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Abstract— We consider a class of pursuit-evasion differential
games in which the evader has continuous access to the
pursuer’s location but not vice-versa. There is an immobile
sensor (e.g., a ground radar station) that can sense the evader’s
location and communicate that information intermittently to the
pursuer. Transmitting the information from the sensor to the
pursuer is costly and only a finite number of transmissions can
happen throughout the entire game. The outcome of the game
is determined by the control strategies of the players and the
communication strategy between the sensor and the pursuer.
We obtain the (Nash) equilibrium control strategies for both the
players as well as the optimal communication strategy between
the static sensor and the pursuer. We discuss a dilemma for the
evader that emerges in this game. We also discuss the emergence
of implicit communication where the absence of communication
from the sensor can also convey some actionable information
to the pursuer.

I. INTRODUCTION

Pursuit-Evasion games [1] have been applied to investigate
a wide class of civilian and military applications involving
multi-agent interactions in adversarial scenarios [2], [3], [4].
While several variations ranging from complex dynamic
models for the players (e.g., [5]) to complex geometry
of the environment (e.g., [6]) to limited visibility of the
players (e.g., [7]) have been considered, one of the prevailing
assumptions have been the continuous sensing capability for
the players, with the exception of [8], [9], [10] among few
others. By ‘continuous sensing’ we refer to the capability
that enables the players to keep their sensors turned on
continuously for the entire duration of the game. Extensions
of pursuit-evasion games in the context of sensing limitations
have mainly considered limited sensing range e.g., [11],
limited field of view e.g., [12], and noisy measurements
e.g., [13], but the challenges associated with the lack of
continuous sensing remains unsolved.

In this paper, we revisit the classical linear-quadratic
pursuit-evasion game where the pursuer does not have a
continuous sensing capability. In particular, the pursuer relies
on a remotely located sensor (e.g., a radar station) to sense
the evader’s position. Upon request, the remote sensor can
perfectly sense the location of the evader and share it
with the pursuer.1 The communication channel between the
pursuer and the remote sensor is assumed to be noiseless,
instantaneous (i.e., no delay), and perfectly reliable (i.e.,
no packet losses). The pursuer intermittently requests the
evader’s location to update its pursuit strategy. Due to the
resource (e.g., energy) constraints, the pursuer can only make
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1One may alternatively also consider a scenario where the pursuer has
an onboard sensor to measure the evader’s location, however, it can only
use the sensor intermittently due to, for example, energy and computational
constraints.

a finite number of requests and it aims to minimize the
number of communications. On the other hand, the evader
is able to sense the pursuer continuously and is aware of
the sensing limitation of the pursuer. The objective of this
work is to analyze the game under this asymmetric sensing
limitation and obtain: (i) the optimal communication times
between the sensor and the pursuer and, (ii) the equilib-
rium control strategies for the pursuer and the evader. It is
noteworthy that the majority of the existing work not only
considers continuous sensing (or no sensing at all) but also
often assumes that the sensing capability is superior for the
pursuer; e.g., perfect measurement for the pursuer and noisy
measurement for the evader [14], [15].

To the best of our knowledge, some of the earliest works
involving intermittent measurements for linear quadratic dif-
ferential games were discussed in [16], [9] where both the
players had access to only intermittent measurements. These
players, however, had to come to an agreement on the sensing
instances, which was solved by an optimization problem.
This restriction was later relaxed in [17]. These works were
also extended to discrete time [17], infinite horizon [18],
and recently to asset defense scenarios [10]. In this paper,
we consider a three-player problem involving a pursuer, an
evader, and a remote sensor, where the remote sensor is a
passive player that does not make any decision about the
sensing times. The pursuer intermittently communicates with
the remote sensor which results in an intermittent sensing
capability for the pursuer. This problem has similarity with
the sampled-data H∞ optimal control problem studied in
[19]. In this paper, we not only consider an intermittent
sensing (equivalent to the sampled-data) framework, but
also we obtain the optimal time instances for the sens-
ing/communication.

