
Abstraction-based Safety Analysis of Linear Dynamical Systems with
Neural Network Controllers

Ratan Lal1 Pavithra Prabhakar2

Abstract— We consider the safety verification problem of a
closed-loop discrete-time linear dynamical system with a neural
network controller. The crux of safety verification relies on
computing output reachable sets of the dynamical system and
the neural network. Reachable set computation time of the
neural network grows with the network size. To address the
scalability issue, our main approach consists of abstracting
the neural network controller into a smaller annotated interval
neural network (AINN), and using this to compute an over-
approximation of the reachable set of the closed-loop system.
We present a novel approach for output reachable set com-
putation of an AINN by decomposing it into two reachable
set computation problems on neural networks, which we then
compute using star-sets. Our experimental analysis on two
benchmarks demonstrate the trade-off in the precision and time
for reachable set computation.

I. INTRODUCTION

Neural networks are increasingly being deployed as con-
trollers in safety-critical domains, which has necessitated rig-
orous analysis methods for guaranteeing the correct function-
ing of these systems. Of particular interest is safety analysis
of closed loop dynamical systems with neural networks as
controllers, which consists of checking if the states reached
by the closed loop system after a given number of loop
iterations do not intersect with an unsafe set. The crux of
safety verification is the computation of the set of output
valuations of the dynamical system and the neural network,
which are then applied repeatedly to compute the reachable
set of the closed loop system, and checked for intersection
with an unsafe set.

Output reachable set computation of neural networks has
received extensive attention in recent years [11]. Computa-
tion of the output set is computationally challenging (NP-
complete); hence, efficient methods for computing precise
over-approximations of the output set have been investigated
(see related work for details). The large size of the network
remains a challenge. We propose an orthogonal approach
for over-approximating the input-output relation via a novel
network reduction technique that is applicable to a wide
range of activation functions.

A neural network is a deterministic system, that is,
the output is unique given an input. To capture an over-
approximation of the input-output, we require a non-
deterministic system. We propose a novel data structure, an-
notated interval neural network, that allows interval weights
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and biases, and consist of a natural number annotation on the
nodes for bookkeeping during the abstraction-refinement pro-
cess. The choice of weights and biases from the correspond-
ing intervals at each step of the computation allows multiple
possible outputs for a given input. Our abstraction procedure
consists of merging the nodes of a neural network based on a
partitioning of the nodes. Biases and weights of the abstract
system are interval hulls of the corresponding biases and
weights in the concrete system. The abstraction procedure
is sound for any continuous activation function. Our data
structure is similar to the interval neural networks [15]
with the addition of annotations on the nodes, however,
the abstraction construction is simplified as we do not need
scaling the interval hull of the weight by a factor equivalent
to the number of nodes merged in the abstract source node.
This is circumvented through the additional annotations.
More interestingly, we can show that the abstraction is unique
given a partition, irrespective of the sequence of abstractions
performed to reach a certain partition, which is violated by
the abstraction in [15]. Further, our abstraction technique is
applicable to any continuous activation function; however,
we need verification methodologies for analyzing the abstract
INNs.

We present a novel algorithms for computing the out-
put reachable set of the annotated interval neural network
(AINN) N , which consists of decomposing the reachable
set computation problem on N into two reachable set
computation problems on standard neural networks. More
precisely, reachable set for AINN N is obtained by a convex
combination of the reachable set of two neural networks Nl

and Nu, where Nl and Nu represent the neural networks
with the same architecture as N but with weights and biases
that are the lower and upper bounds of the corresponding
intervals. We use the star-set based method [20] to compute
the reachset of Nl and Nu and use that to compute the
reachset of N , and then use that to compute the reachset for
the linear dynamics (linear transformations of star sets can
be computed efficiently). We iterate the procedure k times
to compute the k-step reachable set of the closed loop linear
system and use that for safety analysis.

