
Towards Learning and Verifying Maximal Neural Lyapunov Functions

Jun Liu, Yiming Meng, Maxwell Fitzsimmons, and Ruikun Zhou

Abstract— The search for Lyapunov functions is a crucial
task in the analysis of nonlinear systems. In this paper, we
present a physics-informed neural network (PINN) approach
to learning a Lyapunov function that is nearly maximal for
a given stable set. A Lyapunov function is considered nearly
maximal if its sub-level sets can be made arbitrarily close to
the boundary of the domain of attraction. We use Zubov’s
equation to train a maximal Lyapunov function defined on the
domain of attraction. Additionally, we propose conditions that
can be readily verified by satisfiability modulo theories (SMT)
solvers for both local and global stability. We provide theoretical
guarantees on the existence of maximal Lyapunov functions and
demonstrate the effectiveness of our computational approach
through numerical examples.

Index Terms— Learning, formal verification, neural net-
works, nonlinear systems, stability analysis, Zubov’s theorem

I. INTRODUCTION

Recent advancements in neural networks and machine
learning have revolutionized the landscape of computational
research. With the availability of these tools, researchers
have developed sophisticated machine learning models that
can perform complex tasks sometimes beyond the reach of
traditional methods. These models are used in various fields,
including image and speech recognition, natural language
processing, protein structure prediction and design, and even
drug discovery.

Systems and control can potentially leverage the availabil-
ity of these computational tools to aid the analysis and design
of control systems. One of the longstanding challenges in
nonlinear control is the construction of Lyapunov functions
for stability analysis and controller design. Since Lyapunov’s
original work [13] over a hundred years ago, researchers
have been searching for constructive approaches to design-
ing Lyapunov functions, and both analytical [9], [18] and
computational approaches [5], [6] have been investigated.

In this paper, we propose a neural network approach
to constructing Lyapunov functions. In contrast to prior
work, we aim to: 1) compute neural Lyapunov functions
that can approximate the entire domain of attraction for an
asymptotically stable compact set, and 2) formally verify
the satisfaction of Lyapunov conditions, both locally and
globally. Together, the proposed algorithms provide verified

This research was supported in part by an NSERC Discover Grant, an
Ontario Early Researcher Award, and the Canada Research Chairs program.
This research was enabled in part by support provided by the Digital
Research Alliance of Canada (alliance.ca).

The authors are with the Department of Applied Mathematics, Faculty of
Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Emails: j.liu@uwaterloo.ca, yiming.meng@uwaterloo.ca,
mfitzsimmons@uwaterloo.ca, ruikun.zhou@uwaterloo.ca

regions of attraction that are close to the domain of attraction,
as illustrated by the numerical examples.

A. Related Work

The computation of Lyapunov functions has a long history,
and while it is impossible to mention all related work, we
refer readers to a recent survey on computational methods for
Lyapunov functions [6], as well as to a more recent survey
[3] on the learning of neural Lyapunov functions.

We would like to highlight a few works that are closely
related to ours and have inspired our work. The work in [11]
proposed a data-driven approach for estimating the domain
of attraction using Zubov’s equation, which is a partial
differential equation (PDE) that characterizes the maximal
Lyapunov function [19] defined on the domain of attraction
[21]. However, the approach taken in [11] does not directly
solve Zubov’s PDE. Instead, a purely data-driven approach
is taken, which relies on simulations of trajectories.

In contrast, the work in [7] uses an approach closer
to physics-informed neural networks (PINNs) [17] for ap-
proximating a solution to Zubov’s equation. However, the
approach in [7] is local in nature, and the Lyapunov con-
ditions used to train the Lyapunov functions are essentially
conditions for local exponential stability. Both papers [11]
and [7] discuss the potential of using neural networks to
break the curse of dimensionality in approximating Lyapunov
functions, and our work shares the same optimism [16]
without discussing this aspect. Our work shares the same
optimism [16] but does not delve into this aspect. A potential
future research area could be to leverage the compositional
structure of the Lyapunov function for efficient verification.

The work in [10], even though focusing on sums of squares
(SOS) approaches for approximating Lyapunov functions, is
closely related to our work. The partial differential inequality
constraint that the authors used to optimize the polynomial
Lyapunov functions takes the form of Zubov’s PDEs, al-
though not explicitly mentioned as such in the paper.

Neural Lyapunov functions for control are investigated
in [2], where the authors use satisfiability modulo theories
(SMT) solvers to verify that Lyapunov conditions are met by
neural Lyapunov functions. The work was extended to cover
systems with unknown dynamics in [20], while still offering
stability guarantees. The search for Lyapunov functions in
[2], [20], similar to [7], is local in nature. Furthermore,
in both [2], [20], SMT verification for Lyapunov stability
conditions omits a region around the origin. We formally
address this issue here as a side result.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8006

II. PRELIMINARIES

A. Set Stability

Consider an autonomous nonlinear system of the form

ẋ = f(x), (1)

where f : Rn → Rn is a locally Lipschitz function. We
are interested in characterizing uniform asymptotic stability
of any compact invariant set for system (1) using Lyapunov
functions approximated by neural networks. We denote the
unique solution to (1) from the initial condition x(0) = x0
by ϕ(t, x0) for t ∈ J , where J is the maximal interval of
existence for ϕ.