Intermittent sensing/communication has been a subject
of active research in networked control systems. Efficient
frameworks such as event- and self-triggered controls have
been developed to reduce the communication/sensing needs.
These methods have also been used for studying games,
e.g., [20], [21]. Although these methods use intermittent
sensing/communication, they do not study the optimality of
the sensing/communication strategy, except in some special
cases, e.g., [22], [23]. This is primarily due to the fact
that intermittent sensing/communication makes the problem
analytically and computationally intractable. In contrast to
those works, our objective in this paper is to find the optimal
number of required communications as well as the optimal
communication times.

The rest of the paper is organized as follows: In Sec-
tion II, we describe the linear-quadratic pursuit-evasion game
problem. In Section III, we discuss the closed- and open-
loop equilibria for this game. The pursuer has continuous
access to the game state in the closed-loop case whereas,
in the open-loop case, the pursuer only knows the initial
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state of the game. Next, we study the game with intermittent
communication in Section IV. We derive the optimality
conditions for the communication as well as the equilibrium
control strategies for the pursuer and the evader. Finally,
we discuss some open problems and conclude the paper in
Section V.

II. PROBLEM FORMULATION

We consider a linear quadratic pursuit-evasion game where
the state of the game follows the dynamics

ẋ(t) = Ax(t) +Bup(t) + Cue(t), x(t0) = x0, (1)

where x(t) ∈ Rnx is the state at time t, up(t) ∈ Rnp and
ue(t) ∈ Rne are the inputs of the pursuer and the evader,
respectively, at time t. The initial state x0 is known to both
the players at the beginning of the game. The payoff function
for this game is

J̄ =

∫ tf

t0

(
∥x(t)∥2Q + ∥up(t)∥2Rp

− ∥ue(t)∥2Re

)
dt

+ ∥x(tf )∥2Qf
, (2)

where Rp, Re ≻ 0, and Q,Qf ⪰ 0 are symmetric matrices.
Although the game is deterministic, the payoff may not

necessarily be deterministic if the players adopt randomized
strategies for their inputs. Therefore, in the subsequent sec-
tion, wherever it is appropriate, we will consider the expected
value of the payoff function, i.e., J ≜ E∼(µp,µe)[J̄ ], where
µp and µe denote the strategies of the pursuer and the evader,
respectively. E∼(µp,µe)[·] denotes expectation with respect to
the randomization induced by µp and µe.

The strategies µp and µe are measurable functions of
the information sets of the players. To describe the infor-
mation sets of the players, we first denote m(t) to be the
total number of sensing requests upto time t and T (t) ≜
{t0, t1, . . . , tm(t)} be the set of sensing instances upto time
t, where t0 is the initial time, and ti < ti+1 for all i,
and tm(t) is the latest sensing time such that tm(t) ≤ t.
Furthermore, we denote Ie(t) ≜ {x(s), T (t) | s ≤ t} to
be the information available to the evader at time t and
Ip(t) ≜ {x(s′), T (t) | s′ ∈ T (t)} to be the pursuer’s
available information.

In the subsequent sections we will suppress the time
argument, as much as possible, for notational brevity, e.g.,
we shall use x instead of x(t).

III. CLOSED-LOOP AND OPEN-LOOP EQUILIBRIA

In this section, we revisit the classical results on close-
loop equilibrium and also discuss the open-loop case for the
pursuer. To that end, let matrix P follow the Riccati equation

Ṗ +ATP + PA+Q+ P (CR−1
e CT −BR−1

p BT)P = 0,

P (tf ) = Qf . (3)

The solution to the Riccati equation is well defined for all t ≤
tf if the assumption CR−1

e CT − BR−1
p BT ≺ 0 is satisfied.