We have implemented our abstraction based safety anal-
ysis procedure in a Python toolbox, and evaluated on two
benchmarks, namely, ACAS XU and the Translational Os-
cillators with Rotating Actuator (TORA). Our experimental
results illustrate the trade-off between the size of the abstrac-
tion, the verification time, and the safety conclusions.
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II. RELATED WORK

Verification of neural networks has gained momentum in
recent years [1], [2]. In recent decades, neural network has
been popularly used for the controller of cyber physical
systems. Although many safety verification of neural network
controlled dynamical systems [10], [18], [19] have been
proposed, the main challenge is the safety verification of
neural networks. For the neural networks, satisfiability solv-
ing based approaches that encode the verification problem
as satisfiability modulo theory (SMT) solving problem, have
been investigated. In particular, Reluplex [12], Planet [6],
NeVer [17], and VeriDeep/DLV [9] can perform satisfiabil-
ity checking of SMT formulas with linear constraints and
ReLU operations. An SMT based counter-example guided
abstraction refinement (CEGAR) approach has been explored
in [16]. A reduction to efficient mixed integer linear program-
ming (MILP) for reachability analysis have been explored
in [3]. Methods for over-approximation of the reachable set
of neural networks [8], including abstract interpretation [5]
based methods have been explored. Approaches based on
convex optimization [14], interval analysis [21], and linear
approximation [22] have been explored.

In this paper, we present a safety analysis of neural
network-controlled linear dynamical systems based on a
network reduction technique and reachability analysis of
neural networks and linear dynamical systems.

III. PRELIMINARIES

a) Numbers and Sets: Let R, R≥0, IR and N denote
the set of real numbers, the set of positive real numbers,
the set of all real intervals, and the set of natural numbers,
respectively. We say that an interval [a, b] ∈ IR is singular
if a = b. Given an interval [a, b], we use [a, b]l to denote a
and [a, b]u to denote b. We use [n] and (n] to denote the set
{0, 1, . . . , n} and {1, 2, . . . , n}, respectively. Given a set S,
we use |S| to denote the number of elements in the set.

b) Relations and Functions: Given three sets S1, S2,
S3, and relations R1 ⊆ S1 × S2, R2 ⊆ S2 × S3, the
composition of R1 and R2 denoted by R1 ⋄R2 is the subset
{(s1, s3) ∈ S1 × S3 | ∃ s2 ∈ S2, (s1, s2) ∈ R1, (s2, s3) ∈
R2} of S1 ×S3. A function f : S1 → S2 is bijection if it is
one-one and onto function. Given functions f : S1 → S2 and
g : S2 → S3, we use g◦f for the composition of the functions
f and g, that is, g◦f : S1 → S3, where g◦f(s1) = g(f(s1)).
Given a set S, a valuation on S is a function f : S → R.
We will use V al(S) to denote the set of all valuations on S.

c) Convex Hull: Let S1,S2, . . . ,Sn be subsets of Rn.
Convex hull of Sis, i ∈ (n] denoted by CH(S1,S2, . . . , Sn)
is the smallest convex set that contains all Sis, i ∈ (n].

IV. INTERVAL NEURAL NETWORKS

Recall that a neural network (NN) is a computational
model, that consists of an input layer, one or more hidden
layers, and an output layer of neurons (or nodes). Each
neuron in the hidden layers and the output layer is labeled
with a bias and an activation function. Each edge between
two neurons in two consecutive layers is labeled with a

weight. In this paper, we consider interval neural networks
(INNs), which extend NNs, by allowing interval values for
biases and edges, and annotating the neurons in the hidden
and output layers with a natural number, that allows to keep
relationship between concrete and abstract neurons. Next, we
formally define the INN.

Definition 1: An interval neural network (INN) is a
tuple N =

(
k,Act, {Si}i∈[k], {Li}i∈[k], {Wi}i∈(k],

{bi}i∈(k], {Ai}i∈(k]

)
, where

• k is the number of layers;
• Act is a set of activation functions;
• For each i ∈ [k],

– Si is a set of neurons in layer i;
– Li : Si → N is a function that annotates each neuron

in layer i with a natural number;

• For each i ∈ (k],

– Wi : Si−1×Si → IR is a function that assigns a real
number interval to each edge between layer i−1 and
layer i;

– bi : Si → IR is a function that assigns a real number
interval to each neuron in layer i;

– Ai : Si → Act is a function that assigns one of the
activation functions from the set Act to each neuron
in layer i.

In the rest of this paper, we will use N to denote an
interval neural network. We consider the class of activation
functions to be the class of continuous functions from R to
R, such as Relu, Sigmoid, and Tanh function.

We capture the semantics of INN as a set of pairs of input-
output valuations, where the output valuation corresponds
to a possible valuation of the output layer, given the input
valuation.

