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Abstract— We develop a guidance policy for lunar landing

under navigational uncertainty with feasible divert in the

event a hazard is detected. Offline, we compute stochastic

controllable sets under convexified dynamics and constraints

that characterize the set of noisy state estimates from which

the lander can be driven to a landing site with a pre-specified,

sufficiently high probability. We establish that the sets computed

for the convexified problem are inner-approximations of the

true stochastic controllable sets. The controllable sets are

parameterized by available fuel mass and length of trajectory,

and provide a tractable method to quickly assess online whether

a landing site is reachable. Numerical simulations demonstrate

the efficacy of the approach.

I. INTRODUCTION

The Moon is seeing a resurgence of activity, and the
partial successes and failures of recent missions to the
lunar surface have demonstrated that autonomous planetary
landing remains challenging [1], [2]. Due to the presence
of water ice in the permanently shadowed craters at the
south pole of the Moon [3], the south pole has been selected
for a future human outpost; landing amidst its rough terrain
necessitates increased precision and robustness of powered
descent guidance (PDG) algorithms, and the capability to
divert from the primary target in case a hazard is detected.

In recent years, fuel-optimal PDG has been an active area
of research, see, e.g., [4]–[6], and references therein. In these
works, PDG is the solution to an appropriately formulated
optimal control problem that is discretized and solved via
numerical optimization. Nonlinear lander dynamics and a
thrust lower bound render the fuel-optimal PDG problem
non-convex. However, under certain assumptions, the non-
convex optimal control problem can be solved to global
optimality by convex optimization, losslessly [6]–[9].

For hazard avoidance, [10] used the lossless convexifica-
tion approach of [11] to compute controllable sets, that is, the
set of initial conditions that can reach, or in this case, land at,
a specified target. The sets were pre-computed for a range
of trajectory lengths and available fuel mass, to be stored
onboard the lander. Online, in the event a hazard is detected,
the current state of the lander is checked for inclusion against
the database of controllable sets at candidate divert sites,
providing a real-time feasible method for evaluating the
lander’s ability to reach a given site.

However, for both the nominal trajectory and the divert
maneuvers, there is a challenge in guaranteeing constraint
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satisfaction, as the lander only knows its state approxi-
mately [2]. To the best of the authors’ knowledge, no prior
work on lossless convexification-based PDG has provided
theoretical guarantees for safe landing under navigational
uncertainty; see [12], [13] for alternative approaches. In this
work, we extend [10] to explicitly account for the uncertainty
in position and velocity during powered descent.

The contributions and structure of the paper are as follows.
In Section II, we propose a formulation for the fuel-optimal
PDG problem under navigational uncertainty, such that the
problem constraints are satisfied to user-specified probabil-
ity. We describe the lander dynamics, model navigational
uncertainty as noisy state estimates, and describe the prob-
lems of nominal trajectory design and divert capability. In
Section III, we develop a tractable approach for trajectory
generation. We reformulate the PDG problem as a chance-
constrained optimal control problem, where the probability
of constraint satisfaction is assured by constraint tightening
with respect to a bounded uncertainty set [14], and losslessly
convexify the non-convex dynamics and constraints. Addi-
tionally, using the convex problem formulation, we develop
inner-approximations of stochastic controllable sets, which
characterize the set of noisy state estimates from which the
lander can be driven to a landing site with user-specified
probability. As in [10], these stochastic controllable sets are
then used for real-time assessment of the reachability of
alternative landing sites. Feasibility and safety guarantees
of the proposed approach are discussed in Section IV, and
we provide implementation details and the divert-feasible
PDG algorithm in Section V. In Section VI, we validate our
algorithm on numerical examples for satisfaction of all PDG
problem constraints under navigational uncertainty, as well
as compute maximum achievable divert distances based on
the stochastic controllable sets. Finally, concluding remarks
and directions for future work are discussed in Section VII.

II. PROBLEM DESCRIPTION

We use the following notion throughout the paper: R, R+,
Rn, N, are the sets of real numbers, positive real numbers,
the Euclidean space, and natural numbers, respectively. The
ith row of matrix M is denoted by [M ]i. Euclidean distance
is denoted by k · k. A reference frame, Fx consists of
three orthonormal dextral basis vectors {ı̂x, |̂x, k̂x}, where
·̂ denotes a unit vector. The angular velocity vector of frame
Fx with respect to Fy is denoted by !x/y, and !