Without this condition, the Riccati equation may have a finite
escape time (conjugate point) in the interval [t0, tf ] and the
cost J̄ becomes infinity.

Assumption 1: The matrices are chosen such that
CR−1

e CT −BR−1
p BT ≺ 0.

Loosely speaking, the above assumption implies that the
pursuer has more controllability than the evader, as also
discussed in [14].

Provided the solution to (3) is well defined for the interval
[t0, tf ] –which is now guaranteed by Assumption 1– one
may verify that J̄ in (2) can be rewritten as (e.g., see [9,
Theorem 3.1])

J̄ =∥x0∥2P0
+

∫ tf

t0

∥up +R−1
p BTPx∥2Rp

dt−∫ tf

t0

∥ue −R−1
e CTPx∥2Re

dt, (4)

where we defined P0 ≜ P (t0). When both the players have
access to the state for all t, we observe from (4) that the
(Nash) equilibrium inputs for the players are

up = −R−1
p BTPx ≜ µp(Ip),

ue = R−1
e CTPx ≜ µp(Ie).

Substituting these strategies in the dynamics (1) yields

x(t) = Φ(t)x0 (5)

where the state transition matrix Φ satisfies

Φ̇ = (A−BR−1
p BTP + CR−1

e CTP )Φ, (6)

with the initial condition Φ(t0) = I , where I is the identify
matrix. Let us define the ‘open-loop’ input pair (ūp, ūe):

ūp = −R−1
p BTPΦx0,

ūe = R−1
e CTPΦx0.

(7)

Using (5) and (6) we notice that ūp(t) = up(t) and ūe(t) =
ue(t) for all t. Therefore, it appears from (7) that the players
only need to know x0 since everything else can be computed
offline. If (ūp, ūe) is an equilibrium pair (producing the same
payoff as the pair (up, ue)), then in our problem, it would
imply that there is no need for communication between the
remote sensor and the pursuer. However, (ūp, ūe) is not
necessarily an equilibrium pair, even though it is derived
from the equilibrium one (up, ue). To best illustrate this, we
consider the following example.

Example 1: Consider the pursuit-evasion game with xp ∈
R2 and xe ∈ R2 denoting the states of pursuer and the
evader, respectively. They have the dynamics ẋp = up and
ẋe = ue. The state of the game is x = [xT

p, x
T
e]

T and the
objective function is

J̄ =

∫ 1

0

(1
4
∥up∥2 −

1

2
∥ue∥2

)
dt+ ∥xp(1)− xe(1)∥2.

The initial states for the players are xp(0) = [0, 0]T and
xe(0) = [1, 0]T.

For this example, we will explicitly write In and 0n to
denote, respectively, the identity and the zero matrices of
dimension n.

In this example, A = 04, B =

[
I2
02

]
and C = −

[
0
I2

]
, and

Qf =

[
I2 −I2

−I2 I2

]
, Re =

1
2 , Rp = 1

4 , t0 = 0, and tf = 1.

By solving (3), we obtain

P (t) =
1

3− 2t

[
I2 −I2

−I2 I2

]
.
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The open-loop inputs, defined in (7), are found to be

ūp =
[4
3
, 0

]T

, ūe =
[2
3
, 0

]T

.

The resulting payoff from the strategy pair (ūp, ūe) is J̄ = 1
3 .

When the pursuer’s strategy is fixed to ūp, the evader has
an incentive to choose a strategy different from ūe. To see
this, let us pick an arbitrary strategy ue = [−c, 0]T where
c > 0 is some constant. Therefore, xp(1) = [ 43 , 0]T and
xe(1) = [1− c, 0]T, and the payoff from this strategy is

J̄ =

∫ 1

0

(
1

4

(4
3

)2

− 1

2
c2
)
dt+

(
c+

1

3

)2

=
1

2
c2 +

2

3
c+

5

9
.

