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Abstract— This paper studies the problem of online stabi-
lization of an unknown discrete-time linear time-varying (LTV)
system under bounded non-stochastic (potentially adversarial)
disturbances. We propose a novel algorithm based on convex
body chasing (CBC). Under the assumption of infrequently
changing or slowly drifting dynamics, the algorithm guarantees
bounded-input-bounded-output stability in the closed loop. Our
approach avoids system identification and applies, with minimal
disturbance assumptions, to a variety of LTV systems of prac-
tical importance. We demonstrate the algorithm numerically
on examples of LTV systems including Markov linear jump
systems with finitely many jumps.

I. INTRODUCTION

Learning-based control of linear-time invariant (LTI) sys-
tems in the context of linear quadratic regulators (LQR)
has seen considerable progress. However, many real-world
systems are time-varying in nature. For example, the grid
topology in power systems can change over time due to man-
ual operations or unpredictable line failures [1]. Therefore,
there is increasing recent interest in extending learning-based
control of LTI systems to the linear time-varying (LTV)
setting [2], [3], [4], [5], [6].

LTV systems are widely used to approximate and model
real-world dynamical systems such as robotics [7] and
autonomous vehicles [8]. In this paper, we consider LTV
systems with dynamics of the following form:

𝑥𝑡+1 =𝐴𝑡𝑥𝑡 +𝐵𝑡𝑢𝑡 +𝑤𝑡 , (1)

where 𝑥𝑡 ∈ R𝑛 , 𝑢𝑡 ∈ R𝑚 and 𝑤𝑡 denotes the state, the
control input, and the bounded and potentially adversarial
disturbance, respectively. We use \𝑡 = [𝐴𝑡 𝐵𝑡 ] to succinctly
denote the system matrices at time step 𝑡 .

On the one hand, offline control design for LTV systems
is well-established in the setting where the underlying LTV
model is known [9], [10], [11], [12], [13]. Additionally,
recent work has started focusing on regret analysis and non-
stochastic disturbances for known LTV systems [2], [14].

On the other hand, online control design for LTV systems
where the model is unknown is more challenging. Histori-
cally, there is a rich body of work on adaptive control design
for LTV systems [15], [16], [17]. Also related is the system
identification literature for LTV systems [18], [19], [20],
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which estimates the (generally assumed to be stable) system
to allow the application of the offline techniques.

In recent years, the potential to leverage modern data-
driven techniques for controller design of unknown linear
systems has led to a resurgence of work in both the LTI and
LTV settings. There is a growing literature on “learning to
control” unknown LTI systems under stochastic or no noise
[21], [22], [23]. Learning under bounded and potentially
adversarial noises poses additional challenges, but online
stabilization [24] and regret [25] results have been obtained.

In comparison, there is much less work on learning-
based control design for unknown LTV systems. One typical
approach, exemplified by [3], [26], [27], derives stabilizing
controllers under the assumption that offline data representing
the input-output behavior of (1) is available and therefore an
offline stabilizing controller can be pre-computed. Similar
finite-horizon settings where the algorithm has access to
offline data [28], or can iteratively collect data [29] were also
considered. In the context of online stabilization, i.e., when
offline data is not available, work has derived stabilizing
controllers for LTV systems through the use of predictions
of \𝑡 , e.g., [30]. Finally, another line of work focuses on
designing regret-optimal controllers for LTV systems [31],
[6], [4], [5], [32]. However, with the exception of [30], ex-
isting work on online control of unknown LTV systems share
the common assumption of either of open-loop stability or
knowledge of an offline stabilizing controller. Moreover, the
disturbances are generally assumed to be zero or stochastic
noise independent of the states and inputs.

In this paper, we propose an online algorithm for sta-
bilizing unknown LTV systems under bounded, potentially
adversarial disturbances. Our approach uses convex body
chasing (CBC), which is an online learning problem where
one must choose a sequence of points within sequentially
presented convex sets with the aim of minimizing the sum
of distances between the chosen points [33], [34]. CBC has
emerged as a promising tool in online control, with most
work making connections to a special case called nested
convex body chasing (NCBC), where the convex sets are
sequentially nested within the previous set [35], [36]. In
particular, [37] first explored the use of NCBC for learning-
based control of time-invariant nonlinear systems. NCBC
was also used in combination with System Level Synthesis
to design a distributed controller for networked systems [24]
and in combination with model predictive control [38] for
LTI system control as a promising alternative to system
identification based methods. However, this line of work
depends fundamentally on the time invariance of the system,
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which results in nested convex sets. LTV systems do not yield
nested sets and therefore represent a significant challenge.

This work addresses this challenge and presents a novel
online control scheme (Algorithm 1) based on CBC (non-
nested) techniques that guarantees bounded-input-bounded-
output (BIBO) stability as a function of the total model
variation

∑∞
𝑡=1 ∥\𝑡 −\𝑡−1∥, without predictions or offline data

under bounded and potentially adversarial disturbances for
unknown LTV systems (Theorem 1). This result implies
that when the total model variation is finite or growing
sublinearly, BIBO stability of the closed loop is guaranteed
(Corollaries 1 and 2). In particular, our result depends on
a refined analysis of the CBC technique (Lemma 1) and is
based on the perturbation analysis of the Lyapunov equation.
This contrasts with previous NCBC-based works for time-
invariant systems, where the competitive ratio guarantee of
NCBC directly applies and the main technical tool is the
robustness of the model-based controller, which is a proven
using a Lipschitz bound of a quadratic program in [24] and
is directly assumed to exist in [37].

We illustrate the proposed algorithm via numerical exam-
ples in Section IV to corroborate the stability guarantees. We
demonstrate how the proposed algorithm can be used for data
collection and complement data-driven methods like [27],
[3], [28]. Further, the numerics highlight that the proposed
algorithm can be efficiently implemented by leveraging the
linearity of (1) despite the computational complexity of CBC
algorithms in general (see Section III-B for details).

