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Abstract— The problem of estimating unknown constant
parameters in linear regression with measurement noise is
considered in this paper. To analyze different levels of excitation
of the regressor, two notions of partial and feeble excitation
are introduced. The former implies the absence of persistent
or interval excitation, while the latter property states that the
excitation is insufficient for an efficient estimation in a noisy
setting. The dynamic extension and mixing method (DREM) is
used for the problem solution, and to improve its estimation
performance, regularization is proposed, and the resulting im-
provement is investigated analytically. The theoretical findings
are illustrated in the simulations.

I. INTRODUCTION

We consider the linear regression equation (LRE)

y(t) = ϕ⊤(t)θ + v(t), t ∈ R+ (1)

where y(t) ∈ Rℓ is the output signal, ϕ(t) ∈ Rn×ℓ is
the regressor, v(t) ∈ Rℓ is an additive distortion, e.g., a
measurement noise, and θ ∈ Rn is the vector of unknown
constant parameters. The signals y and ϕ are available, and
the goal is to estimate the vector of parameters θ. We assume
that the regressor ϕ and the distortion v are bounded and that
the regressor ϕ is piecewise continuous.

The crucial property defining whether the vector of param-
eters θ can be estimated (uniformly in time) is the excitation
of the regressor ϕ. The common types of excitation are
persistent and interval ones, as given in Section II.

The classic result in adaptive control and parameter es-
timation states that for ϕ persistently exciting, the vector
θ in LRE (1) can be estimated exponentially fast using, for
example, least squares algorithms, and the estimation error is
input-to-state stable with respect to v; see [1], [2]. In contrast,
the interval excitation is not uniform in time, precluding
noise filtering and robustness. However, it was shown in
[3]–[5] that the interval excitation is, in fact, sufficient for
estimation being the identifiability condition. If the regressor
ϕ is not exciting over any interval in the sense of Definition 1
given in Section II, then there exist θa, θb ∈ Rn, θa ̸= θb,
such that ϕ(t)θa = ϕ(t)θb, for all t, and the vector θ in (1)
cannot be reconstructed from the measurements of y and ϕ,
even in the absence of v. On the other hand, if the regressor ϕ
is exciting on an interval, the vector θ can be estimated in the
absence of noise, e.g., using finite-/fixed-time estimators [4]
or concurrent/composite learning [6], [7] (where the interval
excitation is also known as sufficient excitation [3]).

Besides the compromised identifiability of θ, the lack of
excitation of ϕ is also connected to the numerical imple-
mentation and tuning of estimation algorithms. For example,
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concurrent learning estimators use a historical data stack that
can be seen as an accumulation of samples ϕ(tk)ϕ

⊤(tk) ∈
Rn×n at time instances tk, k ∈ N. This data stack is
meant to keep the past information to be used with new
measurements of ϕ, allowing for parameter estimation under
interval excitation. Suppose that ϕ is interval excited as in
Defintion 1, but the corresponding value µ is small regarding
the magnitudes of signals and chosen numerical accuracy.
Then, the accumulated data matrix may be ill-conditioned,
requiring high gains and making the estimation prone to
numerical errors.

A similar situation may arise in the Dynamic Regressor
Extension and Mixing (DREM) estimation [8]. The extension
step of this procedure transforms the LRE (1) into a novel
extended LRE with a square regressor matrix Φ(t) ∈ Rn×n

whose adjugate matrix is further used to decouple the vector
problem (1) into a set of scalar LRE for each element
of θ independently. If the original regressor ϕ is PE but
with a relatively small value µ, then the extended matrix
Φ(t) may be close to singular, complicating the practical
implementation of a DREM estimator.

Nevertheless, even if the regressor ϕ is neither PE nor IE or
is PE/IE with a small µ value, the regressor may still contain
certain information, being exciting in specific directions. This
concept is used in least-squares estimation with regressor
projection [9] and directional forgetting [10], where the
covariance matrix is updated only in those directions where
the regressor ϕ contains new information.

Recently, a modification of the standard gradient and
least-squares algorithms was proposed in [11], allowing for
exponential estimation of a particular projection of θ in (1)
under the lack of PE; the authors also propose a definition of
order of PE lack. A similar problem was addressed in [12] in
the context of the DREM procedure. The authors proposed a
matrix update algorithm in the vein of directional forgetting
and introduced a definition of semi-persistent excitation.