The resulting payoff is not bounded from above as a function
of c. Since the evader is aiming to maximize J̄ , it can drive
the payoff to infinity. △

Example 1 demonstrates that the pursuer may not com-
mit to the open-loop equivalent of the equilibrium strategy
without sacrificing performance. Moreover, as shown in
this example, the payoff resulting from such an open-loop
execution can be arbitrarily high (i.e., payoff diverging to
infinity). While the difference in the payoffs resulting from
up and ūp is infinite in the chosen example, one might ask
whether it is always the case for any such pursuit-evasion
games represented by (1)-(2). Furthermore, one might be
interested in the payoff when the pursuer has intermittent
access to the state x(t). These are some of the questions
that we investigate in the rest of the paper. More precisely,
we answer the following fundamental questions: (i) Does
there exist an intermittent communication strategy between
the pursuer and the remote sensor that can ensure the same
payoff as the one obtained from continuous communication?
(ii) If such an intermittent communication strategy exists,
what is the minimum number (Nmin) of required communi-
cations, and what are the optimal time instances (ti’s) for the
communications? and finally, (iii) If the available number of
communications is less than Nmin, how much will the payoff
degrade?

IV. GAME UNDER INTERMITTENT COMMUNICATION

Since the communication between the remote sensor and
the pursuer is intermittent instead of continuous, and the total
number of communications is bounded, the evader may have
an incentive to deviate from its earlier equilibrium strategy
of ue = R−1

e CTPx. Without loss of generality, let us assume
that the evader follows

ue = R−1
e CTPx+ w, (8)

where w(t) ∈ Rne is an input vector that is chosen by the
evader strategy µe. The input w(t) can depend on the state
and it is also allowed to be a random variable. Allowing w(t)
to be a random variable implies that the evader can employ
randomized/mixed strategies.

Our first objective in this section is to investigate the
existence of an intermittent communication strategy with the
same payoff as the continuous communication strategy. To
that end, let {ti}Ni=1 denote the N communication instances
where ti < ti+1 < tf for all i = 1, . . . , (N − 1). For
national brevity, we further introduce tN+1 = tf and the
0-th communication instance is defined to be the initial time
of the game t0.

A. Existence of an Intermittent Communication Strategy
To show the existence of an intermittent strategy that

performs equally good as the continuous one, we first com-
pute the payoff for a given set of communication instances
T = {ti}N+1

i=0 . For a given T , let the pursuer follow the
strategy

˙̂x = (A−BR−1
p BTP+ CR−1

e CTP )x̂, x̂(ti) = x(ti), (9)

up = −R−1
p BTPx̂. (10)

Later we will prove that (10) is indeed the optimal strategy
for the pursuer.

Given the evader strategy to be (8) and the pursuer strategy
to be (10), we have

ẋ = A1x−BR−1
p BTPx̂+ Cw, (11)

where A1 ≜ A+CR−1
e CTP . Let e(t) ≜ x(t)− x̂(t) denote

the difference between the true state x and the pursuer’s
estimate x̂ at time t. Using (11) and (9), one may verify
that, for all t ∈ [ti, ti+1) and for all i = 0, . . . , N ,

ė = A1e+ Cw t ∈ [ti, ti+1)

e(ti) = 0.
(12)

Substituting (10) and (8) in (4) yields

J̄ =∥x0∥2P0
+

∫ tf

t0

(
∥R−1

p BTPe∥2Rp
− ∥w∥2Re

)
dt. (13)

Since w is potentially a random process, we consider the
expected payoff

J =∥x0∥2P0
+

∫ tf

t0

E∼µe

(
∥e∥2

PBR−1
p BTP

− ∥w∥2Re

)
dt,

(14)

where the expectation is with respect to the randomness
introduced by the evader strategy µe. The expected cost (14)
can be rewritten as

J =∥x0∥2P0
+

N∑
i=0

∫ ti+1

ti

E∼µe

(
∥e∥2

PBR−1
p BTP

− ∥w∥2Re

)
dt.