Notation. We use S𝑛−1 to denote the unit sphere in R𝑛

and N+ for positive integers. For 𝑡, 𝑠 ∈ N+, we use [𝑡 : 𝑠] as
shorthand for the set of integers {𝑡, 𝑡 + 1, . . . ,𝑠} and [𝑡] for
{1, 2, . . . , 𝑡}. Unless otherwise specified, ∥·∥ is the operator
norm. We use 𝜌 (·) for the spectral radius of a matrix.

II. PRELIMINARIES

In this section, we state the model assumptions underlying
our work and review key results for convex body chasing,
which we leverage in our algorithm design and analysis.

A. Stability and model assumptions

We study the dynamics in (1) and make the following
standard assumptions about the dynamics.

Assumption 1 The disturbances are bounded: ∥𝑤𝑡 ∥∞ ≤𝑊
for all 𝑡 ≥ 0.

Assumption 2 The unknown time-varying system matrices
{\𝑡 }∞𝑡=1 belong to a known (potentially large) polytope Θ
such that \𝑡 ∈ Θ for all 𝑡 . Moreover, there exists ^ > 0 such
that ∥\ ∥ ≤ ^ and \ is stabilizable for all \ ∈ Θ.

Bounded and non-stochastic (potentially adversarial) dis-
turbances is a common model both in the online learning and
control problems [39], [40]. Since we make no assumptions
on how large the bound𝑊 is, Assumption 1 models a variety
of scenarios, such as bounded and/or correlated stochastic
noise, state-dependent disturbances, e.g., the linearization

and discretization error for nonlinear continuous-time dy-
namics, and potentially adversarial disturbances. Assump-
tion 2 is standard in learning-based control, e.g. [41], [42].

We additionally assume there is a quadratic known cost
function of the state and control input at every time step 𝑡

to be minimized, e.g. 𝑥⊤𝑡 𝑄𝑥𝑡 +𝑢⊤𝑡 𝑅𝑢𝑡 , with 𝑄, 𝑅 ≻ 0. For a
given LTI system model \ = [𝐴 𝐵] and cost matrices 𝑄, 𝑅,
we denote 𝐾 = LQR(\ ;𝑄,𝑅) as the optimal feedback gain
for the corresponding infinite-horizon LQR problem.

Remark 1 Representing model uncertainty as convex com-
pact parameter sets where every model is stabilizable is not
always possible. In particular, if a parameter set Θ has a
few singular points where (𝐴,𝐵) loses stabilizability such as
when 𝐵 = 0, a simple heuristic is to ignore these points in
the algorithm since we assume the underlying true system
matrices \𝑡 must be stabilizable.

B. Convex body chasing

Convex Body Chasing (CBC) is a well-studied online
learning problem [35], [36]. At every round 𝑡 ∈N+, the player
is presented a convex body/set K𝑡 ⊂ R𝑛 . The player selects
a point 𝑞𝑡 ∈ K𝑡 with the objective of minimizing the cost
defined as the total path length of the selection for 𝑇 rounds,
e.g.,

∑𝑇
𝑡=1 ∥𝑞𝑡 −𝑞𝑡−1∥ for a given initial condition 𝑞0 ∉ K1.

There are many known algorithms for the CBC problem with
a competitive ratio guarantee such that the cost incurred by
the algorithm is at most a constant factor from the total path
length incurred by the offline optimal algorithm which has
the knowledge of the entire sequence of the bodies. We will
use CBC to select \𝑡 ’s that are consistent with observed data.

1) The nested case: A special case of CBC is the nested
convex body chasing (NCBC) problem, where K𝑡 ⊆ K𝑡−1. A
known algorithm for NCBC is to select the Steiner point
of K𝑡 at 𝑡 [36]. The Steiner point of a convex set K
can be interpreted as the average of the extreme points
of K and is defined as st(K) := E𝑣:∥𝑣 ∥≤1 [𝑔K (𝑣)], where
𝑔K (𝑣) := argmax𝑥∈K𝑣

⊤𝑥 and the expectation is taken with
respect to the uniform distribution over the unit ball. The
intuition is that Steiner point remains “deep” inside of the
(nested) feasible region so that when this point becomes
infeasible due to a new convex set, this convex set must
shrink considerably, which indicates that the offline optimal
must have moved a lot. Given the initial condition 𝑞0 ∉

K1, the Steiner point selector achieves competitive ratio of
O(𝑛) against the offline optimal such that for all 𝑇 ∈ N+,∑𝑇

𝑡=1 ∥st(K𝑡 ) − st(K𝑡−1)∥ ≤ O(𝑛) ·OPT, where OPT is the
offline optimal total path length. There are many works that
combine the Steiner point algorithm for NCBC with existing
control methods to perform learning-based online control for
LTI systems, e.g., [24], [37], [38].

2) General CBC: For general CBC problems, we can
no longer take advantage of the nested property of the
convex bodies. One may consider naively applying NCBC
algorithms when the convex bodies happen to be nested and
restarting the NCBC algorithm when they are not. However,
due to the myopic nature of NCBC algorithms, which try
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to remain deep inside of each convex set, they no longer
guarantee a competitive ratio when used this way. Instead,
[33] generalizes ideas from NCBC and proposes an algorithm
that selects the functional Steiner point of the work function.