⇥ denotes
the skew-symmetric matrix of !.

A. Lander dynamics and measurement model
Consider a lander in the powered descent phase to the

lunar surface, a non-inertial surface-fixed frame Fs, and an
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inertial frame Fi. The lander is assumed to be rigid and all
external forces acting on the lander are modeled as acting
on its center of mass. The translation-only dynamics of the
lander relative to and resolved in the surface-fixed frame Fs,
and its mass depletion dynamics, are given by

r̈(t) =
Tc(t)

m(t)
+ g � !

⇥
s/i!

⇥
s/ir(t)� 2!⇥

s/iṙ(t), (1a)

ṁ(t) = � kTc(t)k/geIsp = ��kTc(t)k, (1b)

where x =
⇥
r
|

ṙ
|⇤| 2 R6 is the translational state of the

lander, Tc 2 R3 is the net thrust applied to the lander, g 2 R3

is the constant gravity vector of the Moon, !s/i is the Moon’s
constant angular velocity vector with respect to the inertial
frame Fi, m 2 R+ is the mass of the lander, ge 2 R+ is
Earth’s standard gravitational acceleration, and Isp 2 R+ is
the specific impulse of the lander’s engine.

Uncertainty model: During powered descent, the lander
does not have access to its true position and velocity. We
model this navigational uncertainty as noisy state estimates
y(t) 2 R6 such that

y(t) = x(t) + ⌫(t), (2)

where ⌫(t) ⇠ N (0,⌃⌫) is an independent and identically
distributed Gaussian noise that models the state estimate
uncertainty with zero mean and known covariance matrix
⌃� 2 R6⇥6.

B. PDG constraints

The lander is limited by physical and operational con-
straints given by [6],

md  m(t)  mw, (3a)
⇢1  kTc(t)k  ⇢2, (3b)
kTc(t)kcos(✓max)  n̂

|
Tc(t), (3c)

kr(t)� rlskcos(�)  k̂
|
s r(t), (3d)

kṙ(t)k  vmax. (3e)

Constraint (3a) requires that the lander’s mass lie between
the dry mass md and wet mass mw = md+mf , where mf is
the initial mass of the available fuel. Constraint (3b) requires
that the thrust is bounded from above and below with known
constants ⇢1, ⇢2. Constraint (3c) is an attitude constraint
that limits the thrust vector from deviating by more than
✓max 2 [0,⇡] from a pre-specified direction n̂ 2 R3, and is
often used to either limit the tilt angle of the lander from the
vertical, or ensure sensor line of sight with the landing target.
Constraint (3d) is a glideslope constraint with glideslope
angle � 2 [0,⇡/2] relative to landing site rls 2 R3, such that
the lander can avoid crashing into nearby terrain. Finally,
constraint (3e) sets a maximum velocity vmax 2 R.

C. Fuel-optimal PDG under navigational uncertainty

We wish to drive the true state of the lander with uncertain
initial conditions

x(0) ⇠ N (y(0),⌃⌫), m(0) = mw, (3f)

where y(0) is the noisy state estimate at the start of the
powered descent, to a convex and compact region Xls ⇢ R6

around a landing site rls 2 R3, such that

x(tf) 2 Xls. (3g)

To do so, we formulate the fuel-optimal PDG optimal control
problem (OCP) under navigational uncertainty as

min
tf ,Tc

(m(0)�m(tf)) s.t. 8t 2 [0, tf ]

Dynamics (1) with initial conditions (3f), (4a)
{constraints (3a)-(3e),(3g) are satisfied} � ↵. (4b)

In (4), ↵ 2 (0, 1] is a probability threshold selected to ensure
that the constraints (3a)-(3e), (3g) are met with a likelihood
no smaller than ↵.

We seek a tractable method to solve (4) and to leverage
that method to divert to an alternative landing site in case a
hazard is detected.

Problem 1 (Nominal trajectory design): Design a tractable
optimization formulation of (4) for constraint-admissible
PDG under navigational uncertainty with greater than or
equal to user-specified probability.