(15)

Since, e(ti) resets to zero regardless of the evader’s strategy,
the choice of w in the interval [ti, ti+1) does not affect the
costs

∫ tj+1

tj
E∼µe

(
∥e∥2

PBR−1
p BTP

− ∥w∥2Re

)
dt for any j ̸= i.

Therefore, (15) is more amenable than (14) for computing
the optimal w that maximizes J .

Let us now consider the evader’s optimal control problem
for the interval [ti, ti+1), which we denote by OPi:

OPi max

∫ ti+1

ti

E∼µe

(
∥e∥2

PBR−1
p BTP

− ∥w∥2Re

)
dt,

subject to (12).

In the following theorem we characterize the optimal solution
and the optimal value for OPi.

Theorem 1: Let M satisfy the following Riccati equation

Ṁ +AT
1M +MA1 − PBR−1

p BTP −MCR−1
e CTM = 0,

M(ti+1) = 0, (16)

where A1 = A + CR−1
e CTP . The optimal value of OPi is

zero if and only if M(t) does not have an escape time in
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the interval [ti, ti+1), and the corresponding optimal input is
w(t) = 0. On the other hand, if M(t) has an escape time
in the interval [ti, ti+1), then the optimal value of OPi is
unbounded from above. △

Proof: Let us first consider the case that M(t) does not
have an escape time in the interval [ti, ti+1). In this case,
one may use

0 =

∫ ti+1

ti

d

dt
(∥e∥2M )dt

=

∫ ti+1

ti

(
eT(Ṁ +AT

1M +MA1)e+ 2eTMCw
)
dt

to rewrite∫ ti+1

ti

(
∥e∥2

PBR−1
p BTP

− ∥w∥2Re

)
dt

= −
∫ ti+1

ti

∥w −R−1
e CTMe∥2Re

dt ≤ 0.

Since w must be chosen to maximize the optimal value of
OPi, we conclude that w = R−1

e CTMe is the optimal choice
according to the last equation. Substituting w = R−1

e CTMe
in (12), we obtain e(t) = 0 and consequently w(t) = 0.

On the other hand, when M(t) has a finite escape time
during the interval [ti, ti+1), one may construct an input w
to show that the optimal value is unbounded. We omit this
construction of w due to page limitations. ■

Theorem 1 implies that, as long as the communication
instances ti’s are chosen such that M is well defined in each
interval, the optimal choice for the evader is w = 0, this
is in line with what was observed for the sampled-data H∞
optimal control problem in [19]. Theorem 1 essentially shows
that J = ∥x0∥2P0

, i.e., the payoff is exactly the same as the
one from the continuous communication case. Theorem 1
also states that, if any of the communication instance is
chosen such that M has a finite escape time, then the payoff
becomes infinity. Therefore, the intermittent communication
can either perform as good as the continuous communication
or it will perform arbitrarily bad, but nothing in between.

Corollary 1: A necessary condition for an intermittent
communication strategy to produce a finite payoff is to
ensure M(t) has a well defined solution for each interval
[ti, ti+1).
Proof: The proof follows directly from Theorem 1 and the
preceding discussion. ■

Remark 1: Given the (i+1)-th communication time ti+1

and the terminal condition M(ti+1) = 0, there exists a
finite duration δ such that M does not have a finite escape
time in the interval [ti+1 − δ, ti+1).2 Therefore, the inter-
communication duration (ti+1 − ti) is lower bounded by δ.
This implies that the total number of communications is finite
for a finite interval [t0, tf ).

In summary, there always exists an intermittent communi-
cation strategy that produces the same payoff as the continu-
ous communication case. Furthermore, the sensing instances
must satisfy the necessary condition given in Corollary 1.
This necessary condition is related to the finite escape times
of a certain Riccati equation. While there exists several
intermittent strategies satisfying this necessary condition,

2This is due to the local Lipschitz property of the function f(M) =
−AT

1M −MA1 + PBR−1
p BTP +MCR−1

e CTM .

next we investigate the optimal intermittent communication
strategy that incurs the least number of communications.
Before proceeding to the next section, we conclude this
section by formally showing that the assumed strategy of
the pursuer in (10) is an equilibrium strategy.