Novelty and Contribution. This research is motivated by
these recent advances. We consider the LRE (1) under
a deficiency of excitation of ϕ, and propose two notions
quantifying the lack of persistent excitation as discussed
above. Next, we study several regularization tools that allow
us to improve the estimation accuracy for the vector of
constant unknown parameters θ. Admissible bounds on the
regularization matrix are evaluated.

The rest of the paper is organized as follows. Definitions of
different excitation levels for a regressor are given in Section
II, together with two new concepts of partial and feeble
excitation. The problem statement is presented in Section
III. Regularization for DREM is introduced and analyzed in
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Section IV. The results of computer experiments illustrating
the efficiency of this regularization are shown in Section V.

Notation

• The sets of nonnegative real and nonnegative integer
numbers are denoted by R+ and N, respectively. Also,
N∗ := N \ {0}.

• The set of real n×m-matrices is denoted by Rn×m.
• The n-identity matrix is denoted by In.
• For x ∈ Rn, ∥x∥ denotes its Euclidean norm, and ∥A∥

corresponds to the induced norm for A ∈ Rn×n.

II. PRELIMINARIES

Classical definitions of persistent and interval excitation
are recalled below:

Definition 1: Let ϕ : R+ → Rn×ℓ be a bounded signal.
(i) We call ϕ persistently exciting if there exist T > 0 and

µ > 0 such that for all t ∈ R+,∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ ≥ µIn. (2)

We write ϕ is PE or (T, µ)-PE to mention specific values
of T and µ.

(ii) We call ϕ interval exciting if it is exciting over an
interval (so (2) is satisfied only for a specific value of
t, e.g., t = 0). We say ϕ is IE. □

A. What is lack of excitation?

In contrast with persistent or interval excitation, a lack of
excitation is a less common concept. It is often considered
merely the absence of the PE/IE properties. A more sophis-
ticated interpretation was suggested in the recent work [11],
where the authors define the lack of persistence of excitation
of order p as follows.

Definition 2 (Lack of persistence of excitation, [11]):
For 0 ≤ p ≤ n, a piecewise continuous uniformly bounded
matrix function ϕ : R+ → Rn×ℓ has a lack of persistency
of excitation of order p, if there exist T > 0, kT > 0
and linearly independent orthogonal, unitary norm vectors
vi ∈ Rn, 1 ≤ i ≤ n, such that for all t ∈ R+,

v⊤i

(∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ

)
vi = 0, 1 ≤ i ≤ p (3)

and

v⊤i

(∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ

)
vi ≥ kT , p+ 1 ≤ i ≤ n. □

A few remarks regarding Defintion 2 are given below.
1) An example of vectors vi are the orthonormal eigenvec-

tors of the symmetric n×n matrix
∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ .

The first p vectors correspond to zero eigenvalues.
2) Definition 2 operates with constant vectors vi, meaning

that the lack of excitation has constant nature; the kernel
of the matrix

∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ is time-invariant.

For this paper, we consider the lack of excitation from
another point of view by introducing the following definition
of partial excitation.

Definition 3 (Partial excitation): A bounded signal ϕ :
R+ → Rn×ℓ is partially persistently (interval) exciting of
degree q, if there exist constant matrices C ∈ Rn×(n−q) and
Z ∈ Rn×q such that

• rank
([
C Z

])
= n,

• (degeneracy of regressor)

ϕ⊤(t)C = 0, ∀t ∈ R+, (4)

• the signal ϕ̃ :=
(
ϕ⊤Z

)⊤
is persistently (interval)

exciting. □
Definition 3 is more general than the definition of lack

of persistent excitation of degree p = n − q in [11]. It also
includes the case of interval excitation and does not impose
a particular structure of the matrices C and Z. However, it
is easy to see that partial persistent excitation of degree q is
equivalent to a lack of persistent excitation of degree n− q
for a special choice of C and Z.

Consider now the LRE (1), where the regressor ϕ is only
partially exciting of degree q. Due to the invertibility of
the matrix

[
C Z

]
, there exist θ̃1 ∈ Rn−q and θ̃2 ∈ Rq

providing
θ = Cθ̃1 + Zθ̃2. (5)

The component Cθ̃1 of the vector θ is orthogonal to the
regressor ϕ and cannot be estimated from (1). Thus, only the
vector θ̃2, excited by ϕ̃, can be reconstructed. To this end,
substituting (5) to (1) yields the reduced-order LRE

y(t) = ϕ̃⊤(t)θ̃2 + v(t) (6)

allowing the estimation of θ̃2 from y and ϕ̃ using any existing
parameter estimation techniques.

