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Abstract— This article studies the optimal control of au-
tonomous vehicles over a given time horizon to smooth traffic.
We model the dynamics of a mixed-autonomy platoon as a
system of non-linear ODEs, where the acceleration of human-
driven vehicles is governed by a car-following model, and the
acceleration of autonomous vehicles is to be controlled. We
formulate the car-following task as an optimal control problem
and propose a computational method to solve it. Our approach
uses an adjoint formulation to compute gradients of the
optimization problem explicitly, resulting in more accurate and
efficient numerical computations. The gradients are then used
to solve the problem using gradient-based optimization solvers.
We consider an instance of the problem with the objective of
improving the fuel efficiency of the vehicles in the platoon. The
effectiveness of the proposed approach is demonstrated through
numerical experiments. We apply the proposed approach to
different scenarios of lead vehicle trajectories and platoon
sizes. The results suggest that introducing an AV can produce
significant energy savings for the platoon. It also reveals that
the solution is agnostic to the platoon size thus the fuel saving
is mainly due to optimizing the trajectory of the AV.

I. INTRODUCTION
Car-following in mixed-autonomy traffic. Mixed-

autonomy traffic is a system in which a fraction of the
vehicles are automated (AVs) and they share the road with
human-driven vehicles (HVs). The introduction of AVs in
such predominantly human-driven traffic has the potential to
improve traffic conditions locally and system-wide [1], [2].
This work focuses on the task of single-lane car-following,
a fundamental challenge in autonomous driving.

It has been demonstrated, through simulations and field ex-
periments, that human car-following behavior is sub-optimal.
In the renowned ring experiment, Sugiyama et al. [3] showed
the emergence of stop-and-go waves in a circular platoon due
to human behavior. This was further investigated in [1], [4].
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Numerous studies have proposed control strategies to
enhance car-following behavior in human-driven traffic by
integrating AVs. We refer to some earlier work on intelli-
gent cruise and platoon control in [5]–[9] and more recent
developments in [1], [10]–[14], among many others. These
controllers have shown remarkable success in attenuating
stop-and-go waves and improving traffic conditions. For
example, Stern et al. [1] experimentally demonstrated that
a single AV equipped with a proportional-integral controller
can dissipate stop-and-go waves in a circular platoon.

A key distinction between control strategies proposed in
the literature is between local and non-local approaches.
Local controllers rely on data from the AV’s surroundings,
while non-local controllers leverage information about up-
stream and downstream traffic. Non-local controllers can
preemptively react to downstream oscillations, smoothing a
broader range of stop-and-go patterns. These controllers can
also incorporate the behavior of trailing vehicles and operate
as actuators to improve the overall system performance.

In this work, we aim to create a baseline for performance
benchmarking for the setting of non-local controllers. This
baseline is set up with full knowledge of the downstream
data (eliminating the effect of forecasting error) as well as
the AV’s ability to sense the trailing vehicles.

With this goal in mind, we formulate the task of car-
following in mixed-autonomy traffic as an optimal control
problem (OCP) over a finite time horizon and propose a
method to solve it. We model the non-linear dynamics of
a mixed-autonomy platoon where the AVs are controlled
in their acceleration and the HVs’ acceleration is governed
by a car-following model (CFM), namely Bando-Follow the
leader model. We formulate an objective functional that
accounts for the AVs and all the HVs in the platoon.

Numerical solution of the optimal control problem. The
literature on optimal control describes two primary solution
approaches: optimize then discretize vs. discretize then opti-
mize [15]. The first employs Pontryagin maximum principle
(PMP) [16] to derive the necessary optimality conditions for
the continuous-time problem, then discretizes and solves the
resulting system of equations. The second class discretizes
the OCP, rending a finite-dimensional problem which is then
solved by means of non-linear constrained optimization such
as sequential quadratic programming (SQP).