Lemma 1: The equilibrium strategy for the pursuer is:

˙̂x = (A−BR−1
p BTP+ CR−1

e CTP )x̂, x̂(ti) = x(ti),

up = −R−1
p BTPx̂(t).

Proof: Without loss of any generality we assume that the
communication instances are chosen such that they satisfy
the necessary condition in Corollary 1; otherwise, the payoff
is unbounded from above regardless of the pursuer’s strategy.

Since the evader’s policy is to pick w = 0 when the
intermittent communication instances follow Corollary 1, we
have ue = −R−1

e CTPx and the payoff (4) becomes

J̄ = ∥x0∥2P0
+

∫ tf

t0

∥up +R−1
p BTPx∥2Rp

dt.

At this point, one may verify that x̂(t) = x(t) for all t, and
hence, up = −R−1

p BTPx̂ is the equilibrium strategy. ■

B. Optimal Communication Instances
The discussion in this section will focus on computing

the optimal communication instances. To that end, we shall
discuss the finite escape times of M defined in (16). Two
major challenges in studying the escape times of (16) are:
(i) A1 is time varying since it depends on P , and (ii) M
depends on P , which follows another Riccati equation.

To overcome these challenges we consider the matrix Π =
M − P . Since P does not have a finite escape time (due
to Assumption 1), M will have a finite escape time if and
only if Π does. Next we verify that Π also follows a Riccati
equation:

Π̇ = Ṁ − Ṗ

= −(AT
1M +MA1 − PBR−1

p BTP −MCR−1
e CTM)

+ATP + PA+Q+ P (CR−1
e CT −BR−1

p BT)P

= −ATΠ−ΠA+Q+ΠCR−1
e CTΠ.

Notice that the dynamics equation of Π does not depend
on P anymore, and all the matrices involved the equation
of Π̇ are time invariant. This form is important since we
may readily use the results from [24] that studies the escape
time of Riccati equations of this form. Next, we will study
the finite escape time of Π in the interval [ti, ti+1) with
the boundary condition Π(ti+1) = −P (ti+1). The following
theorem provides the optimal communication instances.

Theorem 2: The i-th triggering instance is the escape time
for Π where

Π̇ +ATΠ+ΠA−Q−ΠCR−1
e CTΠ = 0, t < ti+1,

Π(ti+1) = −P (ti+1),

where tN+1 = tf .
Proof: Let {ti}Ni=1 be the set of communication times

obtained from Theorem 2 and let {t′i}N
′

i=1 be an arbitrary
sequence of communication instances that satisfy the nec-
essary condition in Corollary 1. We prove this theorem by
contradiction and, to that end, we assume that N ′ < N .
Notice that tN+1 = t′N ′+1 = tf . Since tN is the escape time
for the interval [tN , tf ), then we must have tN ≤ t′N ′ . Now,
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starting from the terminal condition Π(t′N ′) = −P (t′N ′), one
may verify that Π(tN ) ⪯ P (tN ) and therefore, Π will have
an escape time before tN−1 since tN−1 was the escape time
with the boundary condition Π(tN ) = P (tN ). Therefore, we
conclude tN−1 ≤ t′N ′−1. Following an inductive argument,
one obtain t1 ≤ t′1 and consequently, N ′ ≥ N . Thus, the
proof is complete. ■

Notice that the triggering instances are computed back-
wards and the duration (ti+1−ti) is maximized while finding
ti for a given ti+1. Since t0 is fixed and t1 is the first trigger-
ing instance, we are guaranteed that Π does not have a finite
escape time in the interval (t0, t1]. Therefore, unless t0 itself
is an escape time, there is some slack in the choice of t1, and
t1 can be increased to t′1 without introducing an escape time
within the new interval (t0, t′1]. Given this new t′1, one may
increase t2 to t′2 while ensuring (t′1, t

′
2] does not contain an

escape time. Therefore, the optimal communication instances
are non-unique unless t0 is the escape time for Π with the
boundary condition Π(t1) = −P (t1). Although there is non-
uniqueness in the actual communication instances, the total
number of required communication is unique.