Remark 1: The matrices C and Z in Definition 3 are
not unique and may be written on a different basis. For
instance, for a pair C, Z satisfying the conditions, for
any invertible matrix R, the pair CR, ZR also fulfills
the requirements. Thus, θ̃2 in (5) is defined by a specific
choice of Z. Moreover, without loss of generality, we may
assume that Z is orthogonal to C. Otherwise, the matrix Z
can be written as Z = CA + C⊥B, where C⊥ ∈ Rn×q

is a full-rank matrix in the orthogonal complement of C,
and A ∈ R(n−q)×q , B ∈ Rq×q are any matrices. Then
ϕ̃⊤(t) = ϕ⊤(t)Z = ϕ(t)C⊥B, i.e., only the projection of Z
on the subspace orthogonal to C affects the measurements
y(t) and the reduced-order regressor ϕ̃(t).

B. Feeble Excitation

Both Definitions 2 and 3 operate with the exact equality to
zero of the products in (3) and (4). Recalling that the LRE (1)
contains the measurement noise v, from a practical point of
view, it is beneficial to consider the cases when the regressor
ϕ is formally exciting, but the level of excitation is feeble
with respect to the noise magnitude or numeric precision of
the system. We formulate feeble excitation as follows.

Definition 4: Let ϕ : R+ → Rn×ℓ be (T, µ)-PE (or IE) in
the sense of Definition 1. Let λ1(t) ≤ λ2(t) ≤ . . . ≤ λn(t)

be the eigenvalues of the matrix
∫ t+T

t
ϕ(s)ϕ⊤(s)ds. We say

that the excitation is feeble of order p if there exist µ1, µ2 ∈
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R+, µ1 ≪ µ2, such that λp(t) ≤ µ1, λp+1(t) ≥ µ2, for all
t ∈ R+ (for a specific t ∈ R+). □

Definition 4 is related to the ill-conditioning of the estima-
tion problem. For instance, if the integral is taken on a larger
time domain from t to t+kT for k ∈ N∗ to accumulate more
information, the resulting matrix is not well-conditioned (it
may also result in the augmentation of the noise influence
if ϕ and v are interrelated). From a practical point of view,
we are also interested in the case when µ1 is of the order of
magnitude of the noise v impacting the estimation accuracy.

C. Dynamic Regressor Extension and Mixing (DREM)

In a nutshell, the DREM procedure is a nonlinear dynamic
transformation applied to the LRE (1) and transforming it
into a set of n scalar LREs for each element of the vector
θ. Thus, the elements of θ can be estimated independently,
enhancing the transient performance; see [8] for more details.

The DREM procedure consists of the extension and mixing
steps. First, a dynamic transformation is applied, leading to
a new extended LRE

Y (t) = Φ(t)θ + V (t), V (t) = V (t) + ϵ(t), t ∈ R+, (7)

where Y (t) ∈ Rn and Φ(t) ∈ Rn×n are measured signals
generated by the extension of the dynamics, V (t) ∈ Rn

results from the noise v propagation, and ϵ(t) ∈ Rn is an
exponentially decaying term arising due to the initialization
of the filters in the extending dynamics. Such an extension
can be performed, for instance, via delay operators or linear
filters, whose auxiliary role is also to filter the noise; see
[13].

One particular choice yielding the extended model (7) is
the Kreisselmeier’s approach [14] given by: ∀t ∈ R+,

Φ̇(t) = −aΦ(t) + ϕ(t)ϕ⊤(t),

Ẏ (t) = −aY (t) + ϕ(t)y(t),
(8)

where Φ(0) = Φ0 ≥ 0, Y (0) = Y0, and a > 0 is a scalar
tuning parameter. Notably, the choice Φ0 = 0, Y0 = 0
yields ϵ ≡ 0 in (7). The work [15] shows that (8) preserves
the persistent/interval excitation providing the quantitative
evaluation of the excitation level of Φ, and [11] shows
that it also preserves the lack of excitation in the sense of
Definition 2.

