

⋂n
i=1{x : A′

iAix = A′
ibi}.

Proof of Proposition 1: Note that A′A =
∑n

i=1 A
′
iAi

and A′b =
∑n

i=1 A
′
ibi. Then, X ∗ = {x :

∑n
i=1 A

′
iAix =∑n

i=1 A
′
ibi}, which implies that X ∗ ⊃

⋂n
i=1{x : A′

iAix =
A′

ibi}. To prove the lemma, it suffices to prove X ∗ ⊂⋂n
i=1{x : A′

iAix = A′
ibi}, or equivalently, X ∗ ⊂ {x :

A′
iAix = A′

ibi} for all i ∈ V . To this end, pick any j ∈ V
and x∗ ∈ X ∗. From Corollary 1 with k ≥ 1,

x∗ ∈ argmin
x

∑
i∈V\{j}

∥Aix− bi∥22,

which implies that
∑

i∈V\{j} A
′
iAix

∗ =
∑

i∈V\{j} A
′
ibi.

The difference between this equality and
∑n

i=1 A
′
iAix

∗ =∑n
i=1 A

′
ibi yields A′

jAjx
∗ = A′

jbj .

Proposition 1 implies that with objective redundancy all
agents share at least one common least squares solution
and thus the resilient distributed least squares problem boils
down to a resilient distributed linear equation problem. The
algorithm to be presented exploits this important fact.

Proposition 1 also maps the resilient problem under study
to a resilient constrained consensus problem. Resilient con-
strained consensus has been partially solved in [13] only
for complete graphs and studied in [14] with an incomplete
proof. It is worth emphasizing that discrete-time constrained
consensus, first proposed in [9], in general does not en-
joy exponentially fast convergence (see [9, Proposition 2],
[10, Theorem 6], and [15, Theorem 1]), let alone a re-
silient variant. An exponentially fast constrained consensus
can be achieved when all agents’ local constrained sets
meet a so-called set regularity condition, subsuming linear
(in)equalities as a special case, but its analysis requires a
more careful treatment even for a non-Byzantine multi-agent
network [10, Section V.C].

We will specialize a constrained consensus approach,
combining a multi-dimensional resilient consensus idea in
[8], to the resilient problem of interest here and appeal to
a distributed linear equation analysis tool developed in [1],
[16]. This combination yields a fully resilient distributed
least squares algorithm with any arbitrary initialization and
an exponential convergence guarantee. Although exponential
convergence is an intuitive result at the first glance, its
establishment is not trivial. This is because major existing
analyses for non-Byzantine distributed linear equations and
constrained consensus processes over time-varying graphs
are based on jointly strongly connected graphs [1] or jointly
strongly connected components with the same vertex subset4

[15], [17], whereas the analysis for the resilient algorithm

4A lifting approach is typically used to analyze these discrete-time dis-
tributed algorithms with bounded delays in which a nominal time-dependent
expanded graph replaces the underlying neighbor graph. Jointly strongly
connected neighbor graphs are jointly strongly connected components of
the nominal expanded graph which thus share the same vertex subset.
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here will cope with time-varying rooted graphs whose roots
(maximal strongly connected components) may arbitrarily
change over time (cf. Lemma 3). The definitions of rooted
and strongly connected graphs are given as follows.

Let us call a vertex i in a directed graph G a root of G if
for each other vertex j of G, there is a directed path from
i to j. In other words, i is a root of G if it is the root of a
directed spanning tree of G. We say that G is rooted at i if
i is in fact a root. It is not hard to see that a rooted graph G
has a unique maximal strongly connected component whose
vertices are all roots of G. A directed graph G is called
strongly connected if there is a directed path from every
vertex to every other vertex. Thus, every vertex in a strongly
connected graph is a root. Any strongly connected graph
must be rooted, but not vice versa.

We will also need a graph redundancy notion from [8].

Definition 2: An (r, s)-reduced graph of a directed graph
G with n vertices, with r, s ≥ 0 and r + s ≤ n − 1, is
a subgraph of G obtained by first picking any vertex subset
S ⊂ V with |S| = n−r and then removing from each vertex
of the subgraph induced by S, GS , arbitrary s incoming
edges in GS . A directed graph G is called (r, s)-resilient if
all its (r, s)-reduced graphs are rooted.

