
Scalable Robust Multi-Agent Reinforcement Learning for Model
Uncertainty

Younkyung Jwa1,*, Minseon Gwak2,*, Jiin Kwak3,*, Chang Wook Ahn1,†, PooGyeon Park2,†

Abstract— A robust multi-agent reinforcement learning
(MARL) algorithm using a nature actor has been shown to
be effective in finding a robust Nash equilibrium (NE) of
a Markov game with model uncertainty. However, since a
game-size scaling increases the search space and challenges
reaching the NE, the robust property of the algorithm is
reduced in environments with many agents. This paper proposes
an evolutionary diversity-maintaining population curriculum
(EDPC) framework with a robust attention-based multi-agent
deep deterministic policy gradient (RA-MADDPG) algorithm,
which enables an efficient robust NE search by a structured
search space expansion. In the EDPC framework, the MARL
divides into several stages, and when moving on to the next
stage, a population consisting of larger games is made with two
parent games from the previous stage. We introduce reward-
proportionate parent selection and reward-guided mutation
methods to continue reinforcing superior agents and maintain
the diversity of the population. Furthermore, the RA-MADDPG
is used to solve the robust Markov game at each stage with
nature actors with attention-based architectures. The scalability
and robustness of the proposed method are evaluated for
different numbers of agents and levels of model uncertainty.

I. INTRODUCTION

Multi-agent reinforcement learning (MARL) has been
actively studied for environments with multiple interacting
decision-makers [1], such as connected autonomous vehicles
[2]–[4], traffic lights [5], [6], and power grids [7]. Despite
the advances in MARL, it still faces significant scalability
issues because the expended number of agents exponentially
increases the size of the observation and action spaces of
agents [8]. Furthermore, although the scale of the environ-
ment aggravates the problem of uncertainty and reduces the
effects of robust algorithms, it is not yet sufficiently studied
about the MARL with both robustness and scalability.

*: These authors contributed equally to this work.
†: Corresponding authors.
This research was supported by the Basic Science Research Program

through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT, and Future Planning (2020R1A2C2005709). This
research was supported by the Ministry of Science, ICT(MIST), Korea,
under the Project-based AI Talent Fostering Program (RS-2022-00143911)
supervised by the Institute for Information & Communications Technology
Planning & Evaluation (IITP). (Corresponding authors: Chang Wook Ahn;
PooGyeon Park)

1Younkyung Jwa and Chang Wook Ahn are with the School of Arti-
ficial Intelligence, Gwangju Institute of Science and Technology (GIST),
Gwangju, Korea. Email: whkdbsrud12@gm.gist.ac.kr, cwan@gist.ac.kr

2Minseon Gwak and PooGyeon Park are with the Department of
Electrical Engineering, Pohang University of Science and Technology
(POSTECH), Pohang, Korea. Email: {minseon25, ppg}@postech.ac.kr

3Jiin Kwak is with the Artificial Intelligence Graduate School, Ulsan
National Institute of Science and Technology (UNIST), Ulsan, Korea. Email:
jiin1938@unist.ac.kr

In reinforcement learning (RL) research, robustness has
been explored with the concern of various uncertain factors,
such as observations [9], [10], actions [11], and models [12]–
[15]. In multi-agent environments where agents influence
each other, uncertainty makes it more difficult for an agent
to predict what other agents will do, which may lead to per-
formance degradation [16], [17]. In [18], a robust MADDPG
(R-MADDPG) algorithm is proposed considering uncertainty
in the rewards given to agents. To address the problem of
model uncertainty in MARL, the algorithm leverages the
idea of a zero-sum game between agents and uncertainty,
treating the uncertainty as an additional agent [19]. The
R-MADDPG achieves robust policies by reaching a robust
Nash equilibrium (NE) of the game. However, as the system
scales up, the expansion of the search space required to find
robust NEs increases accordingly.

The scaling problem in MARL has been handled in
uncertainty-ignorant environments [8], [20]–[22]. One no-
table scalable MARL framework is an evolutionary pop-
ulation curriculum (EPC) [21]. In the EPC, the learning
process is divided into multiple stages, starting from an
environment with fewer agents and gradually increasing
the number of agents at each stage. Although the scaling
method of the EPC contributes to a structured search space
expansion, the population generated from the previous stage
is formed according to some specified rules, which restricts
the population diversity. Furthermore, it remains unclear how
this approach can be extended to environments that involve
model uncertainty.