The next definition formalizes the semantics of INN for a
particular layer, which is then iteratively composed to obtain
the input-output relation of the INN. Note that while the NN
semantics is deterministic, the interval weights and biases
render the semantics of INN non-deterministic. However, this
is needed to express over-approximations of neural network
semantics.

Definition 2: Given an INN N and a layer index i ∈ (k],
we define the semantics of N for the layer i, denoted by
[[N ]]i as follow:

[[N ]]i = {(v, v′) ∈ V al(Si−1)× V al(Si) | ∀ s′ ∈ Si,

∃ {ws,s′}s∈Si−1
∈ {Wi(s, s

′)}s∈Si−1
, bs′ ∈ bi(s

′) s.t.

v′(s′) = Ai(s
′)(

 ∑
s∈Si−1

ws,s′Li−1(s)v(s)

+ bs′)}

We define the semantics of INN N as a composition of
the semantics [[N ]]is, i ∈ (n], where [[N ]]i captures all valid
pairs of valuations for the neurons in layer i− 1 and i.

Definition 3: Given an INN N , its semantics denoted by
[[N ]], is defined as:

[[N ]] = [[N ]]1 ⋄ [[N ]]2 ⋄ . . . ⋄ [[N ]]k
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V. LINEAR DYNAMICAL SYSTEMS

In this section, we formalize an n-dimensional discrete-
time linear dynamical system given as:

x(k + 1) = Ax(k) +Bu(k), (1)

using explicit state and input variables. Here, x(k) and u(k)
denote the state and input at time k, and A and B are
matrices. So, the state at time k + 1 is a linear function
of the state and input at time k. Instead of treating state and
inputs at time k as vectors, we treat them in the following
formalization as valuations for state and input variables.

Definition 4: A linear dynamical system (LDS) is a tuple
D = (SX ,SI ,MA,MB ,S, I), where

• SX is a set of state variables;
• SI is a set of input variables;
• MA : SX × SX → R is a function that assign a real

value for each pair of state variables;
• MB : SX × SI → R is a function that assign a real

value for each pair of state and input variable;
• S ⊆ {v | v : SX → R} is a set of initial valuations for

the state variables in SX .
• I ⊆ {v | v : SI → R} is a set of valuations for the

input variables in SI .
Next, we define the semantics of LDS that captures the next
state valuation given an initial state and an input valuation.

Definition 5: Given an n-dimensional LDS D =
(SX ,SI ,MA,MB ,S, I), we define the semantics of D as
follow: [[D]] = {(v1, v, v2) | v1 ∈ S, v ∈ I, ∀ x ∈ SX ,

v2(x) =
∑

x′∈SX

MA(x, x
′)v1(x

′) +
∑
u∈SI

MB(x, u)v(u)}

VI. LINEAR DYNAMICAL SYSTEMS WITH INN

In this section, we introduce the linear dynamical systems
controlled by interval neural networks. Here, the input to
the linear dynamical system x(k + 1) = Ax(k) + Bu(k) is
provided by the output of the neural network N which in
turn takes the state of the linear dynamical system as input as
shown in Figure 1. Our broad objective is to analyze systems
in which neural networks control the dynamical systems.
However, the analysis can be expensive when we have large
neural networks. We will present an abstraction of a neural
network into a small interval neural network in order to scale
the analysis. Next, we formally define syntax and semantics
of a linear dynamical system with an INN.

Fig. 1: A Linear Dynamical System with an INN

Definition 6: A linear dynamical system with an interval
neural network (LDSINN) is a tuple C = (D,N ) where

• D = (SX ,SI ,MA,MB ,S, I) is a linear dynamical
system;

• N =
(
k,Act, {Si}i∈[k], {Li}i∈[k], {Wi}i∈(k], {bi}i∈(k],

{Ai}i∈(k]

)
is an interval neural network;

• SX = S0 and SI = Sk.
Definition 7: Given an LDSINN C = (D,N ), we define

the semantics of C as follows: [[C]] = {(x1, x2) |
∃ u ∈ V al(Sk), (x1, u) ∈ [[N ]], (x1, u, x2) ∈ [[D]]}.

Our broad objective is to perform safety analysis of linear
dynamics systems with neural network controllers for a finite
time horizon k ∈ N. This require us to define the semantics
of k-composition of a LDSINN C = (D,N ) denoted by
[[(C, k)]] that captures all pairs of initial state valuation and
state valuation at kth iteration of evolution through D and
N . [[(C, k)]] is formally defined as follows:

[[(C, k)]] = [[C]]
1

⋄ [[C]]
2

⋄ . . . ⋄ [[C]]
k

.