It is easy to see that if a directed graph is (r1, s1)-resilient,
then for any nonnegative r2 ≤ r1 and s2 ≤ s1, the graph is
also (r2, s2)-resilient. More can be said. If a directed graph
is (r, s)-resilient, each of its vertices has at least (r+ s+1)
neighbors [8, Lemma 2].

Equipping a multi-agent network with certain levels of
both objective and graph redundancy, allows us to present
the following feasible resilient algorithm.

III. ALGORITHM

Each agent i has a time-dependent state vector xi(t)
taking values in IRd, which represents its estimate of a least
squares solution at time t and can be arbitrarily initialized
at t = 0. It is assumed that the information agent i receives
from a normal neighbor j is only the current state vector
of neighbor j. The algorithm will make use of the multi-
dimensional resilient consensus idea5 in [8] which needs the
following notation.

Let Ni be the set of neighbors of agent i in the neighbor
graph G and Ai denote the collection of all those subsets of
Ni whose cardinality is (d + 1)β + 1. It is easy to see that
the number of all such subsets is6

ai
∆
=

(
|Ni|

(d+ 1)β + 1

)
, (1)

assuming |Ni| ≥ (d+1)β+1, and label them Ai1, . . . ,Aiai
.

For each j ∈ {1, . . . , ai}, let Bij denote the collection of all
those subsets of Aij whose cardinality is dβ + 1. For any
agent i and any subset of its neighbors S ⊂ Ni, we use
CiS(t) to denote the convex hull of all xji(t), j ∈ S where

5The idea was prompted by and simplified from the preexisting one in
[14]; see detailed discussion in [8, Sections 1].

6
(n
k

)
denotes the number of k-combinations from a set of n elements.

xji(t) denotes the vector agent j sends to agent i. If agent j
is a normal agent, xji(t) = xj(t) for all possible i. If agent j
is a Byzantine agent, each xji(t) can be an arbitrary vector.

Algorithm: At each discrete time t ∈ {0, 1, 2, . . .}, each
agent i first picks an arbitrary point

yij(t) ∈
⋂

S∈Bij

CiS(t) (2)

for each j ∈ {1, . . . , ai}, and then updates its state by setting

vi(t) =
1

1 + ai

(
xi(t) +

ai∑
j=1

yij(t)
)
, (3)

xi(t+ 1) = Pivi(t) + (A′
iAi)

†A′
ibi, (4)

where Pi is the orthogonal projection on the kernel of Ai

and M† denotes the Moore-Penrose inverse of matrix M . □

Update (3) is the multi-dimensional resilient consensus
step. The idea behind update (4) is as follows. Note that

Pi = I −A†
iAi = I − (A′

iAi)
†A′

iAi (5)

since the kernel of A′
iAi equals the kernel of Ai. Using the

standard quadratic programming with equality constraints, it
is straightforward to show that xi(t+ 1) in (4) is a solution
to minx ∥x − vi(t)∥2 subject to A′

iAix = Aibi. From this
point of view, updates (3)–(4) can be regarded as a resilient
variant of affine equality constrained consensus [10].

To state the main result, we need the following notation.
For a directed graph G, let Rr,s(G) denote the set of all
(r, s)-reduced graphs of G. For a rooted graph G, we use
κ(G) to denote the size of the unique maximal strongly
connected component whose vertices are all roots of G; in
other words, κ(G) equals the number of roots of G. For any
(r, s)-resilient graph G, define

κr,s(G)
∆
= min

H∈Rr,s(G)
κ(H),

which denotes the smallest possible number of roots in any
(r, s)-reduced graphs of G.

Theorem 1: If G is (β, dβ)-resilient and the n-agent net-
work is (n − κβ,dβ(G))-redundant, then all xi(t), i ∈ H
will converge to the same least squares solution to Ax = b
exponentially fast.

A (β, dβ)-resilient G ensures that each agent has at least
(d + 1)β + 1 neighbors at each time t [8, Lemma 2]. This
further guarantees that yij(t) in (2) must exist [8, Lemma 5].

Theorem 1 is a direct consequence of Theorems 2 and 3
in the next subsection. From the proof of Theorem 2 and
using the same arguments as in the proof of Corollary 1 in
[1], it is straightforward to obtain the following convergence
rate result of the algorithm.