To this end, we propose an evolutionary diversity-
maintaining population curriculum (EDPC) framework ro-
bust attention-based multi-agent deep deterministic pol-
icy gradient (RA-MADDPG) algorithm for scalable robust
MARL. In the EDPC framework, when a new population is
formulated using the agents trained in the previous stage,
the diversity of the population is maintained with two
novel evolutionary methods, a reward-proportional parent
selection and a reward-guided mutation, which can increase
the probability of finding robust NEs in the next stage.
The RA-MADDPG is an algorithm to solve each stage of
the EDPC learning, where each agent utilizes an attention-
based nature actor network. The nature actor networks are
trained as decentralized reward estimators, which leads to
the centralized critic network being trained with a relatively
conservative reward instead of the received reward. As a
result, we stabilize and accelerate the robust NE search
through an improved structured search space expansion of
the EDPC framework.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3402

II. PROBLEM DESCRIPTION

A. Robust Markov games

In MARL, the interaction between agents can be formu-
lated as a Markov game G, which is denoted as

G = ⟨A,S, {Oi}i∈A, {Ai}i∈A, {Ri}i∈A, T, γ⟩, (1)

where A is the set of agents, S is the state space, Oi is the
observation space, Ai is the action space, Ri is the reward
function for agent i, T is the transition probability, and γ
is the discounting factor. The distribution of the action of
the agent i at time t is determined by a policy πi given
a state at the time, i.e., ait ∼ πi(·|st). The goal of the
agent i is to maximize the long-term return J i over policies
{πi}i∈A, where the return is the exponential weighted sum
of the reward rit = Ri(st, a

1
t , · · · , aNt) at time t with the

discounting factor γ, i.e.,

J i(πi, π−i) = E

[∞∑
t=0

γtrit

∣∣∣∣∣s0, ait ∼ πi(·|st), a−i
t ∼ π−i(·|st)

]
,

(2)
where π−i = {πj}j∈A,i ̸=j and N is the number of agents.
A joint policy π∗ at a Nash equilibrium (NE) satisfies

J i(πi
∗, π

−i
∗) ≥ J i(πi, π−i

∗), ∀i ∈ A. (3)

Here, model uncertainty is introduced in Markov games
to reduce the gap between the simulated Markov game
and the real scenario. We defined model uncertainty as the
uncertainty with respect to the reward function for each
agent. With a noise rate parameter σ, a reward r̄it,σ is given to
agent i, where the reward is drawn from a truncated Gaussian
distribution with the mean of the original reward rit, the
standard deviation of σ, and the threshold of [−θ, θ], where θ
is the truncation threshold parameter. As a result, each agent
receives noisy reward information within a certain noise
level. Then, the robust Markov game Ḡσ can be represented
as follows,

Ḡσ = ⟨A,S, {Oi}i∈A, {Ai}i∈A, {R̄i
s}s∈S,i∈A, {T̄s}s∈S , γ⟩,

(4)
where R̄i denotes the uncertainty set of all possible reward
function values for agent i and T̄ is the corresponding set of
possible transition probabilities. Then, a policy πi

∗ at a robust
Nash equilibrium (NE) is defined in [18] by maximizing the
worst-case expected reward, i.e.,

πi
∗ ∈ argmax

πi
min

R̄i
s∈R̄i

s
T̄∈T̄s

∑
a∈A

πi(ai|s)
∏
j ̸=i

πj
∗(a

j |s)

(
R̄i(s, a) + γ

∑
s′∈S

T̄ (s′|s, a)V̄ i
∗ (s

′)

)
,

(5)

where

V̄ i
∗ (s) = max

πi(·|s)
min

R̄i
s∈R̄i

s
T̄∈T̄s

∑
a∈A

N∏
j=1

πj(aj |s)

(
R̄i(s, a) + γ

∑
s′∈S

T̄ (s′|s, a)V̄ i
∗ (s

′)

)
.

(6)

III. ROBUST ATTENTION-BASED MULTI-AGENT
DEEP DETERMINISTIC POLICY GRADIENT

In this paper, we propose an actor-critic algorithm that
uses a nature actor and an attention mechanism in networks
for scalable robust MARL. In this section, we first describe
the update equation for each element, which is adapted from
[18], and then describe the attention-based architecture of the
networks for environment scaling.