In this work, we adopt the second approach (discretize
then optimize) to solve the formulated OCP. While this ap-
proach can leverage existing non-linear optimization solvers,
computing the objective functional’s gradient proves to be
non-trivial in many problems. For this, it is important to
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provide the optimizer with accurate gradient information. We
propose to use an adjoint-based approach to represent the ob-
jective gradient [17]. To this end, we derive the continuous-
time adjoint equations corresponding to our OCP. Addition-
ally, we parameterize the controls using piecewise constant
functions and outline a suitable discretization scheme for
both system dynamics and adjoint equations.

Related work. Optimal control is a prevalent tool for
modeling and solving various tasks in the domain of auto-
mated vehicles, including car-following, trajectory optimiza-
tion, and obstacle avoidance. The literature on this topic is
extensive, but we will narrow our focus to advancements that
employ comparable formulations and solution techniques to
those introduced in this paper.

Wang et al. [18] studied the controllability and stabiliz-
ability of mixed-autonomy platoons using a single AV. They
use the optimal velocity model (OVM) for both human-
driven traffic and the AV’s car following behavior. The AV
has an additive acceleration that is being controlled using
a state feedback controller. The controller design relies on
the linearization of the system dynamics. Similar techniques
were proposed for circular platoons [19], [20].

Wang et al. [21] formulated the problem of smoothing
single-lane mixed-autonomy traffic flow through optimal
control of AVs. The dynamics combine the intelligent driver
model (IDM) for HVs with a modified OVM with positive
additive acceleration for the AVs. In contrast, our work
uses the Bando-FtL model which enjoys well-posedness and
inherent safety guarantees, eliminating the need for collision
avoidance constraints for the HVs. Without these properties,
handling such constraints becomes intricate, which was not
discussed in [21]. For the AVs, we employ a more repre-
sentative control parametrization compared to using CFMs
with additive acceleration as suggested in [18], [21]. While
the latter approach relies on the car-following dynamics for
collision avoidance, it comes at the expense of restricting the
AVs’ behavior. Further, with the objective function proposed
in [21], which only penalizes the perturbations of the AVs’
speed, this modeling choice can lead to unrealistic vehicle
dynamics. This can occur when the additive acceleration
results in an arbitrarily small headway requiring an unrealisti-
cally high deceleration by the CFM to avoid collision. In our
approach, we explicitly handle the safety constraints leading
to natural bounds on the vehicle’s acceleration independently
of the objective functional. Given these modeling choices, we
employ a solution approach similar to [21], leveraging gra-
dient descent and the adjoint representation of the gradient.

A related line of research applies model predictive control
(MPC) to car-following tasks [14], [22], [23]. In these
controllers, the planning layer is often cast as a receding
horizon OCP with a single AV. However, these formulations
do not model human traffic and only respond to a leader
trajectory. This enables the formulation of the OCP as a
linearly constrained quadratic program which can be solved
efficiently making it well-suited for real-time applications.

Outline. In section II, we formulate the continuous-time
problem of mixed-autonomy car-following. In section III,

we state the adjoint equations associated with the problem
and outline the discretization scheme. In section IV, we
instantiate the problem with a specific objective functional
and present numerical experiments to illustrate the use of the
proposed approach. Lastly, we discuss the results and analyze
the implications of our main design choices in section V.

II. PROBLEM STATEMENT

We study the problem of car-following in mixed-autonomy
traffic on a single lane with M ∈ N≥1 autonomous vehicles
(AVs), N ∈ N≥1 human-driven vehicles (HVs), and a
lead vehicle. The AVs are controlled in their acceleration,
the HVs’ dynamics are governed by a car-following model
(CFM) specified later, and the lead vehicle’s trajectory
is prespecified on a time horizon T ∈ R>0. Let I =
{0, 1, . . . ,M + N} be the index set of the vehicles with
i = 0 being the lead vehicle. We denote by Ia ⊂ I and
Ih ⊂ I the sets of indices of AVs and HVs, respectively. For
any i ∈ I , we denote the index of the vehicle ahead to be
i−1. Let (x,v) ∈ R|I|×R|I| be the position-velocity vector
of the vehicles and denote by (x◦,v◦) ∈ R|I| × R|I|

≥0 their
initial positions and velocities.