Definition 1 (Functional Steiner point) For a convex
function 𝑓 : R𝑛→ R, the functional Steiner point of 𝑓 is

st(𝑓 ) = −𝑛 · −
∫
𝑣:∥𝑣 ∥=1

𝑓 ∗ (𝑣) 𝑣 𝑑𝑣, (2)

where −
∫
𝑥∈S 𝑓 (𝑥)𝑑𝑥 denotes the normalized value

∫
𝑥 ∈S 𝑓 (𝑥 )𝑑𝑥∫

𝑥 ∈S 1𝑑𝑥
of 𝑓 (𝑥) on the set S, and

𝑓 ∗ (𝑣) := inf𝑥∈R𝑛 𝑓 (𝑥) − ⟨𝑥,𝑣⟩ (3)

is the Fenchel conjugate of 𝑓 .

The CBC algorithm selects the functional Steiner point of
the work function, which records the smallest cost required to
satisfy a sequence of requests while ending in a given state,
thereby encapsulating information about the offline-optimal
cost for the CBC problem.

Definition 2 (Work function) Given an initial point 𝑞0 ∈
R𝑛 , and convex sets K1, . . . ,K𝑡 ⊂ R𝑛 , the work function at
time step 𝑡 evaluated at a point 𝑥 ∈ R𝑛 is given by:

𝜔𝑡 (𝑥) = min
𝑞𝑠 ∈K𝑠

∥𝑥 −𝑞𝑡 ∥ +
𝑡∑︁

𝑠=1
∥𝑞𝑠 −𝑞𝑠−1∥ . (4)

Importantly, it is shown that the functional Steiner points
of the work functions are valid, i.e., st(𝜔𝑡 ) ∈ K𝑡 for all 𝑡
[33]. On a high level, selecting the functional Steiner point
of the work function helps the algorithm stay competitive
against the currently estimated offline optimal cost via the
work function, resulting in a competitive ratio of 𝑛 against
the offline optimal cost (OPT) for general CBC problems,

𝑇∑︁
𝑡=1
∥st(𝜔𝑡 ) −st(𝜔𝑡+1)∥ ≤ 𝑛 ·OPT. (5)

Given the non-convex nature of (2) and (4), we note
that, in general, it is challenging to compute the functional
Steiner point of the work function. However, in the proposed
algorithm, we are able to leverage the linearity of the
LTV systems and numerically approximate both objects with
efficient computation in Section III-B.

III. MAIN RESULTS

We present our proposed online control algorithm to
stabilize the unknown LTV system (1) under bounded and
potentially adversarial disturbances in Algorithm 1. After
observing the latest transition from 𝑥𝑡 , 𝑢𝑡 to 𝑥𝑡+1 at 𝑡 + 1
according to (1) (line 2), the algorithm constructs the set
of all feasible models \̂𝑡 ’s (line 3) such that the model is
consistent with the observation, i.e., there exists an admis-
sible disturbance 𝑤𝑡 satisfying Assumption 1 such that the
state transition from 𝑥𝑡 , 𝑢𝑡 to 𝑥𝑡+1 can be explained by the
tuple (\̂𝑡 , 𝑤𝑡 ). We call this set the consistent model set P𝑡

and we note that the unknown true dynamics \𝑡 = [𝐴𝑡 𝐵𝑡 ]
belongs to P𝑡 . The algorithm then selects a hypothesis model
out of the consistent model set P𝑡 using the CBC algorithm
by computing the functional Steiner point (2) of the work
function (4) with respect to the history of the consistent
parameter sets P1, . . . , P𝑡 (line 4). In particular, we present
an efficient implementation of the functional Steiner point
chasing algorithm in Section III-B by taking advantage of
the fact that P𝑡 ’s are polytopes that can be described by in-
tersection of half-spaces. The implementation is summarized
in Algorithm 2. Based on the selected hypothesis model \̂𝑡 ,
a certainty-equivalent LQR controller is synthesized (line 5)
and the state-feedback control action is computed (line 6).

Note that, by construction, at time step 𝑡 ∈ N+ we per-
form certainty-equivalent control 𝐾𝑡−1 based on a hypothesis
model \̂𝑡−1 computed using retrospective data, even though
the control action (𝑢𝑡 = 𝐾𝑡−1𝑥𝑡 ) is applied to the dynamics
(\𝑡 ) that we do not yet have any information about. In
order to guarantee stability, we would like for 𝐾𝑡−1 to be
stabilizing the “future” dynamics (\𝑡 ). This is the main mo-
tivation behind our choice of the CBC technique instead of
regression-based techniques for model selection. Thanks to
the competitive ratio guarantee (5) of the functional Steiner
point selector, when the true model variation is “small,” our
previously selected hypothesis model will stay “consistent”
in the sense that 𝐾𝑡−1 can be stabilizing for \𝑡 despite the
potentially adversarial or state-dependent disturbances. On
the other hand, when the true model variation is “large,”
𝐾𝑡−1 does not stabilize \𝑡 , and we see growth in the state
norm. Therefore, our final state bound is in terms of the total
variation of the true model.

We show in the next section that, by drawing connections
between the stability of the closed-loop system and the
path length cost of the selected hypothesis model via CBC,
we are able to stabilize the unknown LTV system without
any identification requirements, e.g., the selected hypothesis
models in Algorithm 1 need not be close to the true models. It
is observed that even in the LTI setting, system identification
can result in large-norm transient behaviors with numerical
stability issues if the underlying unknown system is open-
loop unstable or under non-stochastic disturbances; thus
motivating the development of NCBC-based online control
methods [25], [24], [37]. In the LTV setting, it is not
sufficient to use NCBC ideas due to the time-variation of the
model; however, the intuition for the use of CBC is similar. In
fact, it can be additionally beneficial to bypass identification
in settings where the true model is a moving target, thus
making identification more challenging. We illustrate this
numerically in Section IV.