A. Robust actor-critic algorithm using nature actors

To find a robust Markov NE, we use the concept of the
nature actor, which is considered as the virtual adversarial
agent who acts against each agent. The nature actors can be
denoted as a policy set π0 = {π0,i(·|s)}i∈A, where π0,i(s) ∈
R̄i

s, i.e., the policy for nature actor is within the uncertainty
set of rewards for a given state s. Including the nature actor,
the joint policy can be denoted as π̃θ = (πθ0 , πθ1 , · · · , πθN),
where πθi is the parameterization of a policy πi. For a joint
policy π̃θ, the Q-function can be defined as follows:

Q̄i
π̃θ
(s, a) = πθ0(s)[a]

+ γ
∑
s′∈S

P (s′|s, a)
∑
a′∈A

N∏
j=1

πθj (a′j |s′)Q̄i
π̃θ
(s′, a′).

(7)

For the nature actor, the parameter θ0,i is updated in the
direction of reducing the gap between a predicted reward
and an observed reward as well as reducing the predicted
reward values itself. The policy gradient update equation for
a nature actor can be represented as follows:

∇θ0,iJ i(θ) = Es∼ρ
s0
πθ,a∼πθ(·|s)

[∇πθ0,i(s)[a]]. (8)

For the actors, the parameters are optimized in the way of
maximizing the objective future reward with respect to the
parameter θi for agent i. The policy gradient update equation
for an actor can be denoted as follows:

∇θiJ i(θ) = Es∼ρ
s0
πθ,a∼πθ(·|s)

[∇logπθi(ai|s)Q̄i
π̃θ
(s, a)]. (9)

The critic is updated with the reward of the nature actor
instead of the base actor to produce a robust Q-value, which
turns out to use a conservative but not significantly different
reward compared to the originally given reward. The loss
function that the critic minimizes is as follows:

L(wi) = E
[(
yt − Q̄wi(st, at)

)2]
, (10)

yt = πθ′0,i(st)[at] + γQ̄w′i(st+1, a
1
t+1, · · · , aNt+1).

(11)

B. Attention-based networks

In the EDPC framework, the RA-MADDPG starts to be
performed in an environment with a small number of agents
and is gradually performed in environments with a larger
number of agents. To do this, it is necessary for networks
to process varying sizes of state and action inputs. We
utilize self-attention modules [21], which enables using the
networks with a fixed number of parameters despite the

3403

Fig. 1: Illustration of generating a new population in the
EDPC framework. A big block represents a population, a
small block represents an individual (agent set), and a circle
represents a gene (an agent).

change in agent number. Using the attention mechanism,
the nature actor network Nati for agent i processes the
observation and action input as follows:

Nati(o1t , · · · , oNt , a1t , · · · , aNt) = F 2
i ([F

1
i (fi([o

i
t, a

i
t])), v

i
t]),
(12)

vit =
∑
j ̸=i

αijfi([o
j
t , a

j
t]), (13)

where fi is the observation-action encoder, F k
i is a k-layer

fully connected network, oit is the observation, ait is the
action, and vit is the global attention embedding for agent i
at time t. The global attention embedding vi is the weighted
sum of the observation-action encoder result for other agents.
The weight αij is computed as follows:

αij = softmax(βi)j , (14)

βi(j) = fT
i ([oit, a

i
t])W

T
h Wlfi([o

j
t , a

j
t]), (15)

where softmax(u)k = exp(u(k))∑
i̸=k exp(u(i)) for a vector u and Wh

and Wl are learning parameters. Since fi is also composed
of attention modules, its output has the same dimension
regardless of the sizes of ojt and ajt . Similarly, both the
critic and policy networks have architectures with attention
modules like nature actor networks, and the difference is that
policy networks process only observation inputs compared to
the critic and nature actor networks.