Assumption 1: (Initial datum, lead vehicle’s trajectory,
and admissible set of controls): Given the vehicle length
l ∈ R>0, we assume that

• Minimal initial space headway: there exists d◦ ∈ R≥0,
such that, the initial space headway between any two
consecutive vehicles is at least d◦. That is, for any i ∈
{1, . . . ,M +N},

x◦,i−1 − x◦,i − l ≥ d◦.

• Prespecified lead vehicle’s trajectory: The trajectory
of the lead vehicle is given explicitly by its position
xℓ ∈ W 2,∞((0, T )) and velocity vℓ := ẋℓ ≧ 0.

• Admissible set of controls: Given acceleration bounds
amin ∈ R<0, amax ∈ R>0, time headway bounds
hmin ∈ R≥0, hmax ∈ R>hmin

, and bounds on the head-
way at zero velocity dmin ∈ R≥d◦ , dmax ∈ R>dmin

, we
consider the following set of controls

U :=
{
u ∈ L∞(

(0, T );R|I|) : ui ≡ 0 ∀i ∈ I \ Ia;

∧ ∀(t, i) ∈ [0, T ]× Ia : ui(t) ∈ [amin, amax],

v0,i+

∫ t

0

ui(s) ds ≥ 0, dmax + vi(t)hmax ≥ . . .

≥ xi−1(t)− xi(t)− l ≥ hminvi(t) + dmin

}
.

(1)

Specifically, only the AVs’ accelerations are controlled
and they satisfy the following

1) the controlled accelerations are bounded;
2) the AVs do not drive backward;
3) there is no collision between the autonomous

vehicles and their lead vehicles.
4) The distance between the autonomous cars and

their leaders is an envelope that increases the faster
the autonomous vehicle’s speed becomes.
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The set of admissible controls does not encode collision
avoidance conditions for the HVs. This is handled by the
CFM which will be discussed later in the section.

Given an acceleration function for the HVs, A: R2 ×
R2

≥0 → R, the dynamics of the vehicles are governed by
the following system of initial value problems for t ∈ [0, T ]

x0(t) = xℓ(t)

v0(t) = vℓ(t)

ẋi(t) = vi(t), i ∈ I \ {0}
v̇i(t) = A

(
xi(t),xi−1(t),vi(t),vi−1(t)

)
i ∈ Ih

v̇i(t) = ui(t) i ∈ Ia

x(0) = x◦

v(0) = v◦,

(2)

where x◦,0 = xℓ(0) and v◦,0 = vℓ(0) are the lead vehicle’s
initial position and velocity.

Next, we instantiate the considered Bando-FtL CFM
described in [10]. Given model parameters (α, β) ∈
R2

>0, an optimal velocity function V ∈ C1(R≥0;R≥0) ∩
L∞(R≥0;R≥0) satisfying V ′ > 0, and a vehicle length
l ∈ R>0, the Bando-FtL acceleration is

A(xℓ, x, vℓ, v) = α
(
V (xℓ − x− l)− v

)
+ β vℓ−v

(xℓ−x−l)2 . (3)

The ego vehicle’s acceleration depends on the optimal ve-
locity, space headway, and relative velocity. The Bando-FtL
model is well-posed with a minimum safety distance and
bounded velocity and acceleration. For more details, please
refer to [24], where the well-posedness is shown for any
leader’s trajectory whenever there is no backward driving.

Now we define the cost functional as follows:
Definition 2.1 (Cost functional):

Let L ∈ C1
(
R3|I|;R≥0

)
and S ∈ C1

(
R2|I|;R≥0

)
be the

running and terminal costs, respectively. The cost functional
J : L∞(

(0, T );R|I|) × L∞(
(0, T );R|I|) × U → R≥0 is

defined as

J(x[u],v[u],u) :=

∫ T

0

L(x[u](t),v[u](t),u(t)) dt

+ S(x[u](T ),v[u](T )).

