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Abstract— In this paper, we propose an SIR spread model in
a population network coupled with an infrastructure network
that has a pathogen spreading in it. We develop a threshold
condition to characterize the monotonicity and peak time
of a weighted average of the infection states in terms of
the global (network-wide) effective reproduction number. We
further define the distributed reproduction numbers (DRNs) of
each node in the multilayer network which are used to provide
local threshold conditions for the dynamical behavior of each
entity. Furthermore, we leverage the DRNs to predict the global
behavior based on the node-level assumptions. We use both
analytical and simulation results to illustrate that the DRNs
allow a more accurate analysis of the networked spreading
process than the global effective reproduction number.

I. INTRODUCTION
The spread of contagious diseases can be catastrophic,

causing worldwide impact in a broad variety of aspects, from
human losses to financial crises. The Covid-19 pandemic
revealed the importance of understanding the behavior of
disease-spreading to predict future outbreaks, and as a result,
possibly mitigation algorithms. Developing these tools is
pivotal to assist public health officials and politicians in their
decision-making processes during epidemic outbreaks.

Networked SIR models have been studied intensively in
the controls community in recent years [1], [2], [3]. However,
a vast majority of such models only account for person-
to-person interaction as the propagation mechanism. Nev-
ertheless, diseases can spread through other means, such as
water distribution systems [4] or contaminated surfacess [5].
Consequently, new models have been recently proposed
where a water compartment is coupled with traditional epi-
demic models. In [6], a Susceptible-Infected-Water-Removed
(SIWR) compartmental model was proposed by coupling the
classical SIR person-to-person infection with a contaminated
water compartment. In [7], a cholera model was proposed
and the virus propagates through both direct and indirect
transmission pathways with a water compartment. In [8], the
model proposed in [6] is extended by coupling a human-
contact SIS network with a single water compartment that
may be contaminated. Furthermore, a generalization of the
model proposed in [8] is given in [9] where a multilayer
SIS model is coupled with a generic infrastructure network.
In addition to layered spread networks, there have also
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been multilayer models that explore the coupling between
networked virus spreading and opinion dynamics [10], [11].
To the best of our knowledge, this is the first multilayer
networked model comprised of a networked SIR model and
an infrastructure network.

Reproduction numbers have been widely used to inform
the public about the severity of a virus, to predict epidemic
outbreaks, and to provide policymakers with information
to help design mitigation strategies. More precisely, there
are two reproduction numbers constantly analyzed in the
literature of mathematical epidemiology. First, the basic
reproduction number of a group of individuals quantifies
the expected number of infected individuals assuming the
whole population is always susceptible. On the other hand,
the effective reproduction number quantifies the expected
number of infected individuals considering the evolution
of the susceptible proportion of the population [12]. The
information used to compute both reproduction numbers is
leveraged to provide threshold conditions around one that
predict the transient and steady-state behaviors of the spread-
ing process [2], [3], [13], [14]. The concept of reproduction
numbers has been extended to novel networked models,
e.g., networked bi-virus models [15] and multilayer SIS
networked spreading process.

Nonetheless, a global (network-level) analysis does not
provide an accurate understanding of the local (node-level)
spreading behavior, given the heterogeneity in both spreading
parameters and the network structure. In [16], the novel
concept of distributed reproduction numbers (DRNs) is in-
troduced, which quantifies the expected number of infections
resulting from the pair-wise interaction between nodes for
standard networked SIS/SIR models. Further, the DRNs are
used to define the reproduction number of each community
in the network. In this work, we develop a DRNs framework
for the novel multilayer networked SIR model with an
infrastructure network and provide threshold conditions to
predict local and global (network-wide) behavior based on
node-level assumptions.

In summary, the contributions of our work are:
• We derive and analyze the transient behavior of a novel

multilayer SIR model with an infrastructure network
based on the global effective reproduction number.

• We define the DRNs for each node in the multilayer
network, whether it is a node in the population or
infrastructure network, and provide sufficient conditions
to predict the monotonicity of the epidemic spreading
at the node level.
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• We leverage the DRNs to analyze the transient behavior
of the overall networked spreading process.