IV. EVOLUTIONARY DIVERSITY-MAINTAINING
POPULATION CURRICULUM LEARNING

A. Evolutionary curriculum learning for efficient NE search

We propose the EDPC as a solution for the scalable robust
MARL problem. Utilizing a curriculum learning approach,
where a model is first trained to solve a simple problem
and gradually trained to solve more complex problems, the
MARL process is divided into several stages in the EDPC.
The overview of EDPC is shown in Fig. 1, which starts from
the population with a small number of agents and continues
on a new population of larger games. The evolutionary learn-
ing process is performed by parent selection and mutation,
and the trained agents from the previous stage are reused

Algorithm 1: EDPC
Input: Population size K, number of stages S,

mutation probability µ, validation episode
length Tm, test episode length To

Output: Agent set AS
iout

1 Initialize the population P1 ← {A1
1, · · · , A1

K}
2 Initialize and train K environments
E(A1

1), · · · , E(A1
K) with RA-MADDPG in parallel

3 for s← 1 to S − 1 do
4 for k ← 1 to K do
5 {rit}(i,t)∈As

k×NTm
← Run E(As

k) for Tm

episodes
6 end
7 for k ← 1 to K do
8 for j ← 1, 2 do
9 Pj ← As

l ∈ Ps selected by
reward-proportionate parent selection
using {rit}

10 P ′
j ← Reward-guided

mutation
(
Pj , µ, {rit}(i,t)∈(As

l×NTm)

)
11 end
12 As+1

k ← P ′
1 ∪ P ′

2

13 end
14 Ps+1 ← {As+1

1 , · · · , As+1
K }

15 Train K environments E(As+1
1), · · · , E(As+1

K)
with RA-MADDPG in parallel

16 end
17 Run E(AS

1), · · · , E(AS
K) for To episodes

18 iout ← argmaxi=1,··· ,K
1
To

∑To

t=1 r
i
t

19 return AS
iout

for the next stage. From a genetic algorithm perspective, we
redefine each stage as a generation, a group of agents as an
individual, and an agent as a gene. Furthermore, we use the
reward as a fitness metric, which determines which individual
or genes will be passed on to the next generation. Through
this evolutionary learning process, we can discover agents
that are better suited to excel in complex environments.

The entire EDPC process is summarized in Algorithm
1. For notations, Ps is the population, and As

k is the
kth individual (agent set) at sth stage. E(A) indicates the
environment for an agent set A and it gives a reward
rit of agent i ∈ A at time t. In the algorithm, we first
initialize the population and train each individual using the
RA-MADDPG method (lines 1 and 2). We then repeat the
following steps until the final stage (lines 3-16). We conduct
a short-time reward evaluation for the trained agent sets by
estimating their performance over Tm episodes (lines 4-6).
We select parents from the previous population using reward-
proportionate parent selection (line 9) and mutate the selected
parents by reward-guided mutation (line 10). We merge two
parent sets to form a new agent set, effectively doubling the
number of agents in the resulting individual (line 12). We
form a new population with K new agent sets and train each

3404

agent set using the stored weights from the previous stage
(lines 14 and 15). In the final step, we conduct a long-term
reward evaluation for trained agent sets over To episodes
and return the agent set with the highest average reward
(lines 17-19). In the following subsections IV-B and IV-C,
we provide a detailed explanation of reward-proportionate
parent selection and reward-guided mutation, which are key
components of the EDPC.

B. Reward-proportionate parent selection

One simple way to implement population curriculum
learning is cloning the agent learned in the previous stage
so that the individual in the next stage would have doubled
agents. In the crossover phase in [21], the top-n number of
individuals are selected in the order of rewards as parent
individuals, and their combination is used to create the
next generation. However, this method limits the population
diversity; hence, we propose reward-proportionate parent
selection to maintain population diversity in evolutionary
learning.

Proportionate selection is a type of individual-selection
mechanism used in genetic algorithms [23]. When choos-
ing an individual from a population by the proportionate
selection method, the probability to choose an individual is
proportionate to their fitness value. For the parent selection
in the EDPC, we use the average reward of all agents in
an agent set as their fitness. To obtain the average reward,
after training multiple individuals in a population P with
RA-MADDPG, we evaluate all agent sets for Tm episodes.
Since the average reward rA = 1

Tm|A|
∑

i∈A

∑Tm

t=1 r
i
t of an

agent set A can be negative but the proportionate selection
does not allow negative fitness values, we scale the average
reward rA into r′A as follows:

r′A = eα|rA|/rmax , (16)

where rmax = maxA∈P |rA| and α is an exponential map-
ping parameter, which decides how large the gap between
the highest and lowest probabilities is. Using r′A/

∑
A∈P r′A

as the probability to select the agent set A as a parent, two
parents are selected for an individual in the next generation.
Therefore, whereas only the top few individuals could be
selected as parents in [21], the individual, even with the
lowest reward, has a probability of being selected in the
EDPC.