(4)

We aim to find a u∗ ∈ U that minimizes the cost functional
in eq. (4). That is, we consider:

u∗ ∈ arg-inf
u∈U

J(x[u],v[u],u), (5)

where the vector (x[u],v[u]) satisfies the system in eq. (2).
Note that this notation emphasizes that x and v are

functions of u, which are guaranteed to exist by the well-
posedness of the used CFM as well as the set of admissible
controls. As we will be dealing with the ODE constraints by
suitable Lagrange-multipliers (the adjoint method), we will
skip the explicit dependency of x and v on the control u.

Remark 1 (Existence of Minimizers): In contrast to what
some literature [21, Theorem 3.1] claims, the set U is not
compact in any strong topology as we lack a uniform bound
on its elements’ derivatives (for example, the Arzela-Ascoli
theorem). However, the lower and upper bounds on the
admissible control result in the compactness of the set with

regard to the weak star topology. If the cost functional is
weakly lower semi-continuous with regard to the control,
one can indeed apply the typical existence of minimizer
proof. This is because the velocities and positions are time
integrations of the corresponding controls, and thus, the weak
star convergence of the corresponding minimizing sequence
of controls results in the strong (uniform) convergence of
velocities and speed. As the car-following models only take
these quantities as input, one can then rely on the continuity
results of these. Another fact worth mentioning is that one
needs the car-following models to be well-posed uniformly
with regard to the chosen controls. Also, this is not a trivial
fact, as the intelligent driver model (IDM) for instance does
not possess this property [25] while the Bando-FtL model
used here has been proven to satisfy this requirement [24].

Here we formulate and study the OCP on a single lane
without lane-changing. While our proposed methods could
potentially be extended to lane-change scenarios (by con-
sidering hybrid dynamical systems), this requires access to
suitable lane-changing models that are beyond the scope of
this work.

III. METHODOLOGY

In this section, we describe a numerical solution approach
of the OCP in eq. (5). Firstly, we present the continuous-
time adjoint equations and use them to write a representa-
tion of the gradient of the objective functional in eq. (4).
Secondly, we convert the continuous-time OCP into a finite-
dimensional optimization problem through control parame-
terization. We then solve the resulting optimization problem
using a gradient-based solver.

A. Adjoint System

We follow the general derivation of the adjoint repre-
sentation of the gradient described in [17]. We first write
the implicit form of the system dynamics from eq. (2). For
t ∈ [0, T ],

F [ẋ, v̇,x,v,u](t) =

[
ẋi(t)− vi(t)
f i[x,v,u](t)

]
i∈I\{0}

, (6)

where

f i[x,v,u](t)

=

{
v̇i(t)−A

(
xi(t),xi−1(t),vi(t),vi−1(t)

)
, i ∈ Ih

v̇i(t)− ui(t) i ∈ Ia.

Then, we introduce a vector of adjoint variables ζ ∈
L∞(

(0, T );R2(M+N)). We can now write the adjoint system
of equations ∀t ∈ [0, T ) as

ζ(T )=S(x,v)(x(T ),v(T ))

ζ̇(t)=F⊤
(x,v)[ẋ, v̇,x,v,u](t)ζ(t)−L(x,v)(x(t),v(t),u(t))

(7)

Note that the dynamics in eq. (2) are only coupled in
one direction, that is the state of a vehicle i ∈ I depends
only on its preceding vehicle i − 1. This makes the time-
dependent Jacobian matrix F (x,v)[ẋ, v̇,x,v,u](t) have a
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sparse structure of the following form. For t ∈ [0, T ],

F (x,v)[ẋ, v̇,x,v,u](t) =

[
B(t) C(t)
D(t) E(t)

]
, (8)

where B(t), C(t), D(t), E(t) ∈ R(M+N)×(M+N), B(t) =
0, C(t) = −I , and D(t) and E(t) are lower bidiagonal
matrices. The entries of matrix D are given as follows:

Di,i =

{
−Axi(xi,xi−1,vi,vi−1) ∀i ∈ Ih
0 ∀i ∈ Ia,

(9)

Di+1,i =

{
−Axi(xi+1,xi,vi+1,vi) ∀i ∈ Ih \ {M +N}
0 ∀i ∈ Ia \ {M +N}

(10)

The entries of matrix E are given as follows:

Ei,i =

{
−Axi(xi,vi−1,vi,vi−1) ∀i ∈ Ih
0 ∀i ∈ Ia,

(11)

Ei+1,i =

{
−Avi(xi+1,xi,vi+1,vi) ∀i ∈ Ih \ {M +N}
0 ∀i ∈ Ia \ {M +N}

(12)

The linear ODEs in eq. (7) describe a system of end value
problems. The conditions at the end time T are defined by
the terminal cost function S(x(T ),v(T )). Thus, the adjoint
system can be integrated backward from time T to zero.

The solution to the above system yields the following
representation of the objective gradient in continuous-time.
For t ∈ [0, T ],

Gi(t)=

{
Lui(x(t),v(t),u(t))− ζi+M+N (t) i ∈ Ia
0 i ∈ Ih.

(13)

We note that the OCP in eq. (5) has path inequality con-
straints encoded in the admissible control set U . These
constraints are not considered in the above adjoint equations
and are to be discretized and handled by the optimizer. For
a single autonomous vehicle, these constraints are affine in
the control, so they are easy to handle by typical constrained
optimization solvers.

B. Discretization scheme

We detail the discretization scheme used to convert the
OCP in eq. (5) into a finite-dimensional problem.

Control and constraints discretization. The infinite-
dimensional control space L∞(

(0, T );R|I|) is discretized
into the space of piecewise constant functions over the grid

CK = {τk = khc, k ∈ {0, 1, . . . ,K}}, (14)

with mesh size hc = T
K and K + 1 ∈ N≥1 discretization

points. This controller space is parameterized by the vectors
wi ∈ RK+1 for each i ∈ Ia. Furthermore, for ∀i ∈ Ia, we
denote the piecewise constant control function

ûi(t;w) =

K−1∑
k=0

χ[khc,(k+1)hc](t)wi,k,

where χZ is the characteristic function of a set Z ⊂ R.
This piecewise constant parametrization is a common choice
due to its simplicity and convergence properties [26]. How-
ever, one could consider piecewise linear (and continuous)

parametrization or other more regular basis functions. We
note that our parametrization is more representative than
an alternative proposed in [21]. There, the control function
consists of a car-following model and a small additive
acceleration. This parametrization significantly restricts the
behavior of the AVs and it fails to converge to the solution
of the continuous-time OCP.

The inequality constraints in the admissible control set in
eq. (1) are also evaluated on the grid CK . We use a third-
order explicit Runge-Kutta (RK-3) integration scheme with
fixed mesh size to solve the dynamics in eq. (2). This results
in the approximate state vector for each i ∈ I \ {0}(

x̃i(τk), ṽi(τk)
)
τk∈CK

∈ R2(K+1) (15)

Consequently, we write the discretized control set

ŨCK
:=

{
w ∈ RK×|I| : wi ≡ 0 ∀i ∈ I \ Ia;

∧ ∀(k, i) ∈ {0, . . . ,K} × Ia : wi,k ∈ [amin, amax],

∧ ∀(τk, i) ∈ CK × Ia : hmaxṽi(τk) + dmax ≥ . . .

x̃i−1(τk)− x̃i(τk)− l ≥ hminṽi(τk) + dmin

}
.

State, objective, and adjoint system discretization. Let
R ∈ N>0. We consider a different fixed grid for the states

SR = {tr = rhs, r ∈ {0, 1, . . . , R}} (16)

with mesh size hs = T
R . The states grid is selected as a

refinement of the control grid (R >> K and CK ⊂ SR).
This is done to avoid numerical instability and ensure that the
objective functional is sensitive to every control parameter
in the vectors wi.