The rest of the paper is outlined as follows. The multilayer
networked SIR model with infrastructure network is devel-
oped in Section II, and the research problems of interest are
stated. The analysis of equilibria and the transient behavior
based on the global effective reproduction number is given
in Section III. In Section IV, the DRNs for any node in the
multilayer network are defined and sufficient conditions are
provided to predict the local spreading behavior (i.e., at the
node level). Simulations illustrating our theoretical findings
are provided in Section VI. Finally, Section VII concludes
this work and states future directions. The proofs are in [17].

Notation: The ith entry of a vector x is denoted xi. We
use 0 and 1 to denote the vectors, whose entries are equal to
0 and 1, respectively, and use In to denote an n×n identity
matrix. For any vector x ∈ Rn, we use diag(x) to denote the
n × n diagonal matrix whose ith diagonal entry equals xi.
For a square matrix M , we use diag(M) to zero out the off-
diagonal elements of M and [M ]j to denote the element in
the jth diagonal entry. For a square matrix M , we use σ(M)
to denote the spectrum of M , ρ(M) to denote the spectral
radius of M , and λmax(M) = argmax{Re(λ) : λ ∈ σ(M)}.

II. MODEL AND PROBLEM FORMULATION

In this section, we develop a continuous-time standard net-
worked SIR model coupled with an infrastructure network.
This model will hereafter be referred to as the multilayer
networked model. We also formulate the problem we aim to
analyze in this work.

Consider a pathogen spreading over a two-layer network,
namely the population or human-contact network P and the
infrastructure network I. The set of n group of individuals
in the population network is denoted by VP , i.e., |VP | = n,
and the set of m infrastructure resources is denoted by VI ,
i.e., |VI | = m. The set of all the nodes in the multilayer
network is denoted by V , where, V = VP ∪ VI , and |V| =
|VP | + |VI |. We allow any node to be contaminated as a
consequence of its interactions with other infected groups of
individuals and/or as a consequence of its interactions with
the infrastructure resources.

We denote by si(t), xi(t), ri(t), the proportion of sus-
ceptible, infected, and recovered individuals, respectively,
in a group i at time t ≥ 0. We assume that the total
number of individuals in each group i remains constant, i.e.,
si(t) + xi(t) + ri(t) = 1. Each group of individuals i ∈ VP

has a healing rate γi, a person-to-person infection rate βij

for all j ∈ VP , and a person-to-resource infection rate βw
ij

for all j ∈ VI . The evolution of the proportion of infected,
susceptible, and recovered individuals in each group i ∈ VP

can be described as follows:

ṡi(t) = −si(t)

(
n∑

j=1

βijxj(t) +
m∑

j=1

βw
ijwj(t)

)
,

ẋi(t) = si(t)

(
n∑

j=1

βijxj(t) +

m∑
j=1

βw
ijwj(t)

)
− γixi(t), (1)

ṙi(t) = γixi(t),

where wj(t) denotes the virus concentration in resource
node j ∈ VI . The contamination of resource node wj(t)
evolves as
ẇj(t) = −γw

j wj(t) +

m∑
k=1

αkjwk(t)− wj(t)

m∑
k=1

αjk +

n∑
k=1

cwkjxk(t),

(2)
where γw

j denotes the decay rate of the contamination of
resource node j ∈ VI , αkj denotes the flow of the pathogen
from any resource k ∈ VI , and cwkj denotes the person-to-
resource infection rate for all k ∈ VP .

Note that the third equation of (1) is redundant given the
constraint si(t)+xi(t)+ri(t) = 1. Therefore, the model (1)
and (2) in vector form becomes

ṡ(t) = −diag
(
s(t)

)(
Bx(t) +Bww(t)

)
, (3a)

ẋ(t) = diag
(
s(t)

)(
Bx(t) +Bww(t)

)
−Dx(t), (3b)

ẇ(t) = −Dww(t) +Aww(t) + Cwx(t), (3c)

where B = [βij ]n×n, Bw = [βw
ij ]n×m, D and Dw are

diagonal matrices with the healing rates γi and γw
i , re-

spectively, Aw has negative diagonal entries equal to αjj −∑
k αkj and off-diagonal entries equal to αkj , and Cw =

[cwjk]m×n. Therefore, the columns of Aw sum to zero, i.e.,
A⊤

w1 = 0.
System (3) can be written more compactly using:

z(t) :=

[
x(t)
w(t)

]
, H

(
s(t)

)
:=

[
diag

(
s(t)

)
0

0 Im

]
,

Bf :=

[
B Bw

Cw Aw − diag(Aw)

]
,

Df :=

[
D 0
0 Dw − diag(Aw)

]
. (4)

Therefore, (3) can be written as
ż(t) =

(
H(s(t))Bf −Df

)
z(t). (5)

We impose the following assumptions on the system
parameters.