C. Reward-guided mutation

In addition to the reward-proportionate parent selection
method, we opted for mutation as an additional strategy to
increase population diversity. In the EDPC, agent sets are in-
dividuals subjected to mutation, with each agent representing
a gene. We utilize replacement mutation for all agents in an
agent set, where each agent is replaced with another agent
in a mutation candidate set, with the mutation probability µ.

The mutation candidate set is determined based on two
criteria: cooperative candidate selection and reward-guided
candidate selection. According to the cooperative candidate

Algorithm 2: Reward-Guided Mutation

Input: Agent set A, mutation probability µ,
validation episode length Tm, evaluated
rewards {rit}(i,t)∈A×NTm

Output: Mutated agent set A′

1 A′ = {}
2 for i ∈ A do
3 Generate a number s ∼ U(0, 1)
4 if s < µ then
5 C =

{
l ∈ A

∣∣∣ 1
Tm

∑Tm

t=1 r
l
t >

1
Tm

∑Tm

t=1 r
i
t

}
6 i′ ← Randomly selected agent j ∈ C
7 else
8 i′ ← i
9 end

10 A′ ← A′ ∪ {i′}
11 end
12 return Mutated agent set A′

selection, the mutation candidate set includes only cooper-
ating agents in the same individual rather than all agents
trained in the same stage. This criterion prevents cooperation
among agents from being compromised when increasing
diversity, based on the fact that agents in games learn policies
by working together as a team. According to the other
criteria, reward-guided candidate selection, the mutation can-
didate set involves agents with higher rewards than the agents
to be mutated. In the conventional evolutionary learning
framework in [21], there is no fitness information on genes
(agents), and thus no adjustments are made for mutation
candidates. However, EDPC utilizes the reward values on
each agent evaluated from the validation as fitness. In Fig.
1, for example, the reward-guided mutation transforms the
agent set P1 = {a1, a2, a3} into P ′

1 = {a1, a2, a2}, where
the agent a2 has a higher reward evaluation than a3. By in-
troducing these conditions into the random selection process,
we maintain the diversity of the population while increasing
the probability of achieving higher rewards and reaching
robust NEs.

The algorithm for the reward-guided mutation process is
provided in Algorithm 2. We perform the following steps
(lines 2-11) for each agent within the agent set. We generate
a random number to determine whether to mutate an agent
(line 3). If a mutation is decided, we execute the reward-
guided mutation (lines 5 and 6). Mutation candidates consist
of agents within the set that have a higher mean episode
reward than the agent itself (line 5). In this case, we use the
short-time reward evaluation results calculated in Algorithm
1. We randomly select an agent from mutation candidates
(line 6) and create a new agent set containing the mutated
agents (line 10).

V. NUMERICAL EXPERIMENTS
A. Environments

We evaluated our method using the food collection en-
vironment [21] shown in Fig. 2, which is based on an

3405

Fig. 2: Food collection environment where the MARL al-
gorithms were evaluated. The agents (green circles) have to
learn to cooperate in eating the foods (black cross marks)
in order to maximize the number of foods consumed, while
also avoiding collisions with other agents. Uncertainty exists
in the information on the reward that each agent receives.

environment in [24]. In the environment, N cooperative
agents have to learn to occupy N foods while maximizing
the number of occupied foods and avoiding collisions with
other agents. If any agent eats food, then each agent receives
a reward of 6/N . If two agents collide, each agent receives
a reward of −6/N as a penalty. Each agent also receives a
navigation reward as the negative value of the distance from
the nearest food.

Model uncertainty was introduced into the environments
as follows. First, we sampled random values from a truncated
normal distribution with a variable range of [−θ, θ], where θ
is the truncation threshold parameter. We then transformed
the sampled value using the original reward value as the
mean and the noise rate parameter σ as the standard devia-
tion. The transformed values were used as the final reward
values given to the agents. We used θ = 2 and σ = 1, 2, 3, 6.

B. Experimental Settings

We compared four MARL algorithms, MADDPG [16], R-
MADDPG [18], EPC [21], and EDPC, by evaluating their
robustness with respect to reward uncertainty. The target
system was a 12-agent system. For the EPC and EDPC, the
number of stages was set to 3, and the number of agents
was 3, 6, and 12 for each stage, respectively. The number
of episodes was 105 in the first stage and 5 × 104 in the
second and third stages. For a fair comparison, the number
of episodes for MADDPG and R-MADDPG was set as the
sum of all number of episodes of the corresponding stages of
EPC and EDPC. The number of population K was 3, and the
number of selections for EPC was 2. The network parameters
were updated every 103 episode. For the EDPC, we used
the mutation probability µ = 0.25, validation episode length
Tm = 25, exponential mapping parameter α = 3, and test
episode length To = 104.