Problem 2 (Hazard avoidance): If a hazard is detected,
identify a reachable, alternative landing site and use a mod-
ified version of (4) to divert to the selected site.

III. PROPOSED APPROACH

To solve Problem 1, we reformulate (4) as a convex
chance-constrained optimal control problem, given by OCP 1
in Section III-A.3. To solve Problem 2, we develop inner-
approximations of stochastic controllable sets, which char-
acterize the sets of noisy state estimates from which the
lander can be driven to a landing site with user-specified
probability using OCP 2 and OCP 3 in Section III-B. The
stochastic controllable sets enable a real-time assessment of
the reachability of alternative landing sites.

A. Convex chance-constrained PDG

1) Model reformulation: Let u(t) , Tc(t)
m(t) , then the

translational dynamics (1a) can be written as

ẋ(t) = Ax(t) +Bu(t) +G, (5)

for appropriate A,B,G matrices. We reformulate the initial-
time Gaussian noise ⌫(0) as a state disturbance that with
probability ↵ lies in the ellipsoid

E↵ : {⌫(0) | ⌫(0)|⌃�1
⌫(0)  F

�1
�2(6)(↵)}, (6)

that is, {⌫(0) 2 E↵} = ↵, where �
2(6) is a chi-squared

random variable with six degrees of freedom, and F�2(6)(·)
is its cumulative distribution function [14]. Given an estimate
y(0), the ellipsoid X (0) = {y(0)}� E↵ contains all possible
true initial states x(0) with probability ↵ by (3f). The
evolution of the possible true trajectories x(t) evolving from
X (0) is given by

x(t) 2 X (t) : {x | (x̄(t)� x)|S(t)(x̄(t)� x)  1}, (7a)
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S(t) = �(0, t)S(0)�(0, t)|, S(0) =
1

R2
⌃�1

, (7b)

˙̄x(t) = Ax̄(t) +Bu(t) +G, x̄(0) = y(0), (7c)

where R
2 = F

�1
�2(6)(↵), and �(0, t) is the state transition

matrix for the dynamics defined by (5).
2) Constraint reformulation: Next, the glideslope and

maximum velocity constraints (3d), (3e) are replaced by con-
servatively substituting their `

2-norms with `
1
/`

1-norms.
The resulting affine constraints can be written compactly as

H(x̄(t)� xls)  f, (8)

where the matrix of normals H 2 R6⇥nH and the vector
of facet offsets f 2 RnH define a polytopic constraint set
[6]. To ensure the tube of possible trajectories X (t) remains
feasible, we tighten constraint (8) using [15]

kS(t)1/2[H]ik�[H]i(x̄(t)�xls)+[f ]i i = 1, ..., nH . (9)

Additionally, (3g) is replaced with

x̄(tf) = x̄
⇤
tf
, (10)

where: x̄⇤
tf
= argmin

x̄t
f

(x̄tf
� xls)

|(x̄tf
� xls), (11a)

s.t. kS(tf)1/2[H]ik �[H]i(x̄tf
� xls) + [f ]i. (11b)

Problem (11) finds the closest possible final state x̄(tf) to
the desired landing location xls such that the set of possible
true states X (tf) fits in the polytope (9).

3) Lossless convexification: Substituting (7b), (7c) for
(1a), (9) for (3d), (3e), and (10) for (3g), the OCP in (4)
can be transformed into a convex problem using lossless
convexification techniques [6]–[9]. Following [7], dynamics
(1b) and constraints (3a), (3b), (3c) become

ż = �(t) (12)

z
0(t)  z(t)  ln(mw � �⇢1t),

z(0) = ln(mw), ln(md)  z(tf),
(13a)

⇢1e
z
0(t)[1� (z(t)� z

0(t)) + (z(t)�z
0(t))2

2 ]  �(t), (13b)

�(t)  ⇢2e
z
0(t)[1� (z(t)� z

0(t))], (13c)
n̂
|
u(t) � �(t) cos(✓max), (13d)

ku(t)k  �(t), (13e)

where z(t) , ln(m(t)), z0(t) = ln(mw � �⇢2t), and �(t)
is a slack variable used in the convexification process. With
these substitutions, we formulate

OCP 1: max
u,�,tf

z(tf) subject to 8t 2 [0, tf ]

dynamics (7b), (7c), (12), constraints (9),(10),(13).