Assumption 1. For all i, j ∈ VP , γi > 0, βij ≥ 0. For all
i ∈ VP , j ∈ VI , γw

j −αjj+
∑

k αkj > 0, βw
ij ≥ 0, cwij ≥ 0,

with at least one i such that cwij > 0, and one j such that
βw
ij > 0. Moreover, B and Aw are irreducible.

The assumption imposed on βw
ij and cwij ensures the

coupling between the population network and the resource
nodes, and therefore Bf is irreducible. Moreover, Assump-
tion 1 ensures matrix Df is invertible since both the healing
rates for the population nodes γi, and the contamination
decay of the resource nodes γw

j −αjj +
∑

k αkj is positive.
We first show that the system is well-defined. That is,
since si(t), xi(t), ri(t) represent proportions of a given
population i ∈ VP , they must not exceed one or go negative.
Moreover, the concentration of the virus wj(t) at each
resource node j ∈ VI must never be negative. Otherwise,
these states lack physical meaning.

Lemma 1. Suppose Assumption 1 holds, si(0), xi(0),
si(0) + xi(0) ∈ [0, 1] for all i ∈ VP and wj(0) ≥ 0 for all
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j ∈ VI . Then, xi(t) ∈ [0, 1] for all i ∈ [0, 1] and wj(t) ≥ 0
for all j ∈ VI , for all t ≥ 0.

Given that we are proposing a new model and we look
towards analyzing the local (node-level) dynamical behavior,
in the sections that follow, we aim to provide insights related
to the following problems:

1) Define the global (network-wide) effective reproduction
number to characterize the dynamical behavior of (5).

2) Define node-level effective reproduction numbers based
on the DRNs to predict the transient behavior of any
node i ∈ V according to threshold conditions;

3) Provide sufficient conditions to predict the network-
level behavior based on assumptions imposed on the
node-level effective reproduction numbers.

III. NETWORK-LEVEL ANALYSIS

This section examines the equilibrium of the multilayer
model in (5) and motivates the use of the global effective
reproduction number to analyze the networked spreading
behavior.

A. Equilibria
First, we present a result related to the monotonicity of

the susceptible proportion of each population i ∈ VP .

Lemma 2. If si(0), xi(0) ∈ [0, 1]n, for all i ∈ VP , and
wj(0) ≥ 0, for all j ∈ VI , the susceptible state si(t) is
monotonically decreasing, for all i ∈ VP , t ≥ 0.

The main takeaway from Lemma 2 is that the coupling
of the population with the infrastructure network does not
change the SIR-like property of the susceptible proportions,
i.e., si(t) decreases with time. It is well known that the
standard networked SIR model, i.e., Bw = 0 in (3a) and
(3b), has an infinite number of healthy equilibria (s∗,0,0),
where r∗ = 1 − s∗. Also, the system will never reach an
endemic equilibrium. Thus, we analyze if the networked
SIR model has the same steady-state behavior when the
population network is coupled with an infrastructure network
as in (3).

Proposition 1. Consider the networked model in (3). Let
Assumption 1 hold and assume γw

j > 0 for all j ∈ VI . The
set of equilibria has the form (s∗,0,0), where s∗ ∈ [0, 1]n.

The proposition implies that the system has an infinite
number of healthy equilibria, whereas an endemic equilib-
rium does not exist, i.e., ∄ x∗, w∗ s.t. x∗ ̸= 0, w∗ ̸= 0.
Therefore, the threshold behavior that is determined by the
basic reproduction number for the networked SIS model,
namely R0 = ρ(D−1B) [2], does not apply to our model.
Rather, we are interested in understanding the transient
behavior of the networked SIR model in (5). To that end, we
turn our focus to studying the effective reproduction number
of the network which is key for predicting the network-wide
dynamical behavior.