Corollary 3: Suppose that Ax = b has a unique least
squares solution. If G is (β, dβ)-resilient and the n-agent
network is (n− κβ,dβ(G))-redundant, then all xi(t), i ∈ H
converge to the least squares solution as t → ∞ at the rate
as λt converges to zero, where

λ =
(
1− (|H| − 1)(1− ρ)ητ

) 1
τ

,
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τ is a positive integer such that for any p ≥ τ , the matrix
P (W (t + p) ⊗ I) · · ·P (W (t + 1) ⊗ I)P (W (t) ⊗ I) is
a contraction in the mixed matrix norm for all t ≥ 0,
ρ = maxC ∥Pj1Pj2 · · ·Pjτ+1

∥2 with C being the set of
all those products of the orthogonal projection matrices in
{P1, P2, . . . , P|H|} of length τ +1 which are complete, and
η is defined in (10).

The definition of “complete” products of orthogonal pro-
jection matrices will be given in the next subsection. It
guarantees that, with set C being compact, ρ is strictly less
than one. With this fact, it is not hard to show that λ ∈ [0, 1)
provided more than one normal agent exists in the network.
It is worth mentioning that, from the proof of Proposition 2,
the value of τ is influenced by the levels of both graph
redundancy and objective redundancy.

The above convergence rate result can be straightforwardly
extended to the case when Ax = b has more than one least
squares solution using the proof of Theorem 3.

A. Analysis

To analyze the algorithm, we first derive the dynamics of
normal agents which reject the influence of Byzantine agents
because of step (2) of the algorithm. To this end, we need
the following lemma.

Lemma 2: [8, Lemma 6] vi(t) in (3) can be expressed as
a convex combination of xi(t) and xk(t), k ∈ Ni ∩H,

vi(t) = wii(t)xi(t) +
∑

k∈Ni∩H

wik(t)xk(t), (6)

where wii(t) and wik(t) are nonnegative numbers satisfying
wii(t) +

∑
k∈Ni∩H wik(t) = 1, and there exists a positive

constant η such that for all i ∈ H and t, wii(t) ≥ η and
among all wik(t), k ∈ Ni ∩ H, at least |Ni ∩ H| − dβ of
them are bounded below by η.

From (4) and Lemma 2, the updates of all normal agents
can be written as

xi(t+ 1) = Pi

(
wii(t)xi(t) +

∑
k∈Ni∩H

wik(t)xk(t)
)

+ (A′
iAi)

†A′
ibi, i ∈ H, (7)

which decouples from the dynamics of Byzantine agents. Let
x∗ be an arbitrary point in X ∗ and define yi(t) = xi(t)−x∗

for any i ∈ H. Then, from (7), for all i ∈ H,

yi(t+ 1) = Pi

(
wii(t)yi(t) +

∑
k∈Ni∩H

wik(t)yk(t)
)

+ (A′
iAi)

†A′
ibi + Pix

∗ − x∗

= Pi

(
wii(t)yi(t) +

∑
k∈Ni∩H

wik(t)yk(t)
)
, (8)

where we used the fact that (A′
iAi)

†A′
ibi + Pix

∗ − x∗ = 0
for all i ∈ H which can be straightforwardly proved by [18,
Theorem 2] and (5).

Without loss of generality, we label all normal agents from
1 to |H|, i.e., H = {1, 2, . . . , |H|}, in the sequel.

To proceed, let y(t) denote a stack of all yi(t), i ∈ H
with the index in a top-down ascending order, i.e., y(t) =
[y′1(t), y

′
2(t), . . . , y

′
|H|(t)]

′. Then, the updates in (8) can be
written in the form of a state equation:

y(t+ 1) = P
(
W (t)⊗ I

)
y(t), (9)

where each W (t) = [wij(t)] is a |H|×|H| stochastic matrix
with positive diagonal entries, ⊗ denotes the Kronecker
product, I denotes the d × d identity matrix, and P is a
d|H|×d|H| block diagonal matrix whose ith diagonal block
is Pi, i ∈ H. It is easy to see that P is also an orthogonal
projection matrix.

Define the graph of an m×m matrix M as a direct graph
with m vertices and an arc from vertex i to vertex j whenever
the ji-th entry of M is nonzero. We will write γ(M) for the
graph of a matrix M .