The second step of the DREM procedure, mixing, is next
applied to derive a set of n scalar equations. Multiplying (7)
by the adjugate matrix of Φ, denoted as adj(Φ(t)), on the left
and setting Y(t) := adj(Φ(t))Y (t), V(t) := adj(Φ(t))V (t),
∀t ∈ R+, we get

Yi(t) = ∆(t)θi + Vi(t), (9)

where Yi, θi, and Vi are the ith elements of the vectors
Y , θ, and V , respectively, i ∈ 1, n, and the scalar function
∆ : R+ → R is the determinant of Φ, ∆(t) := det(Φ(t)) ,
∀t ∈ R+. The set of n scalar LRE (9) sharing the same
bounded scalar regressor ∆ is the main result of the DREM
procedure. It is worth noting that for a bounded regressor ϕ,
the vector V is also bounded, and v ≡ 0 implies V ≡ 0.

III. PROBLEM STATEMENT

As discussed in Section II-A, if the excitation is partial
of the degree q, then only a reduced-order q-dimensional
problem (6) can be solved. As it was explained in the
introduction, it also implies that the LRE is not identifiable
for the whole θ. Therefore, it is difficult to hope in getting
better with a reliable estimation of a projection of θ1 by
using any tool.

At the same time, a feeble excitation theoretically allows
the vector θ to be identified, but such degeneracy of the
regressor makes the estimation more sensitive to noise. A
conventional approach in such a setting is to introduce a
regularization in the estimation algorithm, which is our main
goal in the context of DREM in this work.

IV. REGULARIZATION OF THE DREM PROCEDURE

Consider the DREM procedure for the LRE (1), where a
dynamic extension, e.g., the Kreisselmeier’s approach (8),
yields the extended LRE (7). If the original regressor ϕ is
partially (feeble) excited, then according to quantitative es-
timates from [11], [15], the extended regressor Φ is singular
(ill-conditioned). To this end, we intend to revise the mixing
step of DREM, introducing a regularization.

Let H(t) ∈ Rn×n be a time-varying regularization matrix
and define ∀t ∈ R+

Φ̃(t) := Φ(t) +H(t), ∆̃(t) := det
(
Φ̃(t)

)
.

Multiplying (7) by adj
(
Φ̃(t)

)
on the left and defining

Ỹ(t) := adj
(
Φ̃(t)

)
Y (t), Ṽ(t) := adj

(
Φ̃(t)

)
V (t),

for all t ∈ R+, yields

Ỹ(t) = ∆̃(t)θ + Ṽ(t)− adj
(
Φ̃(t)

)
H(t)θ.

Suppose that the matrix H(t) is such that Φ̃(t) is invertible
and ∆̃(t) is strictly separated from zero for all t ≥ t0 ∈
R+, where t0 defines the interval of the initial information
accumulation.

As discussed in [16], an estimate of θ can be obtained via
a pointwise (algebraic) estimator

θ̂(t) =
(
∆̃(t)

)−1

Ỹ(t),∀t ≥ t0, (10)

followed by a (probably nonlinear) filter. The paper [16] also
shows that such a scheme operates as well (or better) as
estimators with asymptotic convergence, e.g., the gradient
and least-squares ones. Then the parameter estimation error
is given by, ∀t ≥ t0,

θ̂(t)− θ =
(
∆̃(t)

)−1

Ṽ(t)− d̃(t). (11)

where d̃(t) :=
(
Φ̃(t)

)−1

H(t)θ is the regularization error.
The first term on the right-hand side corresponds to the
measurement noise, and the second term, d̃, is the distortion
introduced by the regularization.
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Let us evaluate the properties of d̃ for different scenarios
according to the invertibility of Φ and H . For completeness,
the case of partial excitation (with a singular matrix Φ) is
also investigated. These formulas1 will also be helpful later in
implementing the regularization and derivation of the matrix
H .

A. H is invertible
First, suppose that Φ is invertible, e.g., in the case of

feeble excitation, and that H is also invertible (non-singular
regularization). It holds Φ̃−1 = Φ−1 −

(
Φ+ ΦH−1Φ

)−1
,

and the following expression can be derived:

d̃ = Φ̃−1Hθ =
(
I +H−1Φ

)−1
θ. (12)

This equation shows that as the regularization matrix H goes
to zero, the regularization-induced distortion d̃ also goes to
zero. However, decreasing H also reduces the lower bound
∆̃, making the estimation more sensitive to the noise due to
the ∆̃−1Ṽ term in (11). Thus, a choice of the regularization
matrix H is subject to the trade-off between noise sensitivity
and distortion, similar to the classic bias-variance trade-off.