B. Effective Reproduction Number
We first introduce the concept of the global effective

reproduction number for the multilayer network.

Definition 1 (Global Effective Reproduction Number). Un-
der Assumption 1, the global (network-wide) effective repro-
duction number is denoted by R(t) = ρ

(
H(s(t))D−1

f Bf

)
,

where H(s(t)), Bf , and Cf are given in (4).

Given that R(t) accounts for the evolution of the virus
for the multilayer networked SIR model, we characterize the
dynamical behavior of a weighted average of the components
of z(t). To that end, we first define the notion of peak
infection time.

Definition 2 (Peak Infection Time). Let v(t) ∈ Rn+m be a
positive normalized vector. A peak infection time τp of the
weighted average v(τp)

⊤z(t) is such that v(τp)
⊤z(τp) >

v(τp)
⊤z(t) for all t ≥ 0, t ̸= τp.

We now characterize the threshold behavior of the multi-
layer networked model (3) in the following theorem.

Theorem 1. Assume Assumption 1 holds and s(0) ≫ 0
and z(0) > 0. Let v(t) be the normalized left eigenvec-
tor associated with the eigenvalue λmax(t) of the matrix
H(s(t))Bf −Df . The following claims hold:

i) The effective reproduction number R(t) is monotoni-
cally decreasing with respect to t.

ii) Assume there is a time τ > 0 such that v(τ)⊤z(t) is
increasing for all t ≤ τ in a sufficiently small time
interval [t, τ ]. Then, R(t) > 1, for all t ≤ τ .

iii) Let the time τp ≥ 0 satisfy R(τp) = 1. Then, the
weighted average v(τp)

⊤z(t) reaches a maximum value
at t = τp and the peak infection is unique.

iv) If the weighted average v(τ)⊤z(t) is decreasing for all
t ≥ τ in a sufficiently small time interval [τ, t]. Then
R(t) < 1, for all t ≥ τ .

An important insight that Theorem 1 provides is that
R(τp) = 1 is a sufficient condition to predict the peak
infection, and thus guarantees that τp is the peak infection
time of the weighted average of the infection across the mul-
tilayer networked SIR model. Another takeaway is that the
uniqueness of the peak infection is due to the monotonicity
of R(t) with respect to t (Theorem 1 i)). Hence, we have the
following direct conclusion from Theorem 1 related to the
dynamical behavior of the weighted average once it starts
decreasing.

Corollary 1. Assume that at a given time τ ≥ 0, R(τ) <
1. Then, the weighted average v(τ)⊤z(t), for t ≥ τ , is
monotonically exponentially decreasing to zero.

So far, we have provided sufficient conditions to char-
acterize the dynamical behavior of a weighted average of
z(t). However, the claims made for the weighted average
at the network level cannot be extrapolated to predict local
spreading behavior. Moreover, given that x(t) and w(t) are
modeled in different ways, i.e., x(t) has nonlinear dynamics
and w(t) is linear, these distinctions are not captured by the
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behavior of the weighted average. Therefore, in the following
section, we define the distributed reproduction numbers for
the novel multilayer networked SIR model and elaborate on
sufficient conditions to analyze the local dynamical behavior.

IV. DISTRIBUTED REPRODUCTION NUMBERS
Based on the threshold conditions for the weighted average

in Theorem 1, we cannot guarantee that all nodes in the
network will reach the peak infection at the same time.
Further, R(0) < 1 does not necessarily imply that the
epidemic is dying out immediately for all i ∈ V . Thus, we
introduce the concept of DRNs to provide a finer granularity
in the analysis of the networked spreading process. The dis-
tributed reproduction numbers for each node in the multilayer
network are defined in a pairwise fashion, considering the
rate at which a particular node i becomes infected by a node j
over time. In general, the DRNs of any node i associated with
node j is the expected number of new infections caused by
the scaled infected proportion of individuals in node j given
that some individuals in node i may no longer be susceptible.
Thus, a particular node will have as many reproduction
numbers as in-neighbors has. Since the infection level of a
particular node is influenced by different sources, i.e., human
interaction or resource nodes, it is necessary to analyze
the infection contribution of different in-neighbors at the
same scale. We define the DRNs for the population and
infrastructure network.