As will be proven in Section IV, OCP 1 is a tractable
chance-constrained formulation of (4) and solves Problem 1.

Fig. 1: Illustration of the computation procedure for C̃(ms

w).
L to R: 1) Initial set, 2) Pushing along a face, 3) Result.

B. Divert-feasible sets
During powered descent, planetary landers scan the ter-

rain for hazards and produce candidate landing sites. If a
hazard is detected at the nominal landing site rls, the lander
needs to quickly identify which alternatives are reachable.
Since solving OCP 1 to each candidate site may be too
computationally intensive, we compute offline a database
of polytopic stochastic controllable sets parameterized by
mass m

s
w 2 [md,mw]. The stochastic controllable sets

characterize the set of noisy state estimates from which the
lander can be driven to a specified landing site with user-
specified probability. Online, the current state estimate of
the lander is checked for inclusion against the database of
sets at candidate sites. The inclusion check amounts to either
evaluating linear inequalities if a halfspace representation of
the set is known or a linear program in the case of a vertex
representation.

For tractability, we combine the approach of [11] with
the reformulation of Section III-A, to compute robust con-
trollable set-based inner approximations of the stochastic
controllable sets. To aid the discussion, we define the feasible
set by the convexified dynamics (5), (12), and constraints (8),
(13), in the absence of navigational uncertainty

Feas(ms
w),

8
<

:(x(0), u)

������

9tf � 0 s.t. 8t 2 [0, tf ],
(x(t), u(t)) satisfies

(5), (8), (12), (13)

9
=

; . (15)

In the presence of navigational uncertainty, we define the
stochastic controllable set as a set-valued function of ms

w

C(ms
w) , {y(0) : 9u s.t.

⌫(0){(y(0)� ⌫(0), u) 2 Feas(ms
w)} � ↵},

(16)

with xls = 0, which, for a given m
s
w, is the set of all

initial state estimates y(0) for which there exists a constraint-
admissible control sequence that drives the lander to the
origin with at least probability ↵. Note that with xls = 0, the
constraints in (16) are, and thus the set C(ms

w) is, invariant
under translation.

Analogous to [11], the inner approximation of each set
C(ms

w) is constructed in several stages. First, we formulate
a set of convex programs

OCP 2: For i = 1,....,12
max

x̄(0),u,tf
[[x̄(0)|,�x̄(0)|]|]i subject to for 8t 2 [0, tf ]

dynamics (7b), (7c), (12), constraints (9), (10), (13).

OCP 2 finds the extreme points x̄(0) 2 C(ms
w) for which

the corresponding ellipsoidal set of possible true initial states
X (0) can be driven to the origin (proof in Section IV). The
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Algorithm 1: Computation of C̃(ms

w)

Input :

1 nsets and m
s
w for s = 0, ..., nsets ;

Offline:

1 for s = 0, ..., nsets: do

2 solve OCP 2 with mw = m
s
w to create C̃(ms

w);
3 iter = 1;
4 while iter< maxitersets do

5 iter = iter + 1 ;
6 solve OCP 3 to enlarge C̃(ms

w)

convex hull of the resulting twelve x̄(0) points C̃(ms

w) is
taken as the initial approximation of C(ms

w). In the next step,
the sets are enlarged by finding the outward normal n̂facet,i

to each of the polytope facets and finding the furthest point
x̄(0) from the facet for which all points in the corresponding
set X (0) remain as feasible initial conditions. This procedure
is achieved by solving

OCP 3: For i = 1, ..., nfacets

max
x̄(0),u,�,tf

n̂
|
facet,ix̄(0) subject to for 8t 2 [0, tf ]

dynamics (7c), (12), constraints (7b), (9), (10), (13).

In OCP 3, nfacets is the number of facets of C̃(ms

w).
The resulting points x̄(0) are added to the set of vertices
of C̃(ms

w), and the convex hull is updated. The resulting
polytope C̃(ms

w) can again be enlarged in the same way,
facet by facet. As suggested in [11], this iteration can be
stopped based on the available computational resources or a
tolerance on the volume difference between C̃(ms

w) and an
an outer approximation. The final C̃(ms

w) thus approximates
the C(ms

w) set and the overall proposed procedure is written
in Algorithm 1 and depicted graphically for an example 2D
set in Fig. 1.