A. Stability Analysis

The main result of this paper is the BIBO stability guaran-
tee for Algorithm 1 in terms of the true model variation and
the disturbance bound. We sketch the proof in this section
and refer interested reader to the full version of this paper
[43] for the formal proof. This result depends on a refined
analysis of the competitive ratio for the functional Steiner
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Algorithm 1: UNKNOWN LTV STABILIZATION

Input: 𝑊 > 0, Θ ⊂ R𝑛×(𝑛+𝑚)
Initialize: 𝑢0 = 0, \̂0 ∈ Θ

1 for 𝑡 +1 = 1,2, . . . do
2 Observe 𝑥𝑡+1
3 Construct consistent set

P𝑡 := {\ = [𝐴,𝐵] : ∥𝑥𝑡+1−𝐴𝑥𝑡 −𝐵𝑢𝑡 ∥∞ ≤𝑊 }∩Θ
4 Select hypothesis model \̂𝑡 ← CBC({P𝑠 }𝑡𝑠=1; \̂0)
5 Synthesize controller 𝐾𝑡 ← LQR

(
\̂𝑡 ;𝑄,𝑅

)
6 Compute feedback control input 𝑢𝑡+1 = 𝐾𝑡𝑥𝑡+1
7 end

Algorithm 2: CBC

Input: P1, . . ., P𝑡 , \̂0, 𝑁
Output: \̂𝑡

1 for 𝑘 = 0,1, . . . 𝑁 do
2 Sample 𝑣𝑖 uniformly from S𝑛−1

3 ℎ𝑖 ← (12)
4 end
5 \̂𝑡 ← projΘ∩P𝑡

(
− 𝑛

𝑁

∑𝑁
𝑖=1ℎ𝑖𝑣𝑖

)
point chasing algorithm introduced in [33], stated as follows.

Lemma 1 (Partial-path competitive ratio) For 𝑡 ∈ N+, let
𝑠, 𝑒 ∈ [𝑡] and 𝑠 < 𝑒, and let Θ ⊂ R𝑛 be a convex compact set.
Denote Δ̂[𝑠,𝑒 ] :=

∑𝑒
𝜏=𝑠+1 ∥st(𝜔𝜏 ) −st(𝜔𝜏−1)∥𝐹 as the partial-

path cost of the functional Steiner point selector during
interval [𝑠,𝑒] and {OPT𝜏 }𝑡𝜏=1 as the (overall) offline optimal
selection for K1, . . . ,K𝑡 ⊂ Θ. The functional Steiner point
chasing algorithm has the following competitive ratio,

Δ̂[𝑠,𝑒 ] ≤ 𝑛
(
dia(Θ) +2^ +

𝑒∑︁
𝜏=𝑠+1

∥OPT𝜏 −OPT𝜏−1∥𝐹

)
.

on interval [𝑠,𝑒], where dia(Θ) := max\1,\2∈Θ ∥\1−\2∥𝐹 de-
notes the diameter of Θ and ^ := max\ ∈Θ ∥\ ∥𝐹 .

Proof: See Appendix A.

Theorem 1 (BIBO Stability) Under Assumption 1 and 2,
the closed loop of (1) under Algorithm 1 is BIBO stable
such that for all 𝑡 ≥ 0,

∥𝑥𝑡 ∥ ≤𝑊 ·𝑐1

𝑡−2∑︁
𝑠=0

𝑐
Δ [𝑠,𝑡−1]
2 𝜌𝑡−𝑠𝐿

where Δ[𝑠,𝑡−1] :=
∑𝑡−1

𝜏=𝑠+1 ∥\𝜏 −\𝜏−1∥𝐹 is the true model vari-
ation, 𝑊 is the disturbance bound, and 𝑐1, 𝑐2 > 0, 𝜌𝐿 ∈
(0,1) are constants that depend on the system-theoretical
quantities of the worst-case model in the parameter set Θ.

Proof Sketch: At a high level, the structure of our proof is
as follows. We first use the fact that our time-varying feed-
back gain 𝐾𝑡 is computed according to a hypothesis model

from the consistent model set. Therefore, we can characterize
the closed-loop dynamics in terms of the consistent models
\̂𝑡 and 𝐾𝑡 . Specifically, consider a time step 𝑡 where we take
the action 𝑢𝑡 = 𝐾𝑡−1𝑥𝑡 after observing 𝑥𝑡 . Then, we observe
𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 +𝐵𝑡𝑢𝑡 +𝑤𝑡 and select a new hypothesis model
\̂𝑡 = [𝐴𝑡 𝐵𝑡 ] that is consistent with this new observation.
Since we have selected a consistent hypothesis model, there
is some admissible disturbance 𝑤𝑡 satisfying Assumption 1
such that

𝑥𝑡+1 =
(
𝐴𝑡 +𝐵𝑡𝐾𝑡−1

)
𝑥𝑡 +𝑤𝑡 =

(
𝐴𝑡 +𝐵𝑡𝐾𝑡−1

)
𝑥𝑡 +𝑤𝑡 .

Without loss of generality, we assume initial condition 𝑥0 = 0.
We therefore have

𝑥𝑡 =𝑤𝑡−1 +
𝑡−2∑︁
𝑠=0

∏
𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 +𝐵𝜏𝐾𝜏−1

)
𝑤𝑠 . (6)

We have two main challenges in bounding ∥𝑥𝑡 ∥ in (6):
1) 𝐾𝑡 is computed using \̂𝑡 in Algorithm 1, but is applied

to the next time step \̂𝑡+1. While we know 𝜌 (𝐴𝑡 +
𝐵𝑡𝐾𝑡 ) < 1, in (6) we have 𝐾𝑡−1 instead of 𝐾𝑡 .

2) Naively applying submultiplicativity of the operator
norm for (6) results in bounding

(𝐴𝜏 +𝐵𝜏𝐾𝜏−1

).