Next, suppose the matrix Φ is singular, e.g., partially
excited. To get ∆̃ separated from zero, we introduce an
invertible regularization matrix H . Then it holds Φ̃−1 =(
I +H−1Φ

)−1
H−1 and d̃ obeys the same equation (12) as

above.
Therefore, as we can conclude from these two cases, if H

is invertible, we have the same shape of d̃ independently of
the invertibility of Φ.

B. Invertible Φ and singular H

As the matrix H yields a perturbation, reducing it can
be of interest. Suppose that Φ is invertible, e.g., in the
case of feeble excitation, and that H is singular, i.e., the
regularization is introduced in some specific directions only,
then similarly to the previous case, we obtain

d̃ = Φ̃−1Hθ =
(
I +Φ−1H

)−1
Φ−1Hθ.

By analogy with the case of an invertible matrix H , a smaller
matrix H implies a smaller distortion and a higher noise
sensitivity. Again this obvious trade-off is observed.

For a more constructive result, consider a block structure
of Φ. For feeble excitation, the first p eigenvalues are small,
then we can assume that

Φ =

[
A B
B⊤ D

]
,

where A ∈ Rp×p (or with other dimensions) should be
improved by the regularization, and from Φ > 0 we conclude
that its Schur complement S = D − B⊤A−1B is also
a positive definite matrix. Then using the block matrix
inversion formula, we obtain:

Φ−1 =

[
J −A−1BS−1

−S−1B⊤A−1 S−1

]
,

J = A−1 +A−1BS−1B⊤A−1.

1These derivations use various formulas for the inverse of a sum of
matrices, where the details are omitted due to the lack of space; see [17].

For ∆̃ to be separated from zero, we need Φ + H with
sufficiently big eigenvalues. One possible choice of H is

H =

[
H1 0
0 0

]
, H1 > 0, H1 ∈ Rp×p

Then Φ̃ =

[
A+H1 B
B⊤ D

]
is no more feebly excited for a

properly selected H1. Therefore, we have

Φ−1H =

[
JH1 0

−S−1B⊤A−1H1 0

]
,

and
d̃ =

[
ΣJH1 0

S−1B⊤A−1H1(ΣJH1 − I) 0

]
θ,

where Σ = (I + JH1)
−1.

Consequently, the components of the parameter vector θ,
corresponding to the part of Φ that is sufficiently excited
(the matrix D), do not introduce a perturbation in the regu-
larization error d̃, and their estimates are not much influenced
provided that the vector

[
S−1B⊤A−1H1(ΣJH1 − I) 0

]
θ

is sufficiently small.

C. Φ and H are simultaneously diagonalizable

Let us consider the special case when the regularization
matrix H is simultaneously diagonalizable with Φ. Such a
matrix H may be time-varying and computed online based
on the spectral decomposition of Φ, which is symmetric by
design. The spectral decomposition of Φ for all t ≥ t0 is
given by

Φ(t) = Q⊤(t)ΛΦ(t)Q(t), (13)

where Q is a time-varying orthogonal matrix of orthonormal
eigenvectors vectors (cf. with constant vi in Definition 2 or
matrix C in Definition 3), and ΛΦ(t) is a diagonal matrix
of eigenvalues of Φ(t). Let the matrix H be symmetric and
have the same eigenspace, i.e.,

H(t) = Q⊤(t)ΛH(t)Q(t), (14)

where ΛH(t) is a diagonal matrix of eigenvalues of H(t).
Then

Φ̃(t) = Q⊤(t) (ΛΦ(t) + ΛH(t))Q(t).

Suppose that ΛH(t) is chosen such that Φ̃(t) is invertible,
∀t ≥ t0. Then

d̃(t) = Q⊤(t) (ΛΦ(t) + ΛH(t))
−1

ΛH(t)Q(t)θ.