In Section IV, we prove that C̃(ms

w) is a subset of the
C(ms

w) for the given m
s

w, regardless of the number of
enlarging iterations. That is, given a control sequence u

obtained using OCP 1 for an initial point y0 2 C̃(ms

w),
then u will drive all points x0 2 {y0} � E↵ to the landing
location safely with a probability ↵ or higher, i.e ((y0, u) 2
Feas(ms

w)) � ↵. Most importantly, we can prove that C̃(ms

w)
is an inner approximation of the stochastic controllable set
for this mass and the original nonlinear dynamics.

Remark 1: Notably, the C̃(ms

w) sets are six-dimensional.
The lander mass was not taken as a degree of freedom as
the resulting set computation problem would be nonconvex.

IV. FEASIBILITY AND SAFETY GUARANTEES

We first prove that the computed C̃(ms

w) sets using Al-
gorithm 1 are inner approximations of the corresponding
C(ms

w). Then we show that the control sequence obtained
by solving OCP 1 drives all trajectories evolving from the
ellipsoid of possible true initial states to the landing site
without violating the system or control constraints. The same

control sequence drives any possible true initial state in the
assumed Gaussian distribution to the landing site without
violating system and control constraints with probability at
least ↵.

A. Stochastic controllable sets

In Section III-B, we defined the C(ms
w) set. Using the

definitions (6), (7) a tractable alternative set can be defined
as

Y(ms

w) , {y(0) : 9u for 8⌫(0) 2 E↵ s.t
(y(0)� ⌫(0), u) 2 Feas(ms

w)}.
(19)

Lemma 1: Y(ms

w)✓ C(ms
w)

Proof: Let y 2 Y(ms

w). From (6), (7) and (19) it follows

{(y(0)� ⌫(0), u) 2 Feas(ms
w)| ⌫(0) 2 E↵} = 1. (20)

Consequently,

⌫(0){(y(0)� ⌫(0), u) 2 Feas(ms
w)} �

⌫(0)

n
(y(0)� ⌫(0), u) 2 Feas(ms

w)} \ {⌫(0) 2 E↵}
o
=

{(y(0)�⌫(0), u)2 Feas(ms
w)| ⌫(0)2 E↵} {⌫(0)2 E↵}=↵.

(21)

Thus from (16), y(0) 2 C(ms
w). ⇤

Lemma 2: Let (u⇤
,�

⇤
, t

⇤
f ) be the solution of OCP 2 (OCP

3) for a given mw and initial state estimate y(0) 2 Y(ms

w).
Then, at all temporal nodes, the trajectory starting from
any point x0 2 X (0) under the guidance u

⇤ satisfies the
constraints forming the feasibility set Feas(ms

w),

(x0, u
⇤) 2 Feas(ms

w) 8x0 2 X (0).
Proof: The tightened constraint (9) can be generalized at

all discrete temporal nodes as

[H]ix̄k + SupportReach(k,E↵))([H]i)  [f ]i, (22)

for i = 1, ..., nH where Support
R
(l) = max⇣2R l

|
⇣ and

Reach(k, E↵) =
(

k�1Y

t=0

A
t

d
⌫(0) | ⌫(0) 2 E↵

)
.

From the superposition principle, due to linearity of (5),
x(t) = x̄(t)+⌫(t), where ⌫(t) 2 �(0, t)E↵. Similarly, at the
temporal nodes, xk = x̄k + ⌫k, where ⌫k 2 Reach(k, E↵).
Thus, from the tightening of the constraints (22), it follows
that Hxk  f . ⇤

Corollary 1: Lemma 2 holds for a given landing location
xls. Due to the assumption that the constraints (9), (13) are
invariant with respect to translation, the sets can be translated
to new landing locations without loss of safety guarantees
when landing at the newly chosen landing site.