C. Results

For the evaluation metric of the model robustness against
the reward uncertainty, the average reward value for all
agents was obtained since it is a fully-cooperative setting.
When the average reward is higher than others though the
policies were trained in a noisy environment different from

TABLE I: Robustness evaluation results

Noise rate
Number
of agents

MADDPG R-MADDPG EPC EDPC

1 6 -1.923 -1.958 37.775 49.461
12 2.235 3.109 50.591 54.986

2 6 -3.051 -1.365 18.631 33.339
12 0.417 2.060 36.101 45.262

3 6 -3.252 -2.372 0.430 37.410
12 0.199 0.295 12.618 52.755

6 6 -5.823 -2.855 -3.796 39.016
12 0.507 -1.754 7.751 54.151

TABLE II: Effectiveness of diversity-maintaining methods

Noise rate
1 2 3 6

Baseline (EPC) 50.773 42.669 37.090 31.893
+Reward-guided mutation 51.140 52.721 48.938 39.013
+Reward-guided mutation

+Reward-proportionate parent selection
54.986 45.262 52.755 54.151

the true environment, the model can be interpreted as more
robust to uncertainty. After simulating To = 104 episodes
with trained model parameters, the average reward over To

episodes was used as the final score of learned agents. The
evaluation was independently conducted in 3, 6, and 12-agent
systems.

Fig. 3 shows the learning curve for the MARL algorithms
in the training phase when the noise rate is σ = 3. When
the number of agents is 3, the average reward values in Fig.
3a are similar to the comparison model because it does not
include the evolutionary process in the first stage. However,
due to the nature actor of the RA-MADDPG, the EDPC
improves its performance as the training episode progresses.
When the number of agents increases, the average reward of
EDPC is much higher than others as shown in Figs. 3b and
3c.

In addition to the results from the learning curve, Table
I shows the robustness evaluation results for 104 episodes.
The results are for 6 and 12-agent systems to show how
effective the curriculum learning method, which learns from
a smaller system to the target system, is. For the MADDPG
and R-MADDPG, the reward value tends to decrease as the
noise rate increases. Although the R-MADDPG is developed
regarding model uncertainty, it can be seen that the robust
NE was not found well due to scaling. The EPC showed
better results than MADDPG and R-MADDPG for lower
noise rates but showed a rapid decrease in reward when
the uncertainty increased. By contrast, the proposed EDPC
showed the highest reward values among others, whether the
noise rate is small or large, which implies that the EDPC
can robustly learn the policies that can work well in the true
environment. Furthermore, as the stage evolves in EDPC, the
performance of the model increases despite the increasing
number of agents.

To verify the effect of the EDPC framework, the ablation
study was conducted for two components of the EDPC:
the reward-proportionate parent selection and reward-guided
mutation. We only represented the result of the target 12-

3406

(a) (b) (c)

Fig. 3: Rewards that agents received in different scales of environments with model uncertainty. All reward values are the
average of the reward values from the previous 103 episodes. The solid lines represent the average experimental results,
and the shaded areas indicate the variance for three independent games. (a): 3-agent system, (b): 6-agent system, and (c):
12-agent system.

agent system. The baseline in Table II is a result of RA-
MADDPG with a conventional curriculum learning, which
does not consider the diversity of the population. Regardless
of the noise rate, the results show that EDPC consistently
learns to obtain higher rewards with each additional com-
ponent. This suggests that maintaining population diversity
effectively promotes the discovery of optimal robust NEs,
rather than settling for suboptimal points, by exploring a
diverse range of solutions.

VI. CONCLUSIONS
We proposed the EDPC and RA-MADDPG to solve the

scaling problem of robust MARL concerning the model
uncertainty. Experimental results showed that the EDPC with
RA-MADDPG can find robust policies in scaled problems
with a gap between the train and test environments. The
effectiveness of the reward-proportionate parent selection and
reward-guided mutation methods were also shown by an
ablation study with robustness evaluation. A future direction
of research is to verify the performance of the EDPC in
environments where non-cooperative agents exist and de-
velop more general and versatile MARL algorithms that can
perform well.