Recalling Definition 4, 0 ≤ λ1(t) ≤ . . . ≤ λn(t) are the
eigenvalues of Φ(t), i.e., the diagonal elements of ΛΦ(t);
suppose for simplicity that λi(t) is the i-th diagonal element,
i = 1, . . . , n. Let the diagonal elements of ΛH(t) be σi(t).
Then

d̃(t) = G(t)θ, G(t) = Q⊤(t)ΛG(t) Q(t), (15)

where

ΛG(t) = diag

(
σi(t)

λi(t) + σi(t)

)n

i=1

,

and all eigenvalues of G(t) are not greater than 1.
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Suppose that Φ is partially (feeble) exciting of degree q (of
order p), i.e., the first p = n− q eigenvalues of Φ are zeros
(close to zero): λi(t) = 0 (λi(t) ≤ µ1) for all t ≥ t0 for
i = 1, . . . , p. To ensure that the DREM-generated regressor
∆̃(t) is strictly separated from zero, it is reasonable to choose
σi(t) = σ0 > 0 for i = 1, . . . , p, where σ0 is a tuning
parameter. Setting σi = 0 for i = p+ 1, . . . , n, then

ΛH(t) =

[
σ0I 0
0 0

]
, ΛG(t) =

[
E(t) 0
0 0

]
,

where E(t) = diag
(

σ0

λi(t)+σ0

)p
i=1

.
The eigenvectors of Φ(t) associated with zero (small)

eigenvalues are the first p columns of the matrix Q(t);
denote these columns by Q0(t) ∈ Rn×p and the rest
columns as Q1(t) ∈ Rn×q , then Q(t) =

[
Q0(t) Q1(t)

]
=[

Q00(t) Q01(t)
Q⊤

01(t) Q11(t)

]
, where Q00(t) ∈ Rp×p, Q11(t) ∈ Rq×q

and Q01(t) ∈ Rp×q are respective sub-blocks. At the same
time, the columns of Q1(t) are the eigenvectors correspond-
ing zero eigenvalues, σi = 0, of the matrix G(t) defined in
(15).

In the partial excitation case, the columns of Q0(t) span
the same subspace of Rn as the columns of C defined in
Definition 3, corresponding to the kernel of Φ(t). Moreover,
if Z is orthogonal to C, as discussed in Remark 1, then
Q1(t) spans the same subspace as Z. Thus, Z is orthogonal
to G(t) for all t ≥ t0, and

Z⊤d̃(t) = Z⊤G(t)θ = 0. (16)

Equation (16) implies that for the specific choice of the
regularization matrix H(t) as (14) with σi = 0 for i =
p + 1, . . . , n, the distortion d̃(t) is orthogonal to Z. Thus,
in the absence of noise, the projection of the estimate (10)
under this regularization on the subspace orthogonal to C,
i.e., where the regressor ϕ is exciting, is not affected by the
distortion. Let θ̂ss be the steady-state value of θ̂(t) in the
absent of noise. Then

θ̂ss = C
(
θ̃1 + d̃1

)
+ Zθ̃2,

where d̃1 it the projection of d̃ on C. Thus this representation
can be used as an alternative to the reduced-order LRE (6).

In the case of feeble excitation,

d̃(t) =

[
Q00(t)E(t)Q00(t) Q00(t)E(t)Q01(t)
Q01(t)E(t)Q00(t) Q01(t)E(t)Q01(t)

]
θ

which has a generic structure. In general case the regulariza-
tion always perturb the estimation accuracy and optimization
of its value in the presence of noise is desirable.

D. Trade-off estimation

Let us provide an estimate on H providing the desired
trade-off between the noise filtering and the bias error.

Define the estimation error for the algorithm (10):

eH(t) = θ̂(t)− θ = Φ̃−1(t)Y (t)− θ

= Φ̃−1(t) (V (t)−H(t)θ) ,
(17)

then our goal is to prove that under certain restrictions on
the matrix H(t), and for a sufficiently big amplitude of the
noise V (t) in comparison with the norm of θ, the estimation
accuracy after regularization is better, i.e.,

∥eH(t)∥ ≤ ∥e0(t)∥, ∀t ≥ t0, (18)

where e0 corresponds to eH for H = 0, i.e., to the absence
of regularization. The necessity of introduction of a relation
between V (t) and θ is intuitively clear from the expression
of eH : the last term V (t) −H(t)θ contains all variables of
interest, which is multiplied on a common gain Φ̃−1(t), and
obviously, if H(t) is very big, the bias error H(t)θ starts
to dominate and corrupt the estimation error, as has already
been discussed.