Definition 3 (Population Network DRNs). Let Assumption 1
hold and assume xi(t) > 0. For each location i ∈ VP , the
DRNs are given by the following piecewise function

Rij(t) = si(t)
Ii(j, t)

γixi(t)
,

where
Ii(j, t) =

{
βijxj(t), if j ∈ VP

βw
ijwj(t), if j ∈ VI .

Note that Rij(t) in Definition 3 also accounts for the new
infection cases generated within group i ∈ VP itself, i.e.,
Rii(t).

From Lemma 2, we know that the susceptible proportion
of a given location in the population network is decreasing
w.r.t. time. However, since the contamination of the resource
nodes is interpreted as the flow of the virus through the
node, we can argue that all j ∈ VI are always susceptible
to contamination. On the other hand, the concentration of
the virus has a decay rate γw

j and it is diluted among other
resource nodes according to (2). Thus, the total healing rate
for a resource node j ∈ VI is given by γj − [diag(Aw)]j .
Consequently, we characterize the DRNs of the resource
nodes in the following definition.

Definition 4 (Infrastructure Network DRNs). Let Assump-
tion 1 hold and assume wj(t) > 0. For each resource node
j ∈ VI , the DRNs are given by the following piecewise
function

Rjk(t) =
Iwj (k, t)(

γw
j − [diag(Aw)]j

)
wj(t)

,

where
Iwj (k, t) =

{
cwkjxk(t), if k ∈ VP

αkjwk(t), if k ∈ VI .

To leverage the information that the DRNs capture, one
can compute the evolution of the infected proportion of a
particular node i, associated with a pair of nodes (j, k) where
j ∈ VP and k ∈ VI . For a node in the population network,
i ∈ VP , we define its infected proportion associated with a
pair of nodes (j, k), where j ∈ VP and k ∈ VI , as

ẋk
ij(t) = si(t)

(
βijxj(t) + βw

ikwk(t)
)
− γixi(t). (6)

Lemma 3. The infected proportion at node i associated with
a pair of nodes (j, k) where j ∈ VP and k ∈ VI , denoted
by xk

ij(t), is increasing if and only if Rij(t) + Rik(t) > 1,
and it is decreasing if and only if Rij(t) +Rik(t) < 1.

Up to this point, we have defined the DRN’s based on
the interaction between two nodes depending on which layer
of the network they belong to (Definitions 3 and 4). In
addition, we have shown the threshold behavior for the rate
of infection at each node in terms of the DRN’s (Lemma 3).
However, Lemma 3 only accounts for the monotonicity
of the infection at a given node considering a particular
combination of two sources of infection. To characterize the
spreading process for each node in the multilayer network,
we further define the local effective reproduction number
(LERN) which builds off the DRNs in Definitions 3 and 4.

Definition 5 (LERNs). For any node i ∈ V , the LERN,
denoted by Ri(t), is the expected number of new infections
caused by all possible sources of infection/contamination

Ri(t) =
∑
j∈V

Rij(t).

We characterize a threshold dynamical behavior result for
any node i ∈ V in the following theorem.

Theorem 2. Let Assumption 1 hold. For a given location i ∈
VP , assume xi(t) > 0. For a given resource j ∈ VI , assume
wj(t) > 0. Then, for a given time t ≥ 0, the following holds:

i) Ri(t) > 1 if and only if xi(t) is increasing, and Rj(t) >
1 if and only if wj(t) is increasing.

ii) Ri(t) < 1 if and only if xi(t) is decreasing, and
Rj(t) < 1 if and only if wj(t) is decreasing.

Remark 1. Note that in Theorem 2 all the statements hold
with strict inequality. That is, up to this point, we cannot
guarantee that when Ri(t) = 1, a node i ∈ V has reached
a peak infection or further conclude it is unique.

V. GLOBAL BEHAVIOR FROM LERNS
In this section, we aim to integrate the framework de-

veloped in Sections III and IV. More precisely, given some
assumptions on the LERNs, we infer a threshold behavior
at the network level. In the analysis that follows, we denote
R̃ij(t) as the unscaled DRN of node i associated with node j.
Based on Assumption 1, Definitions 3 and 4, we have that,
for any location i ∈ VP , the unscaled DRNs are given by

R̃ij(t) = si(t)
Ĩij
γi

, where Ĩij =

{
βij , if j ∈ VP

βw
ij , if j ∈ VI ,

(7)
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and, for any resource node j ∈ VI , the unscaled DRNs are
computed as

R̃jk =
Ĩwij

γw
j − [diag(Aw)]j

, where Ĩij =

{
cwkj , if j ∈ VP

αkj , if j ∈ VI .