Lemma 3: [8, Lemma 7] If G is (β, dβ)-resilient, the
graph of each W (t) in (9) has a rooted spanning subgraph
and all the diagonal entries and those off-diagonal entries
of W (t) corresponding to the rooted spanning subgraph are
uniformly bounded below by a positive number

η
∆
= min

i∈V

1

(dβ + 1)(1 + ai)
(
(d+1)β+1

dβ+1

) . (10)

It is worth emphasizing that although (9) shares almost
the same state equation as that in [1], which is y(t + 1) =
P (S(t) ⊗ I)Py(t), a critical difference between the two is
that the graphs of stochastic matrices S(t) in [1] are (jointly)
strongly connected, whereas each graph of stochastic matrix
W (t) here is rooted (cf. Lemma 3) with possibly different
roots. This is why analysis of the algorithm needs more
careful treatment.

We first consider the case when Ax = b has a unique least
squares solution, i.e., x∗ ∈ X ∗ is unique. From Proposition 1,
all Aix = bi, i ∈ V share a unique least squares solution.
Let Pi denote the column span of Pi for all i. Since Pi =
kernel Ai = kernel A′

iAi, the least squares solution being
unique is equivalent to

n⋂
i=1

Pi = 0. (11)

More can be said. The following lemma is a direct conse-
quence of Corollary 1.

Lemma 4: If the n-agent network is k-redundant and (11)
holds, then for any subset S ⊂ V with |S| ≥ n − k, there
holds

⋂
i∈S Pi = 0.

We appeal to some concepts and results from [16], [19].
Let us agree to call a vertex i in a directed graph G a sink of
G if for any other vertex j of G, there is a directed path from
vertex j to vertex i. We say that G is sunk at i if i is in fact
a sink, and that G is strongly sunk at i if i is reachable from
each other vertex of G along a directed path of length one,
i.e., any other vertex is a neighbor of vertex i. A directed
graph is called a sunk graph if it possesses at least one sink,
and a strongly sunk graph if it has at least one vertex at
which it is strongly sunk.
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The composition of two directed graphs Gp, Gq with
the same vertex set, denoted by Gq ◦ Gp, is the directed
graph with the same vertex set and arc set defined so that
(i, j) is an arc in the composition whenever there is a
vertex k such that (i, k) is an arc in Gp and (k, j) is an
arc in Gq . Since this composition is an associative binary
operation, the definition extends unambiguously to any finite
sequence of directed graphs with the same vertex set. Graph
composition and matrix multiplication are closely related in
that γ(M2M1) = γ(M2) ◦ γ(M1). For graphs with self-arcs
at all vertices, it is easy to see that the arcs of both Gp and
Gq are arcs of Gq ◦Gp.

Lemma 5: [16, Lemma 5] Let Gp1
,Gp2

, . . . ,Gpk
be a

finite sequence of m-vertex directed graphs with self-arcs
which are all sunk at v. If k ≤ m − 1, then v has at least
k + 1 neighbors in Gpk

◦ Gpk−1
◦ · · · ◦ Gp1 . If k ≥ m − 1,

then Gpk
◦Gpk−1

◦ · · · ◦Gp1 is strongly sunk at v.

Define the neighbor function of a directed graph G with
vertex set V , denoted by α(G, ·), as the 2V → 2V function
which assigns to each subset S ⊂ V , the subset of vertices in
V which are neighbors of S in G. For any v ∈ V , there is a
unique largest subgraph sunk at v, namely the graph induced
by the vertex set V(v) = {v}∪α(G, v)∪· · ·∪α|V|−1(G, v),
where αi(G, ·) denotes the composition of α(G, ·) with itself
i times. We call this induced graph the sunk graph generated
by v. The sunk graph generated by any vertex of each
γ(W (t)), t ≥ 0 has the following property.

Lemma 6: If G is (β, dβ)-resilient and the n-agent net-
work is (n− κβ,dβ(G))-redundant, then for any time t ≥ 0
and each vertex v of γ(W (t)), there holds

⋂
i∈V(v) Pi = 0.

Proof of Lemma 6: Since V(v) is the vertex set of the
sunk graph generated by v, it follows that V(v) contains all
roots of γ(W (t)) whose number is at least κβ,dβ(G). From
Lemma 4,

⋂
i∈V(v) Pi = 0.