Theorem 1: C̃(ms

w), computed using Algorithm 1, is an
inner-approximation to C(ms

w).
Proof: Let qi be the i-th vertex of C̃(ms

w) computed in
step 2 or 6 in Algorithm 1. From Lemma 2 it follows that
({qi}� E↵, u) ✓ Feas(ms

w) thus qi 2 Y . Given that C̃(ms

w)
is the convex hull of {qi} and Y(ms

w) is also convex, it
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follows C̃(ms

w) ✓ Y(ms

w) and from Lemma 1 it follows that
C̃(ms

w) ✓ C(ms
w). ⇤

The sets C̃(ms

w) are defined from the convexified problem.
Theorem 2: C̃(ms

w) is an inner approximation for a
stochastic controllable set defined using the feasibility set
(15) with the nonlinear dynamics and constraints (1b), (3)
replacing (12),(13).
Proof (sketch): The proof follows from Theorem 1, the con-
vexity of the sets C̃(ms

w) and the fact that each of the vertices
of these set, computed using OCP 2 or 3, is guaranteed to
be reachable for the original nonlinear dynamics based on
proofs from [16] and Section II.C in [11], respectively.

B. Stochastic trajectory optimization:

Based on the formulation of OCP 1, 2, and 3, one can
make the following statement:

Lemma 3: Let (u⇤
,�

⇤
, t

⇤
f ) be the solution of OCP 1 for

a given mw and an initial state measurement y0 2 Y(ms

w).
Then at all temporal nodes, the trajectory starting from any
point x0 2 {y(0)}� E↵ under the guidance u

⇤ satisfies the
constraints of OCP 1,2, and 3, i.e.

{(x0, u
⇤) 2 Feas(ms

w)} = 1,

For a general ⌫(0) from the considered Gaussian distribution
and the corresponding true state x0 = y0 + ⌫0 it holds that

{(x0, u
⇤) 2 Feas(ms

w)} � ↵. (23)
Proof : The proof is analogous to the proof of Lemma 1

and (23) follows from Equation (21). ⇤
In other words, the control trajectory u

⇤ obtained using
OCP 1 drives all trajectories started from the ellipsoid of
possible initial true states X0 = {y(0)}� E↵ to the landing
location safely without violating any constraints. Because
(⌫(0) 2 E↵) = ↵, it follows that for a general ⌫(0) from

the considered distribution, and its associated true state x(0),
landing is achieved without violating the constraints with a
probability of ↵ or higher. Thus, OCP 1 achieves the goals
set out in (4) and Problem 1.

V. IMPLEMENTATION

OCP 1, OCP 2, and OCP 3 can be discretized and solved
numerically analogously to the lossless convexification ap-
proach in [6].

Remark 2: In the discrete-time case, the OCP problems
are solved with a fixed final time tf . The optimal t⇤f can be
found by implementing a golden search algorithm that solves
OCP 1 repeatedly for tf 2 [0, t̄f ] for the maximum z

⇤
N

. A
guess on the upper bound t̄f can be made heuristically to
t̄f = mw/(�⇢2) using z

0
N

= ln(mw � �⇢2N�t). If OCP 1
is infeasible in the range [0, t̄f ], we set zN for that tf value
as very large to guide the search toward feasible regions. The
same check is done for values above t̄f . The upper bound is
adjusted if feasible solutions are found. This procedure for
finding t

⇤
f is inspired by the deterministic studies in [9] and

[17] based on the unimodality of the mf,used function with
respect to tf .

Analogously to the computation of C̃(ms

w), in discrete
time, the time-discretized OCP 2 and 3 lead to the for-
mulation of the set D̃(ms

w, t
s

f ). In practice D̃(ms

w, t
s

f ) sets
can be computed offline for a countable number npairs of
pairs (ms

w, t
s
f ) and used during hazard avoidance, as will be

demonstrated in Algorithm 2.
Remark 3: As suggested by [11], for numerical reasons,

the parameter scaling can be chosen for time-discretized OCP
1, 2, and 3 based on a single computation of time-discretized
OCP 2 which maximizes only i = 1, 2, 3, 7, 8, 9.