(8)
We leverage the unscaled DRNs to define submatrices that

describe the infection contribution considering all interac-
tions across the multilayer network, i.e., person-to-person,
resource-to-person, person-to-resource, resource-to-resource.
Let the matrix RP(t) denote the DRNs of each node i ∈
VP associated with all nodes j ∈ VP . In other words,
RP(t) describes the infection contribution between all the
locations in the population network in a distributed fashion.
More precisely, the (i, j) − th entry of RP(t) is given by
[RP(t)]ij = R̃ij(t) for all i, j ∈ VP . On the other hand,
the matrix RI→P(t) accounts for the infection contribution
from all the resource nodes in the infrastructure network
to the population nodes, i.e., [RI→P(t)]ij = R̃ij(t) for all
i ∈ VP and all j ∈ VI . In the same way, the contamination
of the resource nodes from each location in the population
network is given by [RP→I(t)]jk = R̃jk(t) for all j ∈ VI

and k ∈ VP . Finally, [RI(t)]jk = R̃jk(t) for all j, k ∈ VI ,
accounts for the contamination between resource nodes in
the infrastructure network. Now, we define the effective
reproduction matrix of the multilayer network, R(t).

Definition 6 (Global Effective Reproduction Matrix). The
effective reproduction matrix of the network is given by

R(t) =

[
RP(t) RI→P(t)

RP→I(t) RI(t)

]
,

where RP(t) ∈ Rn×n, RI→P(t) ∈ Rn×m, RP→I(t) ∈
Rm×n and RI(t) ∈ Rm×m.

From (4), (7), and (8), it is straightforward to conclude
that R(t) = H(s(t))D−1

f Bf . Hence, we can obtain the
global effective reproduction number by computing the spec-
tral radius of the global effective reproduction matrix, i.e.,
R(t) = ρ(R(t)). We leverage the connection between the
DRNs and the structure of the global effective reproduction
matrix to predict the network-level behavior based on node-
level assumptions in the following theorem.

Theorem 3. Assume that Assumption 1 holds and the system
has not reached a healthy equilibrium, i.e., z(t) ̸= 0 for a
given time t ≥ 0. The following statements hold:

i) If Ri(t) > 1 for all i ∈ V , then ρ(R(t)) > 1,
ii) If Ri(t) = 1 for all i ∈ V , then ρ(R(t)) = 1,

iii) If Ri(t) < 1 for all i ∈ V , then ρ(R(t)) < 1.

VI. SIMULATIONS
For the simulations, we consider a network of 10 popula-

tion nodes and 5 resource nodes. The parameters are picked
uniformly at random from the following intervals. For all i ∈
VP , γi ∈ [1, 3]. For all j ∈ VI , γw

j ∈ [0.6, 0.75]. The entries
of the matrix B are selected from the interval [0.01, 0.338],
the entries of the matrix Bw are selected from [0.01, 0.2],
and Cw is computed as Cw = B⊤

w − 0.011m×n. Finally, for
all j, k ∈ VI , αjk ∈ [0, 2]. We assume s(0) = 0.951n and
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Fig. 1: Evolution of the global effective reproduction number
R(t) (top) and the weighted average v(0)⊤z(t) (bottom).

r(0) = 0n. The initial contamination level for the resource
nodes wj(0), j ∈ VI is picked uniformly at random from
the interval [0, 1]. All plots use the same set of parameters.

Consistent with the claims in Theorem 1, we see in Fig. 1
that the global effective reproduction number monotonically
decreases with time, and the peak infection time of the
weighted average v(0)⊤z(t) coincides with R(t) = 1 (in-
dicated by the vertical dashed lines in Fig. 1). Moreover,
v(0)⊤z(t) increases when R(t) > 1 and decreases when
R(t) < 1. By inspecting the weighted average plot, we can
conclude that the outbreak dies out in the population and
infrastructure networks, i.e., x(t) = 0 and w(t) = 0 as
t → ∞, consistent with Proposition 1.