Theorem 1: Assume that ∥θ∥ ≤ θmax for a given upper
bound θmax > 0, the matrix Φ̃(t) is nonsingular for all t ≥
t0, and there exists a constant β > 0 such that

∥Φ̃−1(t)V (t)∥ ≥ ∥Φ̃−1(t)∥β

for all t ≥ t0. Then for

β√
2θmax

≥ ∥H∥, Φ−1H +HΦ−1 +HΦ−2H ≥ 2In

the desired relation (18) is satisfied.2

The existence of β implies that the noise V (t) is suf-
ficiently rich and not zero, providing an excitation of the
signal Φ̃−1(t)V (t). If the noise is zero, it is straightforward
that regularization is the only source of inaccuracy in the
estimation.

Next, we illustrate these results with an academic example.

V. EXAMPLE

For an illustrative example, we consider the LRE (1) with
n = 3, ℓ = 1, and

ϕ(t) =
[
1 sin(t) sin(t+ s)

]
(19)

with constant s ∈ [0, π
2 ]. Choosing T = 2π, we obtain∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ =

[
2π 0 0
0 π π cos(s)
0 π cos(s) π

]
,

where the eigenvalues of this matrix are λ1 = π (1− cos(s)),
λ2 = π (1 + cos(s)), and λ3 = 2π. The excitation properties
of ϕ are summarized below.

• For any s > 0, the regressor (19) is (µ, 2π)-PE with
µ = 2π3

(
1− cos2(s)

)
, see Definition 1.

• A value of s close to zero makes the excitation feeble of
order 1 in the sense of Definition 4, i.e., the eigenvalue
λ1 can be made arbitrary close to zero making the ratio
λ2

λ1
arbitrary large.

• For s = 0, the regressor is partially persistently exciting
of degree 2 in the sense of Definition 3. This can be

seen choosing C =
[
0 1 −1

]⊤
, Z =

[
1 0 0
0 1 1

]⊤
and verifying that ϕ⊤(t)C = 0 for all t ∈ R+ and

2The proof of Theorem 1 is omitted due to the lack of space.
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ϕ̃(t) = Z⊤ϕ(t) is PE. Note also that Z is orthogonal
to C as discussed in Remark 1.

Choose the vector of unknown parameters as θ =[
1 −3 2

]⊤
and let v(t) be a uniform bounded noise,

|v(t)| ≤ v̄, where v̄ = 0.3.
For the extension step of the DREM procedure, we apply

(8), where a = 1
2 , Φ0 = 0 and Y0 = 0. It yields the

extended LRE (7), where the regularization and mixing can
be performed as discussed in Section IV.

Persistently and Partially excited cases. For s = π
2 , both

eigenvalue λ1 and λ2 equal to π, and all parameters can be
estimated without a regularization. The estimation accuracy
thus depends only on the noise filtering.

For s = 0, the smallest eigenvalue is zero, and the vector
θ cannot be reconstructed. Then, two options are available.
The first is to compute the new regressor ϕ̃ = Z⊤ϕ as
discussed in Section II-A, and perform estimation based on
the reduced-order LRE (6). Note that if the matrix Z is
not known a priori, it can be found based on the spectral
decomposition of Φ, as discussed in Section IV-C. It is also
interesting to see that due to the special structure of the
matrix Z, the first element of θ̃2 coincides with the first
element of θ, allowing for its estimation.

Another option is to apply the regularization (13). Then,
due to (15) and the form of the matrix Z, the first element
of d̃ is zero allowing for reconstruction of the first element
of θ.

Feeble excitation. Choose s = 0.1 making λ1 small and
the matrix

∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ poorly conditioned. Then, to

improve the estimation accuracy, we introduce the constant
regularization matrix H(σ) = σ diag(0, I2), and σ > 0.
Such a structure is motivated by the results presented in
Section IV-B.

We are interested to see how the value of σ impacts the
estimation accuracy. Towards this end, for a given value of
σ we compute eH(σ)(t) defined in (17) and find the mean
value of |eH(σ)(t)|2 over the simulation horizon after the
transients (approximately 3 · 105 samples). These values,
computed for σ varying from 0 (no regularization) to 0.01
are given in Figure 1. For no regularization, the noise
impacts the accuracy; as σ increases, the noise sensitivity
is improved, but for high σ the regularization-induced bias
becomes dominating.

VI. CONCLUSIONS

The LRE problem with measurement noise was investi-
gated. Two concepts of partial and feeble excitation were
introduced, which determine the conditions of a lack of
persistent or interval excitation or that the excitation is
insufficient for a reliable estimation with perturbations. Reg-
ularization was introduced for DREM, and the conditions for
improving accuracy were evaluated. An extension to the case
of time-varying parameters is left for future research.