However, even if 𝐾𝑡−1 satisfies 𝜌 (𝐴𝑡 + 𝐵𝑡𝐾𝑡 ) < 1, in
general the operator norm can be greater than 1.

To address the first challenge, our key insight is that by
selecting hypothesis models via CBC technique, in any
interval where the true model variation is small, our selected
hypothesis model also vary little. Specifically, by Lemma 1,
we can bound the partial-path variation of the selected
hypothesis models with the true model partial-path variation
Δ[𝑠,𝑒 ] as follows.

Δ̂[𝑠,𝑒 ] ≤ 𝑛
(
dia(Θ) +2^ +

𝑒−1∑︁
𝜏=𝑠

∥OPT𝜏+1−OPT𝜏 ∥𝐹

)
≤ 𝑛

(
dia(Θ) +2^ +Δ[𝑠,𝑒 ]

)
. (7)

where Θ and ^ are from Assumption 2. A consequence of
(7) is that, during intervals where the true model variation is
small, we have

(
𝐴𝑡 +𝐵𝑡𝐾𝑡−1

)
≈

(
𝐴𝑡 +𝐵𝑡𝐾𝑡

)
.

For the second challenge, we leverage the con-
cept of sequential strong stability [44], which allows
bounding

∏𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 +𝐵𝜏𝐾𝜏−1

) approximately with∏
𝜏∈[𝑡−1:𝑠+1] 𝜌

(
𝐴𝜏 +𝐵𝜏𝐾𝜏

)
times O

(
exp(Δ[𝑠,𝑡−1])

)
.

We now sketch the proof. The helper lemmas and the
formal proof can be found in [43]. Consider 𝐿𝑡 , 𝐻𝑡 ∈ R𝑛×𝑛
with 𝐻𝑡 ≻ 0 such that

𝐴𝑡 +𝐵𝑡𝐾𝑡−1 := 𝐻 1/2
𝑡 𝐿𝑡𝐻

−1/2
𝑡 .

We use 𝐼𝑠 as shorthand for the interval [𝑡 − 1 : 𝑠 + 1]. Then
each summand in (6) can be bounded as∏

𝜏∈𝐼𝑠

(
𝐴𝜏 +𝐵𝜏𝐾𝜏−1

)
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≤
𝐻 1/2

𝑡−1

𝐻−1/2
𝑠+1

︸             ︷︷             ︸
(𝑎)

∏
𝑘∈𝐼𝑠+1

𝐻−1/2
𝑘

𝐻
1/2
𝑘−1

︸                 ︷︷                 ︸
(𝑏 )

∏
𝜏∈𝐼𝑠
∥𝐿𝜏 ∥︸    ︷︷    ︸
(𝑐 )

(8)

Therefore showing BIBO stability comes down to bound-
ing individual terms in (8). In particular we will show that
by selecting appropriate 𝐻𝑡 and 𝐿𝑡 , term (a) is bounded by
a constant 𝐶𝐻 that depends on system theoretical properties
of the worst-case parameter in Θ. For (b) and (c), we isolate
the instances when \̂𝑡 − \̂𝑡−1


𝐹
≤ 𝜖 (9)

for some chosen 𝜖 > 0. For instances where (9) holds, we use
the perturbation analysis of the Lyapunov equation involving
the matrix 𝐴𝑡 +𝐵𝑡𝐾𝑡−1 (Lemma 6 from the extended version
[43] for (b) and [45, Theorem 8] for (c)) to bound (b) and
(c) in terms of the partial-path movement of the selected pa-
rameters Δ̂[𝑠,𝑒 ] :=

∑𝑒
𝜏=𝑠+1 ∥st(𝜔𝜏+1) −st(𝜔𝜏 )∥𝐹 . Specifically,

Lemma 6 in [43] implies𝐻−1/2
𝑡 𝐻

1/2
𝑡−1

 ≤ 𝑒
𝛽∥\̂𝑡 −\̂𝑡−1∥𝐹

2 , if (9) holds
�̄� otherwise,

(10)

where 𝛽, �̄� > 1 are constants. We also show that from [45,
Theorem 8] ,

∥𝐿𝑡 ∥ ≤
{
𝜌𝐿 if (9) holds
�̄� otherwise,

(11)

for 𝜌𝐿 ∈ (0,1) and �̄� > 1 a constant. We now plug (10) and
(11) into (8). Denote by 𝑛 [𝑠,𝑡 ] the number of pairs (𝜏,𝜏 −1)
with 𝑠 + 1 ≤ 𝜏 ≤ 𝑡 − 1 where (9) fails to hold. Let Δ[𝑠,𝑒 ] :=∑𝑒

𝜏=𝑠+1 ∥\𝜏 −\𝜏−1∥𝐹 be the true model partial-path variation.
Then (8) can be bounded as ∏

𝜏∈[𝑡−1:𝑠+1]

(
𝐴𝜏 +𝐵𝜏𝐾𝜏−1

)
≤ 𝐶𝐻 · �̄�𝑛 [𝑠,𝑡 ] ·𝑒

𝛽 Δ̂ [𝑠+1,𝑡−1]
2 · �̄�𝑛 [𝑠,𝑡 ] · 𝜌𝑡−𝑠−𝑛 [𝑠,𝑡 ]−1

𝐿

≤ 𝐶𝐻

(
�̄��̄�

𝜌𝐿

) Δ̂ [𝑠,𝑡−1]
𝜖∗

𝑒
𝛽 Δ̂[𝑠+1,𝑡−1]

2 · 𝜌𝑡−𝑠−1
𝐿

≤ 𝐶𝐻

(
�̄��̄�

𝜌𝐿

) �̄�(dia(Θ)+2^+Δ[𝑠,𝑡−1])
𝜖∗

𝑒
𝛽�̄�(dia(Θ)+2^+Δ[𝑠+1,𝑡−1])