Using the same parameters as in Fig. 1, we illustrate the
evolution of the infected proportion xi(t) and the LERNs
Ri(t) for i ∈ {2, 3, 6, 8, 9} of the population network;
see left column of Fig. 2. Consistent with Theorem 2, for
a given i ∈ VP , the infected proportion increases when
Ri(t) > 1, and decreases otherwise. Note that the dashed
lines corresponding to i = {2, 3} in the population network,
indicate that node i’s peak infection time occurs when
Ri(t) = 1. Therefore, we conjecture that, for node i ∈ VP

in the population network, Ri(t) = 1 is a necessary and
sufficient condition for identifying the peak infection time
on the node level.

In right column of Fig. 2, we show the evolution of the
contamination of the resources nodes and the LERNs Rj(t)
for j ∈ {2, 3, 4} of the infrastructure network. Consistent
with Theorem 2, the contamination level wj(t) increases
when Rj(t) > 1 and decreases otherwise. However, note that
for resource node 2, R2(t) crosses one multiple times. Thus,
Rj(t) = 1 does not necessarily coincide with the node-level
peak infection time in the infrastructure network.

The main takeaway from inspecting Figs. 1 and 2 is
that the global effective reproduction number R(t) does not
account for the local spreading behavior. Furthermore, the
more interesting node-level behavior of the infrastructure
network, right column of Fig. 2, is lost in the network-level

5302



0 1 2 3 4 5 6
0

0.2

0.4

0.6

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0 1 2 3 4 5 6
0

5

10

0 1 2 3 4 5 6
0

0.5

1

1.5

2

Fig. 2: Evolution of xi(t) (top left) and Ri(t) (bottom left) for
i ∈ {2, 3, 6, 8, 9} of the population network. Note that Ri(t) can
be non-monotonic and only crosses one once. Moreover, at the peak
infection time τpi , Ri(τpi) = 1, for all i ∈ VP . Evolution of the
contamination level wj(t) (top right) and the LERNs Rj(t) (bottom
right) for j ∈ {2, 3, 4} in the infrastructure network. All the claims
in Theorem 2 hold. However, Rj(t) can cross one more than once.

Fig. 3: Evolution of the LERNs for all i ∈ V . Theorem 3 i)
is depicted in the blue region. Theorem 3 iii) is depicted in
the yellow region.

analysis. Therefore, it is critical to leverage the DRNs and
LERNs in order to predict and control the local behavior.

In Fig. 3, we illustrate the results in Theorem 3: the blue
shaded area depicts where Theorem 3 i) holds and the yellow
shaded area depicts where Theorem 3 iii) holds. The main
insight from inspecting Fig. 3 is that leveraging the LERNs
to predict the global behavior provides different (arguably
better) insights than R(t), given that the R(t) crosses one
much earlier than when all the LERNs are below one, i.e.,
the infection is still increasing in more than half of the nodes.

VII. CONCLUSIONS
In this work, we introduce a novel SIR model that couples

the dynamics of a virus spreading in a population network
with the dynamics of contamination in an infrastructure
network. We analyze the network-wide behavior of the
system by introducing and leveraging the global effective
reproduction number. We also introduce the distributed and
local effective reproduction numbers for both the population
and infrastructure nodes in the multilayer networked model.
We provide sufficient conditions to predict the monotonic-
ity of the epidemic spreading at the node level using the
distributed and local reproduction numbers. We explain how
the node-level reproduction numbers can be used to analyze
the transient behavior of the overall networked spreading
process. We illustrate our analytical results via simulations.

For future work, the connection between the node-level
peak infection time and the local effective reproduction num-
ber equaling one should be shown analytically. Leveraging
the node-level reproduction numbers and their connection
to the global behavior for distributed control of the system
is an interesting future direction. Finally, in this work,
we assume that each node has knowledge of its state, its
neighbors’ states, and all of its local parameters; learning
these parameters and estimating these states are vital steps
in order to be able to leverage these tools in application.
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“Analysis and control of a continuous-time bi-virus model,” IEEE
Transactions on Automatic Control, vol. 64, no. 12, pp. 4891–4906,
2019.
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