REFERENCES

[1] D. Efimov and A. Fradkov, “Design of impulsive adaptive observers
for improvement of persistency of excitation,” International Journal of

0 2 4 6 8

10
-3

1.6

1.8

2

2.2

2.4

2.6

2.8

Fig. 1. Mean value of |eH(σ)(t)|2 as a function of σ.

Adaptive Control and Signal Processing, vol. 29, no. 6, pp. 765–782,
jul 2014.

[2] D. Efimov, N. Barabanov, and R. Ortega, “Robustness of linear time-
varying systems with relaxed excitation,” International Journal of
Adaptive Control and Signal Processing, vol. 33, no. 12, pp. 1885–
1900, apr 2019.

[3] Y. Pan and H. Yu, “Composite learning robot control with guaranteed
parameter convergence,” Automatica, vol. 89, pp. 398–406, mar 2018.

[4] J. Wang, D. Efimov, S. Aranovskiy, and A. A. Bobtsov, “Fixed-
time estimation of parameters for non-persistent excitation,” European
Journal of Control, vol. 55, pp. 24–32, sep 2020.

[5] L. Wang, R. Ortega, and A. Bobtsov, “Observability is sufficient for
the design of globally exponentially stable state observers for state-
affine nonlinear systems,” Automatica, vol. 149, p. 110838, mar 2023.

[6] R. Kamalapurkar, B. Reish, G. Chowdhary, and W. E. Dixon, “Concur-
rent learning for parameter estimation using dynamic state-derivative
estimators,” IEEE Transactions on Automatic Control, vol. 62, no. 7,
pp. 3594–3601, jul 2017.

[7] Y. Pan, S. Aranovskiy, A. Bobtsov, and H. Yu, “Efficient learning from
adaptive control under sufficient excitation,” International Journal of
Robust and Nonlinear Control, vol. 29, no. 10, pp. 3111–3124, apr
2019.

[8] R. Ortega, S. Aranovskiy, A. A. Pyrkin, A. Astolfi, and A. A. Bobtsov,
“New results on parameter estimation via dynamic regressor extension
and mixing: Continuous and discrete-time cases,” IEEE Transactions
on Automatic Control, vol. 66, no. 5, pp. 2265–2272, may 2021.

[9] A. Zolghadri, J. Cieslak, P. Goupil, and R. Dayre, “Turning theory to
practice in model-based FDI: Successful application to new generation
airbus aircraft,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 12 773–12 778,
jul 2017.

[10] A. Goel, A. L. Bruce, and D. S. Bernstein, “Recursive least squares
with variable-direction forgetting: Compensating for the loss of per-
sistency [lecture notes],” IEEE Control Systems, vol. 40, no. 4, pp.
80–102, aug 2020.

[11] R. Marino and P. Tomei, “On exponentially convergent parameter
estimation with lack of persistency of excitation,” Systems & Control
Letters, vol. 159, p. 105080, jan 2022.

[12] A. Glushchenko and K. Lastochkin, “Relaxation of conditions for
convergence of dynamic regressor extension and mixing procedure,”
Automation and Remote Control, vol. 84, pp. 16–47, 2023.

[13] S. Aranovskiy, A. Bobtsov, R. Ortega, and A. Pyrkin, “Performance
enhancement of parameter estimators via dynamic regressor extension
and mixing,” IEEE Transactions on Automatic Control, vol. 62, no. 7,
pp. 3546–3550, jul 2017.

[14] G. Kreisselmeier, “Adaptive observers with exponential rate of con-
vergence,” IEEE Transactions on Automatic Control, vol. 22, no. 1,
pp. 2–8, feb 1977.

[15] S. Aranovskiy, R. Ushirobira, M. Korotina, and A. Vedyakov, “On
preserving-excitation properties of kreisselmeier’s regressor extension
scheme,” IEEE Transactions on Automatic Control, vol. 68, no. 2, pp.
1296–1302, feb 2023.

[16] M. Korotina, S. Aranovskiy, R. Ushirobira, D. Efimov, and J. Wang,
“Fixed-time parameter estimation via the discrete-time drem method,”
in Proc. 22st IFAC World Congress, Yokohama, Japon, 2023.

[17] R. Horn and C. Johnson, Matrix Analysis. Cambridge University
Press, 2012.

2520