C. Evader’s Dilemma
At time ti (or, at an arbitrary time t in general), the

evader does not know when/whether the pursuer is going to
request for communications. Therefore, if the evader picks
w = 0 for the interval [ti, ti+1) and the pursuer does not
request for a communication, then the evader has lost the
opportunity that would have given the evader a much higher
(theoretically infinite) payoff if it did not select w = 0.
On the other hand, if the evader picked a non-zero w and
the pursuer communicated with the sensor, then the evader
will have incurred a loss in its payoff. Therefore, the evader
has to make a decision first on whether it should use a
non-zero w without the pursuer having to commit to the
next communication instance. This is an interesting dilemma
from the evader’s side where it has to pick between a high-
risk-high-reward (i.e., the evader picks a nonzero arbitrarily
high w) and a no-risk-no-reward (i.e., evader picks w = 0)
strategy. This dilemma will not occur in a slightly different
scenario where the remote sensor can continuously sense the
evader and the sensor imitates the communication instead of
the pursuer requesting for it. In this case, the evader knows
that if it picks a nonzero w, the sensor will communicate state
at appropriate ti’s and this will result in a worse payoff for
the evader. Therefore, even in absence of a communication
from the sensor, the pursuer is ensured that the evader is not
able to get a payoff higher than ∥x0∥2P0

and the pursuer is
safe to continue with its strategy up = −R−1

p BTPx̂ without
having to reset the value of x̂. This implies an implicit
communication in absence of a physical communication,
which is in line with what was found for a linear-quadratic
optimal control problem in [25].

D. Example 1 Revisited
In this section, we revisit Example 1 and compute the

communication instances according to Theorem 2. By solv-
ing the Riccati equation for Π, we obtain

Π(t) =
1

3− 4ti+1 + 2t

[
−I2 I2
I2 −I2

]
. ∀t ∈ (ti, ti+1].

Therefore, the i-th communication time is found by solving
3−4ti+1+2ti = 0. Given tN+1 = tf = 1, we obtain, tN =

xopt

xrisky
xrisky

Fig. 1: In all the subfigures, hollow blue (red) points represent the
initial location of the pursuer (evader). The solid blue (red) points
represent the pursuer’s (evader’s) location at some time t1. The
dotted red circles denote the boundary of the evader’s reachability
region under the constraint that the control effort (measured by∫ t1
t0

∥ue∥2Re
) is less than or equal to the effort from the optimal

controller. (Top left): t1 = 3
4

and the pursuer is at the evader’s
initial location. (Top-right): t1 < 3

4
and the optimal location for

the evader to be is at xopt. (Bottom left): t1 > 3
4

and the optimal
location for the evader to be at xrisky. (Top-right): t1 = 1

2
the

location xrisky coincides with the pursuer’s location.

4tN+1−3
2 = 1

2 . Similarly, given tN = 1
2 , we obtain tN−1 =

4tN−3
2 = − 1

2 < t0. Therefore, only one communication is
needed and the communication occurs at time t1 = 1

2 .
As discussed after Theorem 2, the communication in-

stances are non-unique. In our example, one may choose
any t1 such that t1 < 3

4 . This is obtained by plugging in
t0 = 0 in the equation 3− 4t1 + 2t0 > 0.