Problem 1: [Safety Problem] Given an LDSINN C =
(D,N ), a set of unsafe state valuations U, and number of
steps k ∈ N, verify whether there exist initial state valuation
v ∈ S and i ∈ (k] such that for some v′, (v, v′) ∈ [[(C, i)]],
and v′ ∈ U.

The crux for the safety analysis lies in computing all valid
pairs of initial state and state valuation for k-composition of
LDSINN that consists of two computational steps, namely,
(a) computation of control inputs from INN N ; (b) compu-
tation of the set of next state valuations with respect to the
set of current state valuations and the set of control input
valuations obtained from N . The step (a) is computationally
expensive, specifically, for the large neural networks. Hence,
we present an abstraction technique based on a partitioning
of the neuron-space that is sound. The abstraction technique
reduces the large neural network into a smaller neural
network expressed in the form of INN. The step (b) can be
performed by linear transformation operation over current
state and control input valuations.

VII. ABSTRACTION OF INN

In this section, we present an abstraction procedure that
reduces a large INN N (or neural network) into a small
INN N̂ such that N̂ is an over-approximation of N . The
procedure is based on partitioning the nodes in each layer of
INN into a finite number of sets, and considering these sets
as abstract nodes. We start with some preliminaries.

Definition 8 (Partition): A partition of an INN N is a
sequence P = {Pi}i∈[k], where Pi is a partition of Si

satisfying the following conditions:
• for each S∈ Pi, if s1, s2 ∈ S, then Ai(s1) = Ai(s2);
• P0 = {{s} | s ∈ S0}, Pk = {{s} | s ∈ Sk}.
The broad abstraction procedure consists of merging the

nodes of a particular set of a partition into an abstract node
and instantiating the biases and the weights such that over-
approximation is guaranteed. For the bias on an abstract
node, we consider the convex hull of the biases associated
with the nodes in the set corresponding to the abstract node.
The weights on abstract edge is a bit tricky. As shown
in [15], a convex hull of the weight intervals associated
with the concrete edges corresponding to the abstract edges
does not provide an over-approximation; however, “scaling”
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the interval by the number of nodes being merged in the
source provides an over-approximation. However, such an
over-approximation is not conducive to refinement, since,
depending on the sequence of partitions used to construct
the abstraction (with the “same” final partition), one ends
up with different abstractions. Hence, we avoid the scaling,
and instead store this information in the annotations, which
provides a unique abstraction corresponding to a partition,
irrespective of the sequence of node mergings applied to
arrive at that abstraction. More precisely, for the abstract
edge weight, we consider only the convex hull of the cor-
responding concrete edge weights (without any scaling) and
annotate the abstract node with the number of merged nodes.
Note that our semantics for INN has the effect of scaling with
respect to the number of merged incoming nodes. Next, we
provide the formal definition of the abstraction construction.

Definition 9: Given an INN N and its partition
P = {Pi}i∈[k], we define an abstract INN
N/P =

(
k,Act, {Ŝi}i∈[k], {L̂i}i∈[k], {Ŵi}i∈(k], {b̂i}i∈(k],

{Âi}i∈(k]

)
, where

• for each i ∈ [k], (a) Ŝi = Pi; (b) for each ŝ ∈ Ŝi,
L̂i(ŝ) =

∑
s∈ŝ

Li(s);

• for each i ∈ (k],
– for each ŝ ∈ Ŝi−1, ŝ′ ∈ Ŝi, Ŵi(ŝ, ŝ

′) =
CH({Wi(s, s

′) | s ∈ ŝ, s′ ∈ ŝ′});
– for each ŝ ∈ Ŝi, b̂i(ŝ) = CH({bi(s) | s ∈ ŝ});
– for each ŝ ∈ Ŝi, Âi(ŝ) = Ai(s) for some s ∈ ŝ.

In the rest of this paper, we use ̂ to denote the components
of the abstract INN N/P as defined in Definition 9 in order
to distinguish from the components of N . Next, we define
an abstraction function for establishing a relation between
the valuations of the concrete and abstract systems. The
value for an abstract node is a weighted average of the
values of concrete nodes, where weights are annotated values
associated with the concrete nodes.