We also make use of the following concepts and re-
sults from [1]. Define a route over a given sequence of
directed graphs G1,G2, . . . ,Gq with the same vertex set
as a sequence of vertices i0, i1, . . . , iq such that (ik−1, ik)
is an arc in Gk for all k ∈ {1, 2, . . . , q}. A route over a
sequence of graphs which are all the same directed graph
G, is thus a directed walk in G. The definition implies
that if i0, i1, . . . , iq is a route over G1,G2, . . . ,Gq and
iq, iq+1, . . . , ip is a route over Gq,Gq+1, . . . ,Gp, then the
concatenated sequence i0, i1, . . . , iq−1, iq, iq+1, . . . , ip is a
route over G1,G2, . . . ,Gq−1,Gq,Gq+1, . . . ,Gp. This fact
remains true if more than two sequences are concatenated.

More can be said if we focus exclusively on graphs with
self-arcs. If i = i0, i1, . . . , iq = j is a route over a sequence
G1,G2, . . . ,Gq , then (i, j) must be an arc in the composed
graph Gq ◦Gq−1 ◦· · ·◦G1. The converse is also true, namely
that if (i, j) is an arc in Gq ◦Gq−1 ◦· · ·◦G1, then there must
exist vertices i1, . . . , iq−1 for which i = i0, i1, . . . , iq = j is
a route over G1,G2, . . . ,Gq . Moreover, if Gτ1 ,Gτ2 , . . . ,Gτp

is a subsequence of G1,G2, . . . ,Gq with p ≤ q and
i0, i1, . . . , ip being a route over Gτ1 ,Gτ2 , . . . ,Gτp , then

there must exist a route over G1,G2, . . . ,Gq which con-
tains i0, i1, . . . , ip as a subsequence. An important relation
between routes and matrix multiplication is as follows.

Lemma 7: Let S1, S2, . . . Sq be a sequence of m ×
m stochastic matrices with positive diagonal entries
whose graphs are respectively G1,G2, . . . ,Gq . If j =
i0, i1, . . . , iq = i is a route over G1,G2, . . . ,Gq , then the
matrix product Piq · · ·Pi2Pi1 is a component of the ijth
block entry of P (Sq ⊗ I) · · ·P (S2 ⊗ I)P (S1 ⊗ I).

Lemma 7 can be proved using the same argument as in
the proof of Lemma 4 in [1].

It is easy to see from (9) that analysis of the algo-
rithm under study involves the matrix product · · ·P (W (t)⊗
I) · · ·P (W (1)⊗I)P (W (0)⊗I) in which each W (t), t ≥ 0
is a |H|×|H| stochastic matrix with positive diagonal entries.
Such a matrix product is a d|H| × d|H| block matrix whose
each block is a projection matrix polynomial of the form

µ(P1, P2, . . . , P|H|) =
b∑

i=1

λiPhi(1)Phi(2) · · ·Phi(qi),

where qi and b are positive integers, λi is a real positive
number, and each hi(j), j ∈ {1, 2, . . . , qi} is an integer in
{1, 2, . . . , |H|}.

To study these block matrices, we need the following
“mixed matrix norm” introduced in [1]. Let ∥ · ∥∞ denote
the induced infinity norm and write IRdm×dm for the vector
space of all m × m block matrices Q = [Qij ] whose ijth
block entry is a matrix Qij ∈ IRd×d. The mixed matrix
norm of Q ∈ IRdm×dm, written ∥Q∥, is defined as ∥Q∥ =
∥⟨Q⟩∥∞, where ⟨Q⟩ is the matrix in IRm×m whose ijth entry
is ∥Qij∥2. It has been shown in [1, Lemma 3] that the mixed
matrix norm is sub-multiplicative. More can be said.

Let us agree to say that a projection matrix polyno-
mial µ(P1, P2, . . . , P|H|) is complete if it has a com-
ponent Phi(1)Phi(2) · · ·Phi(qi) such that

⋂qi
k=1 Phi(k) =

0. Such a complete component has the property that
∥Phi(1)Phi(2) · · ·Phi(qi)∥2 < 1 [1, Lemma 2]. This prop-
erty leads to a contraction condition for block matrices in
IRd|H|×d|H| whose blocks are projection matrix polynomials.