The conditions t1 < 3
4 or t1 = 1

2 are obtained by
solving an escape time problem and they do not provide
much physical insights. To understand what these conditions
physically imply in the context of this example, we use
a graphical representation of the system in Fig. 1, where
the blue hollow/filled dots represent the pursuer and the
red ones representing the evader. Recall that the optimal
(open-loop) input for the evader was ue = [ 23 , 0]T and
therefore, the control effort used in the interval [0, t1] is∫ t1
0

1
2∥ue∥2 = 2t1

9 . Let us consider the set of all control
functions with a maximum control effort of 2t1

9 in the interval
[0, t1), i.e., consider U = {ue |

∫ t1
0

1
2∥ue∥2 ≤ 2t1

9 }. Given
a t1, the reachability set of the evader becomes a circle with
radius 2t1

3 when the evader’s input is restricted to the set
U . These reachability sets (boundaries) are shown in the
subfigures with dashed red circles.

Notice that, for up =
[
4
3 , 0

]T
, t1 = 3

4 is the time when
the defender reaches the initial location of the evader, which
is at [1, 0]T. If the pursuer communicates with the sensor at
this very moment (i.e., at t = 3

4 ), then the payoff starting
from this time is going to be the same regardless of where
the evader is on the boundary of the dotted red circle. On
the other hand, if the pursuer communicates before time 3

4 ,
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as illustrated in the top-right subfigure of Fig. 1, then the
the evader must be at xopt to start the next segment of the
game, as also shown in that subfigure.

If the pursuer communicates after t = 3
4 , as shown in the

bottom-left subfigure, the optimal strategy for the evader is
to go behind the pursuer and be at xrisky, since any other
point on the reachability circle will have a smaller distance
from the pursuer. The evader’s strategy in Example 1 was
constructed based on this observation.

On the other hand, at time t = 1
2 , the pursuer’s location

intersects with the evader’s reachability circle at the point
xrisky. Therefore, if the evader decided to go behind the
defender, this would be the most vulnerable point in time.

Although the evader’s input was restricted to the set U
for the above discussion, a similar observation is noted also
when this restriction is omitted.

V. CONCLUSION AND DISCUSSIONS

In this work, we considered a class of linear-quadratic
pursuit-evasion games where the pursuer relies on a remote
sensor to measure the current state of game. The pursuer
intermittently communicates with the sensor and the total
number of communication is minimized. The optimal com-
munication instances are found by solving for the finite
escape times of a certain Riccati equation. The optimal
communication instances are, in general, non-unique. The
evader is faced with a dilemma between taking a high-risk-
high-reward and a no-risk-no-reward strategy.

In this work, we assumed that the remote sensor can per-
fectly sense the game state and the communication between
the sensor and the pursuer is ideal (i.e., no delay, no packet
loss, and no transmission noise). It would be interesting to
study the problem with the communication being suffered
from random delays. In that case, the pursuer may not receive
the measurement in time to satisfy the escape time condition.
Since there is generally some slack in the choice of the
sensing instances, the pursuer may utilize this slack to ensure
that the measurement is received in time, although such an
approach will only work with certainty if the communication
delay is bounded by the available slack. Alternatively, the
pursuer needs to increase the number of communications. It
is not obvious how to choose the communication instances
in presence of stochastic delays. Likewise, analyzing the
effects of packet dropouts on the payoff is also an interesting
research direction.

We notice that the evader is able to achieve an arbitrarily
high payoff when the pursuer lets Π to have a finite escape
time. However, in order to achieve this arbitrarily high
payoff, the evader needs apply a control input with arbitrary
high magnitude, which is unrealistic from a practical point
of view. Therefore, perhaps adding an upper bound on the
magnitude of ue(t) (and up(t)) is a more realistic scenario
for this problem. In this case, the pursuer can ensure a finite
payoff even when Π has finite escape times. The received
payoff will degrade if Π is allowed to have finite escape
times and this degradation in the payoff will be related to
the inter-communication duration and the upper bound on
the magnitude of ue.
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