We also use RK-3 (this time over the grid SR) to run both
the forward simulation of the system dynamics in eq. (2) and
the backward simulation of the adjoint system in eq. (7). We
get for each i ∈ I \ {0} the approximate states(

x̂i(tr), v̂i(tr)
)
tr∈SR

∈ R2(R+1), (17)

and for each i ∈ {1, . . . , 2(M+N)} the approximate adjoint
variables (

ζ̂i(tr)
)
tr∈SR

∈ R2(R+1). (18)

We note here that we use a fixed grid, rather than the
common adaptive grid used for RK schemes, to ensure
that both systems of ODEs are solved on the same time
discretization. The use of adaptive mesh size creates a
fundamental difference in the numerical scheme that is not
considered in this study. Further, an adaptive mesh that
potentially changes in each gradient evaluation might cause
issues in the optimization routine as we would be optimizing
over the discretization noise which changes each iteration.

We use the approximate states to evaluate the objective

ĴSR = 1
hs

∑
tr∈SR

L(x̂(tr), v̂(tr), û(tr;w))+S(x̂(tR), v̂(tR))). (19)

Along with the approximate adjoint variables we evaluate
its gradient at every point τk ∈ CK

Ĝi(τk)=

{
Lui(x̂(τk), v̂(τk), (wi)k)−ζ̂i+M+N (τk) i ∈ Ia
0 i ∈ Ih,

(20)
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which we can then supply to the optimization algorithm.
Note that we use the time discretization SR to evaluate

the objective function and its gradient, while we use the
coarser discretization CK to evaluate the constraints. For
this, the RK-3 scheme is a suitable choice to ensure that
the approximation error for both discretizations is of similar
order. This is because RK-3 evaluates the controller at points
û(ti;w), û(ti + 0.5ti;w), and û(ti + 0.75ti;w) which are
all the same under our piecewise constant parameterization.

The discretized objective function in eq. (19) together with
the constraints in the discrete control set in eq. (16) define
a finite optimization problem with K × |Ia| variables. In
our implementation, we use MATLAB’s sequential quadratic
programming (SQP) algorithm [27]. The optimization prob-
lem we formulate is, in general, non-convex (due to the non-
linearity of the car-following dynamics), thus SQP is only
guaranteed to converge locally. This makes the initialization
of the algorithm crucial and we will discuss this further in
section IV.

C. Numerical algorithm

We summarize the proposed numerical approach. We use
the SQP algorithm to update the control parameters wi. In
every iteration, we query the value of the objective functional
and its gradient by the following steps:

1) Run a forward simulation of the system dynamics in
eq. (2) (using RK-3 subroutine) to obtain the approx-
imate states.

2) Evaluate the objective function as in eq. (19).
3) Run a backward simulation of the adjoint system in

eq. (7) (using RK-3 subroutine) to obtain approximate
adjoint variables.

4) Evaluate the gradient function as in eq. (20).
We note that evaluating the objective function requires solv-
ing the system dynamics. The cost of evaluating the gradient
is equal to solving an additional (linear) system of ODEs (the
adjoint system).

IV. NUMERICAL EXPERIMENTS

In this section, we consider an instance of the OCP
in eq. (5). The goal is to smooth stop-and-go waves that
appear in a lead vehicle trajectory and minimize the fuel
consumption of a platoon of HVs by introducing an AV
directly behind the lead vehicle (see fig. 1).

Fig. 1. The mixed-autonomy platoon considered in the experiments. The
gray vehicle is the leader, followed by an AV (red), followed by several
HVs (blue).

Remark 2 (Fuel consumption model): We evaluate the
fuel consumption of a trajectory as the integral of the
instantaneous energy function proposed in [28] over the time
horizon [0, T ]. We note that this energy function does not
incur a cost on negative acceleration. This can be exploited if
we optimize this function and result in a solution trajectory
in which the acceleration drops heavily at the end of the

time horizon as all quantities in the objective functional will
decrease. This behavior is an artifact of the energy model
and the fact that we optimize over a fixed time horizon. For
this reason, we refrain from using the model as an objective
functional and only use it for evaluation.