Lemma 8: Let S1, S2, . . . Sq be a finite sequence of |H|×
|H| stochastic matrices with positive diagonal entries and
M = P (Sq ⊗ I) · · ·P (S2 ⊗ I)P (S1 ⊗ I). If at least one
entry in each block row of M is complete, then M is a
contraction in the mixed matrix norm, i.e., ∥M∥ < 1.

The lemma is a direct consequence of Proposition 1 in [1].

Proposition 2: Suppose that (11) holds. If G is (β, dβ)-
resilient and the n-agent network is (n − κβ,dβ(G))-
redundant, then there is a finite positive integer τ such that
for any p ≥ τ and t ≥ 0, the matrix P (W (t + p) ⊗
I) · · ·P (W (t+ 1)⊗ I)P (W (t)⊗ I) is a contraction in the
mixed matrix norm.

The following theorem establishes the correctness of the
algorithm for the unique least squares solution case.

Theorem 2: Suppose that Ax = b has a unique least
squares solution. If G is (β, dβ)-resilient and the n-agent
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network is (n − κβ,dβ(G))-redundant, then there exists a
nonnegative constant λ < 1 for which all xi(t), i ∈ H
converge to the least squares solution as t → ∞ as fast
as λt converges to zero.

We next consider the case when Ax = b has multiple
least squares solutions, using the subspace “quotient out”
technique from [1], and begin with the following lemma.

Lemma 9: Let Q′ be any matrix whose columns form
an orthonormal basis for the orthogonal complement of⋂

i∈H Pi and define P̄i = QPiQ
′ for each i ∈ H. Then,

1) Each P̄i, i ∈ H is an orthogonal projection matrix;
2) Each P̄i, i ∈ H satisfies QPi = P̄iQ;
3) For any nonempty subset E ⊂ H, there holds⋂

i∈E P̄i = 0 if and only if
⋂

i∈E Pi =
⋂

i∈H Pi.

The lemma is a direct consequence of Lemma 7 in [16].

Lemma 10: If G is (β, dβ)-resilient and the n-agent net-
work is (n− κβ,dβ(G))-redundant, then for any time t ≥ 0
and each vertex v of γ(W (t)), there holds

⋂
i∈V(v) P̄i = 0.

Proof of Lemma 10: Since V(v) is the vertex set of the
sunk graph generated by v, it follows that V(v) contains all
roots of γ(W (t)) whose number is at least κβ,dβ(G). From
Corollary 1, argminx

∑
i∈V(v) ∥Aix− bi∥22 = X ∗. This fact

and Proposition 1 imply that
⋂

i∈V(v) Pi =
⋂

i∈H Pi. From
property 3) of Lemma 9,

⋂
i∈V(v) P̄i = 0.

Theorem 3: Suppose that Ax = b has more than one least
squares solution. If G is (β, dβ)-resilient and the n-agent
network is (n − κβ,dβ(G))-redundant, then there exists a
nonnegative constant λ < 1 for which all xi(t), i ∈ H
converge to the same least squares solution as t → ∞ as
fast as λt converges to zero.

IV. CONCLUSION

This paper has proposed a distributed least squares al-
gorithm for solving a system of linear algebraic equations
over a fixed multi-agent network, which converges expo-
nentially fast and achieves full resilience in the presence of
Byzantine agents provided appropriate redundancy in both
graph connectivity and objective functions is established.
The proposed algorithm and its convergence results can be
easily extended to non-stationary networks provided that the
time-varying neighbor graphs are always (β, dβ)-resilient.
Since the algorithm borrows the same design ideas from
a recent resilient distributed optimization algorithm [8], it
“inherits” the same limitations from the algorithm there (see
discussions in Section 5 of [8]). A particular limitation is
that it can hardly cope with high-dimensional cases.

An important future direction is thus to tackle the chal-
lenging high-dimensional issue. Although it is a natural
idea to appeal to communication-efficient schemes in which
each agent only needs to transmit low-dimensional sig-
nals (e.g., entry- or block-wise updating [20], [21]), our
limited simulations indicate that simply partitioning high-
dimensional state vectors into low-dimensional blocks in
communication and computation is not promising, if without
any additional design. Other possible approaches include

exploiting consensus fusion with reduced information [22],
leveraging dimension-independent filtering [13], [23], and
combining these techniques together.
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