Definition 10: Given an INN N and its abstraction N/P ,
we define an abstraction function α(N ,P) = {αi

(N ,P)}i∈[k],
where αi

(N ,P) : V al(Si) → V al(Ŝi) such that

αi
(N ,P)(v)(ŝ) =

∑
s∈ŝ

Li(s)v(s)

L̂i(ŝ)
.

Remark 1: We avoid subscripts N , P and superscript i
from αi

(N ,P), when it is clear from the context.
Next, we show that given an input-output valuation (v, v′)

of an INN N , its mapping under the abstraction function α,
that is, (α(v), α(v′)) will be an input-output valuation of the
abstract INN N/P , which is stated in the following theorem.

Theorem 1: Given an INN N and its abstraction N/P ,
we have the following:

if (v, v′) ∈ [[N ]], then (α(v), α(v′)) ∈ [[N/P]].

In order to compare the input-output relations of two
INNs, we need to be able to map input and output valuations,
of the two systems. We do this by creating bijections between
the input and the output neurons of the two INNs.

Definition 11: Let FI : SI → S ′
I and FO : SO → S ′

O

be two bijective functions, and R ⊆ V al(S ′
I)×V al(S ′

O) be

a binary relation. We define R/(FI , FO) = {(v1 ◦ FI , v2 ◦
FO) | (v1, v2) ∈ R}.
We define an ordering on INNs using over-approximation
relationship between two INNs.

Definition 12: Given two INNs N1 and N2, we say N2 is
an over-approximation of N1, denoted by N1 ⩽ N2 if there
are bijection functions FI : S1

0 → S2
0 and FO : S1

k → S2
k

such that [[N1]] ⊆ [[N2]]/(FI , FO).
Given a partition P , abstract INN N/P is always an over-
approximation of N , which is stated in the following theo-
rem.

Theorem 2: Given an INN N and its partition P , we have
N ⩽ N/P .

VIII. CONSTRUCTION OF Nl AND Nu

In this section, we present a new approach for computing
the reachable set of an interval neural network by reducing
it to the verification of the traditional neural networks. Our
broad idea is that the reach set of an INN can be represented
as a convex hull of reach sets of two neural networks,
namely Nl and Nu, referred to as the lower and upper neural
networks. This holds as long as the inputs are all positive,
or more generally, when all the inputs for a particular node
have the same sign. We decompose the input set into a finite
number of sets based on the signs of the inputs to generalize
this observation.

For simplicity, first we consider the case where the state
valuations are all positive. Nl is the neural network obtained
by considering the lower bound of weights and biases of INN
N . Nu is the neural network constructed by considering the
upper bound of weights and biases of INN N .

Definition 13: Given an INN N , lower/upper neural net-
work Nl/Nu is defined as the same structure of N except:

• For a ∈ {l, u},
– For each i ∈ (k], for s ∈ Sa

i−1, s′ ∈ Sa
i ,

Wa
i (s, s

′) = [Li(s) ∗Wi(s, s
′)a,Li(s) ∗Wi(s, s

′)a];
– For each i ∈ (k], for s ∈ Sa

i , bai (s) = [bi(s)a, bi(s)a].
Next, we establish the relationship between output valuation
of the INN N , Nl and Nu with respect to an input valuation,
which is stated in the following theorem.

Theorem 3: Let N be an INN, and v ∈ V al(S0) such that
for all s ∈ S0, v(s) ≥ 0. Then, we have

(v, v′) ∈ [[N ]] iff ∃ vl ∈ V al(Sl
k), vu ∈ V al(Su

k ) such that

(v, vl) ∈ [[Nl]], (v, v
u) ∈ [[Nu]] and for all s ∈ Sk,

vl(s) ≤ v′(s) ≤ vu(s).
Next, we provide a construction of Nl and Nu for the

general case. For the ReLU activation function, we know
that all the valuations of neurons in layer 1 or higher are
positive. Hence, for Nl and Nu, to compute weights and
biases from layer 1, we use Definition 13. To find weights
between input neurons and neurons in the first layer for both
Nl and Nu, we first divide the input set into regions such
that the sign of all the valuations in the same region for
any input neuron is same, that is, ∀ s ∈ S0, I(s) ∩ R≥0 =
∅ or ∀ s ∈ S0, I(s) ∩ R<0 = ∅. The upper and lower bound
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of the weight are chosen based on the sign of the valuation
of the incoming node.