REFERENCES

[1] G. Wang et al. A multi-group multi-agent system based on reinforce-
ment learning and flocking. Int. J. Control Autom. Syst., 20(7):2364–
2378, 2022.

[2] N. Suriyarachchi et al. Multi-agent deep reinforcement learning
for shock wave detection and dissipation using vehicle-to-vehicle
communication. In 2022 IEEE 61st Conference on Decision and
Control, pages 4072–4077. IEEE, 2022.

[3] P. Palanisamy. Multi-agent connected autonomous driving using deep
reinforcement learning. In 2020 International Joint Conference on
Neural Networks, pages 1–7. IEEE, 2020.

[4] M. Zhou et al. Development of an efficient driving strategy for
connected and automated vehicles at signalized intersections: A rein-
forcement learning approach. IEEE Trans. Intell. Transp., 21(1):433–
443, 2019.

[5] K. Shibata et al. Deep reinforcement learning of event-triggered
communication and control for multi-agent cooperative transport. In
2021 IEEE International Conference on Robotics and Automation,
pages 8671–8677. IEEE, 2021.

[6] T. Wu et al. Multi-agent deep reinforcement learning for urban
traffic light control in vehicular networks. IEEE Trans. Veh. Technol.,
69(8):8243–8256, 2020.

[7] D. Chen et al. Powernet: Multi-agent deep reinforcement learning
for scalable powergrid control. IEEE Trans. Power Syst., 37(2):1007–
1017, 2021.

[8] G. Qu et al. Scalable multi-agent reinforcement learning for networked
systems with average reward. Advances in Neural Information Pro-
cessing Systems, 33:2074–2086, 2020.

[9] H. Zhang et al. Robust deep reinforcement learning against adversarial
perturbations on state observations. Advances in Neural Information
Processing Systems, 33:21024–21037, 2020.

[10] Z. Lu et al. Decentralized fault tolerant control for modular robot ma-
nipulators via integral terminal sliding mode and disturbance observer.
Int. J. Control Autom. Syst., 20(10):3274–3284, 2022.

[11] C. Tessler et al. Action robust reinforcement learning and applications
in continuous control. In International Conference on Machine
Learning, pages 6215–6224. PMLR, 2019.

[12] L. Pinto et al. Robust adversarial reinforcement learning. In Inter-
national Conference on Machine Learning, pages 2817–2826. PMLR,
2017.

[13] D. Mankowitz et al. Learning robust options. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32, 2018.

[14] Y. Wang and S. Zou. Online robust reinforcement learning with model
uncertainty. Advances in Neural Information Processing Systems,
34:7193–7206, 2021.

[15] V. T. Vu et al. Online actor-critic reinforcement learning control for
uncertain surface vessel systems with external disturbances. Int. J.
Control Autom. Syst., 20(3):1029–1040, 2022.

[16] R. Lowe et al. Multi-agent actor-critic for mixed cooperative-
competitive environments. Advances in neural information processing
systems, 30, 2017.

[17] S. Li et al. Robust multi-agent reinforcement learning via minimax
deep deterministic policy gradient. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 4213–4220,
2019.

[18] K. Zhang et al. Robust multi-agent reinforcement learning with
model uncertainty. Advances in neural information processing systems,
33:10571–10583, 2020.

[19] X. Zhu et al. Data-driven multiplayer mixed-zero-sum game control of
modular robot manipulators with uncertain disturbance. Int. J. Control
Autom. Syst., 21(2):645–657, 2023.

[20] G. Qu et al. Scalable reinforcement learning of localized policies
for multi-agent networked systems. In Learning for Dynamics and
Control, pages 256–266. PMLR, 2020.

[21] Q. Long et al. Evolutionary population curriculum for scaling multi-
agent reinforcement learning. arXiv preprint arXiv:2003.10423, 2020.

[22] C. D Hsu et al. Scalable reinforcement learning policies for multi-
agent control. In 2021 IEEE/RSJ international conference on intelli-
gent robots and systems, pages 4785–4791. IEEE, 2021.

[23] J. Grefenstette. Proportional selection and sampling algorithms. Evol.
Comput., 1:172–180, 2000.

[24] I. Mordatch and P. Abbeel. Emergence of grounded compositional
language in multi-agent populations. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

3407