2 · 𝜌𝑡−𝑠−1
𝐿

=: 𝑐 ·𝑐Δ [𝑠,𝑡−1]
2 𝜌𝑡−𝑠𝐿 ,

for constants 𝑐, 𝑐2 and �̄� := 𝑛(𝑛+𝑚) for the dimension of the
parameter space for 𝐴𝑡 , 𝐵𝑡 . In the second inequality, we used
the observation that 𝑛 [𝑠,𝑡 ] ≤

Δ̂ [𝑠,𝑡−1]
𝜖

and in the last inequality
we used Lemma 1. Combined with (6) and Assumption 1,
this proves the desired bound. ■

An immediate consequence of Theorem 1 is that when the
model variation in (1) is bounded or sublinear, Algorithm 1
guarantees BIBO stability. This is summarized below.

Corollary 1 (Bounded variation) Suppose (1) has model
variation Δ[0,𝑡 ] ≤ 𝑀 for a constant 𝑀 . Then,

sup
𝑡

∥𝑥𝑡 ∥ ≤
𝑊 ·𝑐1 ·𝑐𝑀2

1− 𝜌𝐿
.

Corollary 2 (Unbounded but sublinear variation) Let
𝛼 ∈ (0,1) and 𝑡 ∈N+. Suppose (1) is such that for each 𝑘 ≤ 𝑡 ,
Δ[𝑘,𝑘+1] ≤ 𝛿𝑡 := 1/𝑡 (1−𝛼 ) , implying a total model variation
Δ[0,𝑡 ] = O(𝑡𝛼 ). Then for large enough 𝑡 , 𝜌𝐿𝑐

𝛿𝑡
2 ≤

1+𝜌𝐿
2 , and

therefore

∥𝑥𝑘 ∥ ≤𝑊 ·𝑐1

𝑘∑︁
𝑖=0

(
𝜌𝐿𝑐

𝛿𝑡
2

)𝑖
≤ 2𝑐1

1− 𝜌𝐿
.

Corollary 1 can be useful for scenarios where the mode of
operation of the system changes infrequently and for systems
such that \ (𝑡) → \★ as 𝑡→∞ [46]. As an example, consider
power systems where a prescribed set of lines can potentially
become disconnected from the grid and thus change the grid
topology. Corollary 2 applies to slowly drifting systems [47].

B. Efficient implementation of CBC

In general, implementation of the functional Steiner point
of the work function may be computationally inefficient.
However, by taking advantage of the LTV structure, we can
design an efficient implementation in our setting. The key
observation here is that for each 𝑡 , P𝑡 (Algorithm 1, line 3)
can be described by the intersection of half-spaces because
the ambient parameter space Θ is assumed to be a polytope
and the observed online transition data from 𝑥𝑡 , 𝑢𝑡 to 𝑥𝑡+1
specifies two half-space constraints at each time step due to
linearity of (1). Our approach to approximate the functional
Steiner point for chasing the consistent model sets is inspired
by [34] where second-order cone programs (SOCPs) are used
to approximate the (nested set) Steiner point of the sublevel
set of the work functions for chasing half-spaces.

Denote {(𝑎𝑖 ,𝑏𝑖 )}𝑝𝑡𝑖=1 as the collection of 𝑝𝑡 half-space
constraints describing P𝑡 , i.e., 𝑎⊤𝑖 \ ≤ 𝑏𝑖 . To approximate
the integral for the functional Steiner point (2) of 𝜔𝑡 , we
sample 𝑁 number of random directions 𝑣 ∈ S𝑛−1, evaluate
the Fenchel conjugate of the work function 𝜔∗𝑡 at each 𝑣

with an SOCP, and take the empirical average. Finally we
project the estimated functional Steiner point back to the
set of consistent model P𝑡 ∩Θ. Even though the analytical
functional Steiner point (2) is guaranteed to be a member
of the consistent model set, the projection step is necessary
because we are integrating numerically, which may result
in an approximation that ends up outside of the set. We
summarize this procedure in Algorithm 2. Specifically, given
a direction 𝑣 ∈ S𝑛−1, the Fenchel conjugate of the work
function at time step 𝑡 is

𝜔∗𝑡 (𝑣) = inf
𝑥∈R𝑛

𝜔𝑡 (𝑥) − ⟨𝑥,𝑣⟩

= min
𝑥∈R𝑛
𝑞𝑠 ∈K𝑠

𝑡∑︁
𝑠=1
∥𝑞𝑠 −𝑞𝑠−1∥ + ∥𝑥 −𝑞𝑡 ∥ − ⟨𝑥,𝑣⟩ .
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This can be equivalently expressed as the following SOCP
with decision variables 𝑥,𝑞1, . . . ,𝑞𝑡 ,_,_1, . . . ,_𝑡 :

min
𝑥,𝑞1,...,𝑞𝑡
_,_1,...,_𝑡

_ +
𝑡∑︁

𝑠=1
_𝑠 − ⟨𝑣,𝑥⟩

s.t. ∥𝑞𝑠 −𝑞𝑠−1∥ ≤ _𝑠 , for 𝑠 ∈ [𝑡]
∥𝑥 −𝑞𝑡 ∥ ≤ _

𝑎⊤𝑖 𝑞𝑠 ≤ 𝑏𝑖 , for 𝑖 ∈ [𝑝𝑠 ], 𝑠 ∈ [𝑡]

(12)

Another potential implementation challenge is that the
number of constraints in the SOCP (12) grows linearly with
time due to the construction of the work function (4). This
is a common drawback of online control methods based on
CBC and NCBC techniques and can be overcome through
truncation or over-approximation of the work functions in
practice. Additionally, if the LTV system is periodic with a
known period, then we can leverage Algorithm 1 during the
initial data collection phase. Once representative (persistently
exciting) data is available, one could employ methods like
[3] to generate a stabilizing controller for the unknown LTV
system. In Section IV, we show that data collection via
Algorithm 1 results in a significantly smaller state norm than
random noise injection when the system is unstable.