Remark 4: Similar guarantees to those in Section IV-A
for the continuous setting can be proven for the discrete
sets computed by Algorithm 2, offline. In the discrete-time
case, we can similarly define, based on the time-discretized
and convexified constraints in the absence of navigational
uncertainty, the set D(ms

w, t
s

f ) as the discrete-time analogy
of the C(ms

w) set but sliced for a given t
s

f . Analogously
to the proofs of Lemma 1 and Theorem 1, it can then be
shown that D̃(ms

w, t
s

f ), computed by Algorithm 2, offline,
is an inner-approximation to D(ms

w, t
s

f ). Furthermore, the
same guarantees as those presented in Section IV-B can be
formulated for the control sequence resulting from the time-
discretized problem formulation.

A. Divert-feasible PDG
The summary of the approach for the numerical solution

of Problems 1 and 2 is presented in Algorithm 2.
Remark 5: One can easily obtain the maximum divert

distance achievable by solving online a linear program for
each of the pre-computed D̃(ms

w, t
s

f ) sets and determining for
what shift the given trajectory point remains in the convex
hull of the selected set. The linear program is given by

max
w

�r s.t. :

V

|

1

�
w =


yh

1

�
+


�r

0

�
, w � 0, (24)

where V 2 nv⇥6 is a matrix of stacked points defining the
convex hull of the selected set, yh is the measured x at the
time of hazard detection, 1 is a vector of ones, and 0 a vector
of 0’s. While the linear program (24) finds the maximum shift
along the x-axis, it can trivially be adjusted for alternative
directions. Only D̃(ms

w, t
s

f ) sets with m
s

w smaller than the
current mass of the spacecraft should be tested.

VI. RESULTS

The proposed method was implemented in Python using
the cvxpy library [18] with the CLARABEL solver [19].
Parameters used for all simulations are tabulated in Table I.
The C̃(ms

w) sets are calculated with maxitersets iterations.
The stochastic model is created using 3� calculation based on
zero mean and scaled deviations 3�([⌫0][1:3]), 3�([⌫0][4:6]).

A. Validating the set computations
To verify the construction of D̃(ms

w, t
s

f ) proposed in
Algorithm 2, we demonstrate the validity of Lemma 2. We
perform the test with m

s

w = mw = 1300kg, tf = 90s,
and maxitersets = 3. Let x̄⇤ = {x̄⇤

0, ..., x̄
⇤
N
}, u⇤ =

{u⇤
0, ..., u

⇤
N�1} represent the center trajectory and controls
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Algorithm 2: Divert-feasible PDG under naviga-
tional uncertainty

Input :

1 xls, npairs and (ms
w, t

s
f ) for s = 0, ..., npairs ;

Offline: Obtain a database of D̃(ms

w, t
s

f ) applicable to
any landing location

1 for s = 0, ..., npairs: do

2 solve the time-discretized OCP 2 with
mw = m

s
w, tf = t

s
f to create D̃(ms

w, t
s

f );
3 iter = 1;
4 while iter< maxitersets do

5 iter = iter + 1 ;
6 solve the time-discretized OCP 3 to enlarge

D̃(ms

w, t
s

f )

Online:

1 Measure y0 ;
2 Find t

⇤
f as suggested by Remark 2;

3 Solve the time-discretized OCP 1 to obtain
u0, .., uN�1 ;

4 for k = 0, ..., N � 1 do

5 Check for hazard ;
6 if hazard then

7 safe = False ;
8 N � k ! N, 0 ! k;
9 while safe = False do

10 Choose a different landing site x
new

ls ;
11 while s 2 [0, npairs] and safe=False do

12 Measure y0;
13 if y0 2 D̃(ms

w, t
s

f ) then

14 safe=True;
15 solve the time-discretized OCP 1

with x
new

ls ! xls, to obtain new
u0, ..., uN�1

16 Implement uk ;

obtained by the solution of the time-discretized OCP 1
from an extreme point q 2 D̃(ms

w, t
s

f ). We perform a
Monte Carlo simulation, picking possible true initial points
x
{j}
0 2 {q} � E↵ and obtaining forward simulation trajec-

tories x{j} = {x{j}
0 , ..., x

{j}
N

} using (7c), (12) discretized
with a first order holder from q under u

⇤. We do this for
100 points. Fig. 2 demonstrates the D̃(ms

w, t
s

f ) set for the
given landing location, the center trajectory, and the tube of
x{j} trajectories. Fig. 3a shows that all trajectories reach the
desired landing zone, and from numerical simulations, they
all respected the constraints of the original nonlinear prob-
lem. All other nonlinear constraints for the original problem
were also satisfied for all the trajectories in the bundle. For
comparison, the same Monte Carlo test under initial state
uncertainty of the extreme points of the deterministic set
calculation proposed in [11] was performed again from a
random vertex of the set, and as can be seen in Fig. 3b, the