For the reason discussed in remark 2, we consider the
L2 norm of the acceleration of a vehicle as a surrogate of
the energy model. Optimizing for this objective functional
may result in the AV driving at a speed much slower than
its leader. This behavior negatively impacts other metrics
such as throughput, density, and average velocity. There are
many design choices to remedy this effect and pull the AV
to exit the road. Here, we do so by imposing constraints
on the maximum headway of the AV as shown in the
admissible set of controls (eq. (1)). Here, we do not impose
the box constraints on the acceleration as the objective
functional favors small values. We will demonstrate through
numerical examples that the solution remains bounded and
is proportional to the acceleration of the leader.

Based on the above, we define the following OCP

inf
u

∫ T

0

∑
i∈Ia

u2
i (t)+

∑
i∈Ih

(
A(xi−1(t),xi(t),vi−1(t),vi(t))

)2
dt

where (x,v) satisfies eq. (2) and ∀i ∈ Ia, ∀t ∈ [0, T ]

hminvi(t) + dmin ≤ xi−1(t)− xi(t)− l (21)
hmaxvi(t) + dmax ≥ xi−1(t)− xi(t)− l

vi(t) ≥ 0.

Remark 3 (Initial datum): If the initial condition vectors
xo and vo are chosen such that the inequality constraints in
eq. (21) are satisfied for t = 0, then the problem is feasible
for all t ∈ [0, T ]. This is obvious to see in the absence of
constraints on the acceleration limit.

We use the solution of the problem in eq. (21) with a
single AV following the given leader trajectory as an initial
guess for other experiments with HVs in the platoon. With no
HVs, the optimization problem becomes a convex quadratic
linearly-constrained problem that can be solved efficiently.

A. Results

We demonstrate the use of the proposed method in sec-
tion III on two sets of numerical experiments each with a
specific lead vehicle trajectory and varying platoon size. We
consider two cases for the lead vehicle: (1) a benchmark
trajectory with a step acceleration profile and (2) an experi-
mental trajectory collected on the I-24 in Nashville, TN [29].
Both leader trajectories resemble driving in congested traffic
that exhibits stop-and-go waves as shown in fig. 2.

For each lead vehicle trajectory, we consider a platoon
of the form shown in fig. 1 with 0, 10, and 20 HVs. We
examine the effect of the platoon size on the solution. We
model the human vehicles using Bando-FtL model described
in eq. (3) with parameters α = 0.1/s and β = 525m2/s, and
the following optimal velocity function

V (h) = vmax
tanh(kh−d)+tanh(l+d)

1+tanh(l+d) . (22)
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Fig. 2. Acceleration and velocity profiles of the benchmark (top) and
experimental (bottom) lead vehicle trajectories (in gray) followed by HVs
(in blue) modeled by the Bando-FtL model.

The parameters are selected as vmax = 35m/s, k = 0.2,
and d = 4m. In fig. 2, we illustrate the behavior of
the HV platoon consisting of 21 vehicles. Note that the
model propagates and amplifies the stop-and-go waves –
a behavior that indicates string instability. Such behavior
is also observed in commercially deployed adaptive cruise
control systems [30]. It is also believed that human driving
exhibits such instability.

In our numerical experiments, we aim to examine the
effect of introducing an AV in the platoon on smoothing
the stop-and-go waves and to quantify its effect on fuel
consumption. As a baseline, we consider a full HV platoon
of the same length and measure the percentage of fuel saving
for each experiment.

In all the experiments we fix the car length to l = 5m, and
the mesh sizes hc = 1s and hs = 0.1s. We fix the minimum
and maximum time headways to hmin = 0.5s and hmax = 3s
and the minimum and maximum allowable distances as zero
velocity to dmax = dmin = 2m. The 0.5s minimum time
headway is considered small for human drivers. However, it
is an acceptable constraint for AVs as they are believed to
have a faster reaction time. Later in our experiments we will
vary the hmax parameter and demonstrate how it affects the
fuel saving.