IV. SIMULATION

In this section, we demonstrate Algorithm 1 in two LTV
systems. Both of the systems we consider are open-loop
unstable, thus the algorithms must work to stabilize them.
We use the same algorithm parameters for both, with Θ =

[−2, 3]2, LQR cost matrices 𝑄 = 𝐼 and 𝑅 = 1.

A. Example 1: Markov linear jump system

We consider the following Markov linear jump system
(MLJS) model from [48], with

𝐴1 =

[
1.5 1
0 0.5

]
, 𝐴2 =

[
0.6 0
0.1 1.2

]
, 𝐵1 =

[
0
1

]
,

𝐵2 =

[
1
1

]
, Π =

[
0.8 0.2
0.1 0.9

]
where Π is the transition probability matrix from \1 to \2 and
vice versa. We inject uniformly random disturbances such
that 𝑤𝑡 ∈ {−101, −31, 31} where 1 is the all-one vector. We
set the disturbances to be zero for the last 10 time steps to
make explicit the stability of the closed loop. We implement
certainty-equivalent control based on online least squares
(OLS) with different sliding window sizes 𝐿 = 5, 10, 20 and
a exponential forgetting factor of 0.95 [49] as the baselines.

We show two different MLJS models generated from 2
random seeds and show the results in Figure 1. For both
systems, the open loop is unstable. In Figure 1a the OLS-
based algorithms fail to stabilize the system for window size
of 𝐿 = 20, while stabilizing the system but incurring larger
state norm than the proposed algorithm for 𝐿 = 5, 10. On
the other hand, in Figure 1b, OLS with 𝐿 = 5 results in
unstable closed loop. This example highlights the challenge
of OLS-based methods, where the choice of window size
is crucial for the performance. Since the underlying LTV

system is unknown and our goal is to control the system
online, it is unclear how to select appropriate window size
to guarantee stability for OLS-based methods a priori. In
contrast, Algorithm 1 does not require any parameter tuning.

We note that while advanced least-squares based iden-
tification techniques that incorporate sliding window with
variable length exist, e.g. [4], [49], due to the unknown
system parameters, it is unclear how to choose the various
algorithm parameters such as thresholds for system change
detection. Therefore, we only compare Algorithm 1 against
fixed-length sliding window OLS methods as baselines.

10−1

102

104

||x
t||

Open loop
Algorithm 1
OLS, L=5
OLS, L=10
OLS, L=20

||
̂ θ t
||

0 10 20 30 40
t

θ 1
θ 2

(a) closed loop of the system generated with seed # 1

10−1
102
104

||x
t|| Open loop

Algorithm 1
OLS, L=5
OLS, L=10
OLS, L=20

||
̂ θ t
||

0 20 40 60
t

θ 1
θ 2

(b) closed loop of the system generated with seed # 2

Fig. 1: Markov linear jump system for two different ran-
dom seeds. For each seed: Top plot shows the state norm
trajectories of the proposed algorithm, certainty-equivalent
control based on online least squares (OLS) with different
sliding window sizes, and the open loop. Middle plot shows
the norm of the selected hypothesis model via Algorithm 2.
Bottom plot shows the true model switches.

B. Example 2: LTV system

Our second example highlights that Algorithm 1 is a
useful data-collection alternative to open-loop random noise
injection. We consider the LTV system from [3], [28], with

𝐴(𝑘) =
[

1.5 0.0025𝑘
−0.1cos(0.3𝑘) 1+0.053/2 sin(0.5𝑘)

√
𝑘

]
,

𝐵(𝑘) = 0.05
[

1
0.1𝑘+2
0.1𝑘+3

]
.

where we modified 𝐴(1,1) from 1 to 1.5 to increase the
instability of the open loop in the beginning; thus making it
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Fig. 2: Simulation result for the LTV system in example 2.
Here we plot the the state and control norm, as well as the
selected hypothesis model via CBC \̂𝑡 and true models \𝑡 .

more challenging to stabilize. We consider no disturbances
here, which is a common setting in direct data-driven control,
e.g., [3], [26], [27]. In particular, we compare the proposed
algorithm against randomly generated bounded inputs from
UNIF[−1,1]. We also modify the control inputs from Algo-
rithm 1 to be 𝑢𝑡 =𝐾𝑡−1𝑥𝑡 +[𝑡 ·1 with [𝑡 ∼UNIF[−1,1] so that
we can collect rich data in the closed loop. This is motivated
by the growing body of data-driven control methods such as
[3], [27], [28] that leverage sufficiently rich offline data to
perform control design for unknown LTV systems. However,
most of these works directly inject random inputs for data
collection. It is evident in Figure 2 that when the open-
loop system is unstable it may be undesirable to run the
system without any feedback control. Therefore, Algorithm 1
complements existing data-driven methods by allowing safe
data collection with significantly better transient behavior.