Moon & Lander parameters Constraints specifications
g [0, 0,�1.62]|m/s2 xnominal

ls [0, 0, 0, 0, 0, 0]|

md 900 kg vmax 300 m/s
⇢1 1657.27 N ✓max 25�

⇢2 4419.39 N n̂ [0, 0, 1]|

Isp 255 s � 75�

Simulation parameters
�t 10 s 3�([⌫0][1:3]) [3, 3, 3]| m
↵ 0.7 3�([⌫0][4:6]) [0.01, 0.01, 0.01]| m/s

TABLE I: Implementation specifications

Fig. 2: Simulated trajectory of possible tubes from a chosen
vertex point for set verification. Grey - D̃(ms

w, t
s

f ), red - x̃⇤,
blue - simulated trajectories x{j}.

percentage that reach the end goal from a true state around
the example vertex was far from 1.

B. Trajectory design and hazard avoidance

We now demonstrate Algorithm 2 capabilities in case
of hazard detection for online landing site selection and
safe landing. We pre-compute multiple sets with mw

and tf , maxitersets = 2 and, just for simplicity, ne-
glect the maximum velocity constraint. Using the time-
discretized OCP 1, we compute an initial trajectory
from mw = 1300kg, tf = 90s to the original landing site
x
nominal
ls . At each of the discrete steps of this trajectory we

assume a hazard has been detected and use (24) to calculate
the maximum shift of the landing site it is possible to perform
a safe landing with respect to the constraints using the time-
discretized OCP 1. This is done by using (24) to compute
the maximum shift in which the current trajectory point and
mass point belong to a pre-computed D̃(ms

w, t
s

f ) set, and
the set with the furthest shift is chosen. We calculate this
maximum shift as an example for the positive x, y, and x = y

directions and compute the hazard-avoidance trajectory to
these sites as presented in Figure 4. It must be noted that
all these trajectories satisfied the original nonlinear problem
constraints.

VII. CONCLUSIONS AND FUTURE WORK

In this work we developed a formulation for fuel-optimal
powered descent guidance under navigational uncertainty.
We guaranteed that the problem constraints are satisfied
to user-specified probability. We reformulated the guidance
problem as a convex chance-constrained optimal control
problem, where the probability of constraint satisfaction
was assured by tightening the constraints with respect to a
bounded uncertainty set. We developed inner-approximations
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(a) With stochastic computation of the sets

(b) With deterministic computation of the sets

Fig. 3: Degree of success in landing within the desired zone
under navigational uncertainty. Red box - chosen landing
zone Xls, red dots - end state for trajectory x̄⇤, and blue
dots - end state for simulated trajectories x{j}.

Fig. 4: Hazard avoidance test showing an initial trajectory
to a pre-selected landing site and multiple alternative divert
trajectories from different stages of the initial trajectory
validating divert capabilities in the event of hazard detection.

of stochastic controllable sets that characterized the noisy
state estimates from which the lander can be driven to
a target with user-specified probability. Using these sets,
we developed a divert-feasible powered descent guidance
algorithm and demonstrated it on numerical examples. The
simulations showed that our problem formulation satisfies
the problem constraints despite the navigational uncertainty,
successfully landing in the target zone. Finally, we validated
the divert-feasible guidance algorithm and simulated maxi-
mum achievable divert distances from a nominal trajectory at

various altitudes. Future work will extend the development
to account for uncertainty in the dynamics.
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and B. Açıkmeşe, “Convex optimization for trajectory generation: A
tutorial on generating dynamically feasible trajectories reliably and
efficiently,” IEEE Control Systems Magazine, vol. 42, no. 5, pp. 40–
113, 2022.

[7] B. Acikmese and S. R. Ploen, “Convex programming approach to
powered descent guidance for Mars landing,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 5, pp. 1353–1366, 2007.
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