Let us define for any x ∈ R, sign(x) is positive if x >= 0
and negative otherwise. We define an equivalence relation
on the input set I as follows. v1, v2 ∈ I are equivalent if
for every input neuron s ∈ S0, sign(v1(s)) = sign(v2(s)).
Let I1, . . . , Im be the partition of I corresponding to the
equivalence relation. Note that m could be 2|S0| in the worst
case. Next we define for each Ij , upper and lower bound
neural networks, N j

l and N j
u . The neural networks N j

l and
N j

u are the same except the weight on layer 1, that is, W l,j
1

and Wu,j
1 . For s ∈ S0, let sign(Ij , s) be the sign of v(s) for

some v ∈ Ij . Note that for all the valuations v ∈ Ij , v(s)
always have the same sign. Then, we use the following for
W l,j

1 and Wu,j
1 . For s ∈ S0, for s′ ∈ S1,

(a) if sign(Ij , s) is positive, then W l,j
1 and Wu,j

1 are the
same as defined in Definition 13;
(b) if sign(Ij , s) is negative, then W l,j

1 (s, s′) and Wu,j
1 (s, s′)

will be interchanged, that is, lower and upper weight for the
edge (s, s′) will be Wu,j

1 (s, s′) and W l,j
1 (s, s′), respectively.

IX. SAFETY ANALYSIS

The broad approach to safety analysis consists of comput-
ing the reachable set of the closed loop system and checking
if the reachable set has an empty intersection with the unsafe
set. The reach set computation consists of the following two
steps: compute the set of all control inputs that are output
by the neural network for a given set of state valuations
S given as input to the neural network, that is, compute
OS

N = {(v′ | ∃ v ∈ S, (v, v′) ∈ [[N ]]}; and compute the
reach set of D for a given set of initial state valuations S
and a set of input valuations I output by the neural network,
denoted by OS,I

D , and given by: OS,I
D = MAS +MBI. One

of the efficient methods to compute OS
N is based on star-set

representations of polyhedra [20], where both exact and over-
approximate methods are provided as a trade-off between
precision and computation time. OS,I

D can be computed by
taking linear transformation and Minkowski sum of the star-
sets which can again be performed efficiently.

Our broad approach for safety analysis is shown in Figure
2. It relies on the basic idea of iteratively propagating
star-sets through the neural network and linear dynamics.
However, to address the scalability challenges arising with
large neural networks, it incorporates the abstraction based
approach proposed in the paper in Section VII. First, a
neural network is abstracted, potentially resulting in a small
interval neural network, which is further decomposed into
upper and lower neural networks. Exact or over-approximate
reachability computation methods are used to compute the
individual reachable sets and their convex hull is computed
that provides the exact or over-approximate reachable set of
the interval neural network. Then the reachable sets with
respect to the linear dynamics is computed. These steps are
repeated for the desired number of iterations.

Fig. 2: Safety Analysis Framework
X. EXPERIMENTAL ANALYSIS

In this section, we report our experimental evaluation on
two benchmarks, namely ACAS Xu and the Translational
Oscillators with Rotating Actuator (TORA). We have imple-
mented the star-set based approach in Figure 2 in a Python
toolbox. All the experiments were performed with Ubuntu
18.04 OS, Intel R⃝ coreTM i7-4870HQ CPU @2.50GHz, 8GB
RAM.

ACAS Xu. ACAS Xu is a neural network controller for
an unmanned aircraft [13] designed for collision avoidance.
It consists of 6 hidden layers with 50 neurons in each layer.
We have performed safety analysis of the property that the
output neuron corresponding to the control input Clear of
Conflict (COC) is less than 1012 [12] on 4 neural networks of
ACAS Xu benchmarks which is reported in Table I. We start
with an abstraction, where each abstract neuron corresponds
to merging 8 neurons. Next, we systematically construct
refinements, that is, more precise abstractions refinement-1
and refinement-2, where refinement-1 corresponds to merg-
ing 4 neurons into an abstract neuron, and refinement-2
corresponds to merging 2 neurons into an abstract neuron.
We report for each of the fours neural networks, N1, N2, N3,
and N4, (1) Time, the time taken in seconds for computing the
reach set and determining if the property is satisfied, and (2)
Range, that represents the output range for the neuron Clear
of Conflict (COC). We observe that subsequent refinements
take more time to compute the reach set as the size of
the abstract networks grows, however, the computed ranges
(which represent the reachable values of a specific output
neuron) become more precise. We note that Abstraction and
Refinement-1 are not sufficient to prove the property (COC
is less than 1012), while Refinement-2 is more precise and is
sufficient to prove the property in all the cases. This demon-
strates the trade-off between reachable set computation time
and its precision.