V. CONCLUDING REMARKS

In this paper, we propose a model-based approach for
stabilizing an unknown LTV system under arbitrary non-
stochastic disturbances in the sense of bounded input
bounded output under the assumption of infrequently chang-
ing or slowly drifting dynamics. Our approach uses ideas
from convex body chasing (CBC), which is an online prob-
lem where an agent must choose a sequence of points
within sequentially presented convex sets with the aim
of minimizing the sum of distances between the chosen
points. The algorithm requires minimal tuning compared
to online least squares based control with sliding window.
Future work includes sharpening the stability analysis to go
beyond the BIBO guarantee, which will require controlling
the difference between the estimated disturbances and true
disturbances. Another direction is to extend the current
results to the networked case, similar to [24].
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APPENDIX

A. Proof of Lemma 1

We have
𝑒∑︁

𝜏=𝑠+1

\̂𝜏 − \̂𝜏−1


𝐹
=

𝑒∑︁
𝜏=𝑠+1

∥st(𝜔𝜏 ) −st(𝜔𝜏−1)∥𝐹

(𝑎)
≤ 𝑛 −

∫
𝑣

(
𝑒∑︁

𝜏=𝑠+1

��𝜔∗𝜏 (𝑣) −𝜔∗𝜏−1 (𝑣)
��) 𝑣 𝑑𝑣

(𝑏 )
= 𝑛 −

∫
𝑣

(
𝑒∑︁

𝜏=𝑠+1
𝜔∗𝜏 (𝑣) −𝜔∗𝜏−1 (𝑣)

)
𝑣 𝑑𝑣

= 𝑛 −
∫
𝑣

(
𝜔∗𝑒 (𝑣) −𝜔∗𝑠 (𝑣)

)
𝑣 𝑑𝑣

(𝑐 )
≤ 𝑛 · (min

𝑥
𝜔𝑒 (𝑥) −min

𝑦
𝜔𝑠 (𝑦) +2^) (13)

where (a) is due to the definition (2). For (b), we used
the observation that 𝜔∗𝑡 (𝑣) is non-decreasing in time. For
(c), by definition of the Fenchel conjugate (3), we have
that 𝜔∗𝑒 (𝑣) = inf𝑥𝜔𝑒 (𝑥) − ⟨𝑥,𝑣⟩. Denote (𝑥★,𝑞★1 , . . . ,𝑞

★
𝑒 ) as the

optimal solution to the problem min𝑥 𝜔𝑒 (𝑥). It is clear that
𝜔∗𝑒 (𝑣) ≤ 𝜔𝑒 (𝑥★) −

〈
𝑥★, 𝑣

〉
≤ min𝑥 𝜔𝑒 (𝑥) +^ where in the last

inequality we used Cauchy-Shwarz and ^ := max\ ∈Θ ∥\ ∥𝐹 .
Similarly, we also have 𝜔∗𝑠 (𝑣) ≥ inf𝑦𝜔𝑠 (𝑦) −^.

Denote OPT[0,𝑒 ] as the minimizing trajectory
(OPT0, . . . ,OPT𝑒 ) to min𝑥 𝜔𝑒 (𝑥) where argmin𝑥𝜔𝑒 (𝑥) =
OPT𝑒 . This last equality is by the observation that if
𝑥★ := argmin𝑥𝜔𝑒 (𝑥) ≠ OPT𝑒 , then 𝜔𝑒 (OPT𝑒 ) ≤ 𝜔𝑒 (𝑥★)
by definition (4), thus contradicting that 𝑥★ is defined
to be the minimizer of 𝜔𝑒 . We also denote INT[0,𝑠 ]
as the minimizing trajectory to min𝑦𝜔𝑠 (𝑦). To reduce
notation, we denote ΔOPT

[𝑠,𝑒 ] :=
∑𝑒

𝜏=𝑠+1 ∥OPT𝜏 −OPT𝜏−1∥𝐹 and
ΔINT
[𝑠,𝑒 ] :=

∑𝑒
𝜏=𝑠+1 ∥INT𝜏 − INT𝜏−1∥𝐹 . Then we have

(13) = 𝑛 ·
(
ΔOPT
[0,𝑒 ] −Δ

INT
[0,𝑠 ] +2^

)
(𝑐 )
≤ 𝑛 ·

(
ΔOPT
[0,𝑒 ] −Δ

OPT
[0,𝑠 ] +dia(Θ) +2^

)
= 𝑛 ·

(
ΔOPT
[𝑠,𝑒 ] +dia(Θ) +2^

)
.

where (c) holds because if
∑𝑠

𝜏=1 ∥OPT𝜏 −OPT𝜏−1∥𝐹 >∑𝑠
𝜏=1 ∥INT𝜏 − INT𝜏−1∥𝐹 + dia(Θ) and OPT[0,𝑠 ] ≠ INT[0,𝑠 ] ,

then we can replace the [0,𝑠] portion of the optimal trajec-
tory OPT[0,𝑒 ] with INT[0,𝑠 ] and achieve a lower cost for
𝜔𝑒 (OPT𝑒 ), thus contradicting the optimality of OPT[0,𝑒 ] .
To see why the fictitious trajectory

(
INT[0,𝑠 ],OPT[𝑠+1,𝑒 ]

)
achieves lower cost than OPT[0,𝑒 ] , we compare the total
movement cost during the interval [0,𝑠 +1],

𝑠∑︁
𝜏=1
∥INT𝜏 − INT𝜏−1∥𝐹 + ∥OPT𝑠+1− INT𝑠 ∥𝐹

≤
𝑠∑︁

𝜏=1
∥INT𝜏 − INT𝜏−1∥𝐹 + ∥OPT𝑠+1−OPT𝑠 ∥𝐹

+ ∥OPT𝑠 − INT𝑠 ∥𝐹

≤
𝑠∑︁

𝜏=1
∥INT𝜏 − INT𝜏−1∥𝐹 + ∥OPT𝑠+1−OPT𝑠 ∥𝐹 +dia(Θ)

<

𝑠∑︁
𝜏=1
∥OPT𝜏 −OPT𝜏−1∥𝐹 + ∥OPT𝑠+1−OPT𝑠 ∥𝐹 ,

which means the fictitious trajectory achieves lower overall
cost. Therefore (c) must hold. ■
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