Figure 3 and fig. 4 show segments of the mixed-autonomy
trajectories with the different platoon sizes following the
benchmark and the experimental lead vehicles, respectively.
In table I, we summarize the percentage of fuel saving for
each of the experiments relative to the baseline. We also
report the results of the greedy solution, that is the solution to
the OCP where only the acceleration of the AV is optimized
in each platoon. We note that in all experiments, the AV
respects the time headway constraints at every time step and
there are no collisions between the HVs.

TABLE I
PERCENTAGE OF FUEL SAVING RELATIVE TO THE HVS BASELINE.

Benchmark leader Experimental leader

Platoon
Size

Platoon
optimization

Greedy
optimization

Platoon
optimization

Greedy
optimization

0 HV 1.42 - 7.99 -
10 HV 1.42 1.42 8.84 8.47
20 HV 1.43 1.42 9.92 9.12

As expected, introducing the AV in the platoon reduces
fuel consumption by up to almost 10% as stated in table I.
The qualitative improvement can also be observed in fig. 3

Fig. 3. Segments of the acceleration, velocity and AV headway profiles of
the platoons following the benchmark lead vehicle trajectory. Platoon size:
0 HV (top row), 10 HV (middle row), and 20 HV (bottom row). The dashed
lines in the headway plots represent the feasible headway envelope.

Fig. 4. Segments of the acceleration, velocity and headway profiles of the
platoons following the experimental lead vehicle trajectory. Platoon size: 0
HV (top row), 10 HV (middle row), and 20 HV (bottom row). The dashed
lines in the headway plots represent the feasible headway envelope.

and 4 in comparison to the baseline in fig. 2. Introducing
the AV smooths the acceleration and velocity profiles of
the leader by opening large gaps in anticipation of large
drops in the velocity. This allows the vehicle to maintain
a more steady speed profile and reduce the fluctuations in its
acceleration. This also improves the driving behavior of the
HVs behind the AV. However, we observe that the platoon
optimization does not offer significant improvement over
the greedy optimization. This suggests that the optimal car-
following behavior of the platoon is agnostic to our choice
of CFM and platoon size.

V. DISCUSSION AND FUTURE WORK

In this section, we discuss three important design choices
and their effect on the optimal solution of the problem.
First is the choice of the car following model. In our
study, we used Bando-FtL as it enjoys desiarable theoretical
guarantees. Our results suggest that the solution does not
depend heavily on the CFM. We note that this might not be
true for other classes of CFMs and further investigation of
this is needed.

The second design choice is the feasible headway enve-
lope. It is obvious that with larger hmax values, less fuel
consumption can be achieved. As noted in table II, the
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choice of this parameter has a big impact on the solution.
The appropriate choice of this parameter depends on the
practical setting. Opening large gaps is not a human-like
driving behavior and it can cause the vehicles to drive much
slower than the speed limit which is considered a traffic
violation. On the other hand, if the AV is viewed as an
actuator that is not expected to follow traffic rules, larger
values of hmax would be appropriate. The key takeaway we
want to emphasize here is that even with complete knowledge
of the downstream information, the optimal solution and the
performance gain are bound by local constraints.

Lastly, we comment on the choice of the platoon. Many
other interesting configurations can be studied in which
multiple AVs are distributed in the platoon. However, de-
viating from the platoon configuration examined here makes
the problem more complicated. In the present analysis, the
constraints in eq. (21) are all linear. However, when an AV is
proceeded by an HV, these constraints become non-linear and
significantly more difficult to handle. One possible approach
to work with these constraints involves employing a penalty
method, as described in [26]. Investigating such approaches
and conducting experiments with a more general platoon
configuration is left for future work.

TABLE II
PERCENTAGE OF FUEL SAVING RELATIVE TO THE HVS BASELINE AT

DIFFERENT VALUES hmax .

hmax 3 s 5 s 7 s 10 s 12 s

Fuel
saving (%) 7.99 11.98 15.38 19.54 21.75
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