N1 N2 N3 N4
Size Time Range(x1) Time Range (x1) Time Range (x1) Time Range (x1)

Abstraction 8 1.20 2.97e+15 1.19 2.87+e14 1.17 1.09e+15 1.16 1.49e+14
Refinement-1 13 1.98 7.67e+13 2.03 1.03e+13 2.02 4.19e+13 2.02 4.62e+12
Refinement-2 25 3.78 3.26e+11 3.71 1.54e+11 5.62 2.99e+11 3.74 3.92e+10

TABLE I: Verification of ϕ1 over ACASXU Neural Networks
The Translational Oscillators with Rotating Actuator

(TORA). TORA is an underactuated system which has one
actuated rotor and one unactuated translational cart [7]. The
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dynamics consists of 4 state variables and one input variable,
and is given below:

x1[k + 1] = x2[k], x2[k + 1] = −x1[k] + x3[k],

x3[k + 1] = x4[k], x4[k + 1] = u.

The input u is computed by a neural network that consists
of 4 input neurons corresponding to the state variables, 3
hidden layers each with 100 neurons, and 1 output neuron
corresponding to the input variable. We report the details of
the verification time in Table II for the original, abstract and
refined neural network, for different number of steps, where
abstract system has 7 neurons and refined system has 13
neurons in each hidden layer.

Original(100 Neurons) Abstraction (7 Neurons) Refinement (13 Neurons)
K Time Range(x4) Time Range(x4) Time Range(x4)
2 13.73 [2.64, 2.84] 0.11 [6.0, 3.11e+07] 0.23 [5.0, 6.8e+06]
4 19.67 [3.25, 3.38] 0.47 [0, 2.28e+14] 2.21 [0, 1.06e+13]
6 16.86 [2.80, 2.94] 0.96 [0, 1.67e+21] 3.42 [0, 1.66e+19]
8 14.29 [3.64,2.84] 1.46 [0, 7.79e+20] 4.20 [0, 1.23e+18]

TABLE II: Computational Analysis over Different Abstrac-
tions

In Table II, K represents the number of iterations through
the control loop, Time represents the average time in seconds
for propagating the reach set through the control loop and
Range represents the range of values of the output neuron
corresponding to the state variable x4 after k iterations.

We observe that when we increase the value of K, the
average time per iteration increases as a result of the growth
in the number of star-sets representing the reachable sets
in subsequent iterations due to splits caused by the ReLU
operations. Most of this time is consumed in propagating the
reach set through the neural network, and the propogation of
the reach set through the dynamics is fast. As before the
average time increases and the range becomes smaller with
subsequent refinements.

XI. CONCLUSIONS

In this paper, we present an abstraction based safety
analysis framework for neural network controlled dynamical
systems. We present a novel abstraction technique and a
novel reachable set computation algorithm for the annotated
interval neural networks. Our experimental analysis demon-
strates the benefits of the abstraction based safety analysis
approach. We noticed that the success of the approach
critically relies on the specific abstractions. Our future work
will investigate mechanisms for exploring the abstractions
in a systematic manner, for instance, using methods such as
counter-example guided abstraction refinement [4].

XII. ACKNOWLEDGEMENT

This work was partially supported by NSF CAREER
Grant No. 1552668, NSF Grant No. 2008957 and Amazon
Research Award.

REFERENCES

[1] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
M. Pawan Kumar. Piecewise linear neural network verification: A
comparative study. CoRR, 2017.

[2] Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and
M Pawan Kumar. Piecewise linear neural networks verification: A
comparative study. 2018.

[3] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum
resilience of artificial neural networks. In Automated Technology for
Verification and Analysis - 15th International Symposium, ATVA, 2017.

[4] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided abstraction refinement. In Proceedings
of the International Conference on Computer Aided Verification, pages
154–169. Springer, 2000.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Symposium on Principles of Programming
Languages, 1977.
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