Definition 1 (Invariant set): A set A ⊆ Rn is said to be
a positively invariant set of (1) if all solutions of (1) starting
in A remain in A in positive time, i.e., x0 ∈ A implies
ϕ(t, x0) ∈ A for all t ≥ 0.

Since we only consider positively invariant sets in this
paper, we will simply refer to them as invariant sets. The
distance of a point x ∈ Rn to a set A ⊆ Rn is defined as
∥x∥A := infy∈A ∥x− y∥.

Definition 2 (Set stability): A set A ⊆ Rn is said to
be uniformly asymptotically stable (UAS) for (1) if the
following two conditions are met:

1) For every ε > 0, there exists a δ > 0 such that
∥x0∥A < δ implies ∥ϕ(t, x0)∥A < ε for all t ≥ 0;
and

2) There exists some ρ > 0 such that, for every ε > 0,
there exists some T > 0 such that ∥ϕ(t, x0)∥A < ε
whenever ∥x0∥A < ρ and t ≥ T .

Note that if a closed set A is stable (i.e., satisfying item
1) in Definition 2), then it has to be positively invariant [1,
Theorem 1.6.6]. While the definition above is for any set
A, it is of more interest to consider stability of closed sets,
because stability may be trivially satisfied if the set A is not
closed (see [1, Remark 1.6.7 and Example 1.6.8]).

The definition above requires that there exists a neighbor-
hood of A that are uniformly attracted to A. To capture the
largest region that is attracted to a uniformly asymptotically
stable set A, the domain of attraction of A is defined as
follows.

Definition 3 (Domain of Attraction): Given a set A ⊆ Rn

that is uniformly asymptotically stable for (1), the domain
of attraction of A with respect to (1) is defined as

D(A) :=
{
x ∈ Rn : lim

t→∞
∥ϕ(t, x)∥A = 0

}
.

Any invariant subset of D(A) is called a region of attraction.
We know that the domain of attraction of any set is an

open set [1, Theorem 1.6.31].
We shall use the following standing assumption of the

paper.
Assumption 1: We have a compact set A that is uniformly

asymptotically stable for (1).

B. Maximal Lyapunov Function and Zubov’s Theorem

The domain of attraction can be characterized by a max-
imal Lyapunov function [19] as described in the following
theorem.

Theorem 1: Let D ⊆ Rn be an open set. Suppose that
there exists a continuous function V : D → R such that
A ⊆ D and the following conditions hold:

1) V is positive definite on D with respect to A, i.e.,
V (x) = 0 for all x ∈ A and V (x) > 0 for all x ∈
D \ A;

2) the derivative of V along solutions of (1), given by

V̇ (x) := lim
t→0+

V (ϕ(t, x))− V (x)

t
,

is well defined for all x ∈ D and satisfies

V̇ (x) = −Φ(x), (2)

where Φ : D → R continuous and positive definite
with respect to A;

3) V (x) → ∞ as x → ∂D or ∥x∥ → ∞. Then D =
D(A).

Under mild assumptions, the existence of a maximal
Lyapunov function on D(A) is also necessary [19], following
a converse Lyapunov argument [14]. Furthermore, if f is
Lipschitz continuous on D(A), then such a V can be chosen
to be continuously differentiable1.

Theorem 1 is closely related, and in fact equivalent, to
Zubov’s theorem [21] stated below.

Theorem 2: Let D ⊆ Rn be an open set containing A.
Then D = D(A) if and only if there exists two continuous
functions W : D → R and Ψ : D → R such that the
following conditions hold:

1) 0 < W (x) < 1 for all x ∈ D \ A and W (x) = 0 for
all x ∈ A;

2) Ψ is positive definite on D with respect to A;
3) for any sufficiently small c3 > 0, there exist two

positive real numbers c1 and c2 such that ∥x∥A ≥ c3
implies W (x) > c1 and Ψ(x) > c2;

4) W (x) → 1 as x→ y for any y ∈ ∂D;
5) W and Ψ satisfy

Ẇ (x) = −Ψ(x)(1−W (x)), (3)

where Ẇ is the derivative of W along solutions of (1)
as defined in item 2 of Theorem 1.

Remark 1: Theorem 1 and Theorem 2 can be related by
the following equation

W (x) = 1− exp(−αV (x)), (4)

for some constant α > 0. It is easy to verify that V satisfying
(2) implies

Ẇ (x) = α exp(−αV (x))V̇ (x)

= −α exp(−αV (x))Φ(x) = −α(1−W (x))Φ(x),

1While the results in [19] were proved for case of an asymptotically stable
equilibrium point for (1), they can be readily extended to set stability.

8007

which verifies (3) with Ψ = αΦ(x). Conversely, one can take

V (x) = − ln(1−W (x))/α (5)

to verify (2) using (3). Clearly, the choice of such transfor-
mation from V to W , and vice versa, is not unique. For
example, we can also define

W (x) = tanh(αV (x)). (6)

Then we also have

Ẇ (x) = α(1− tanh2(αV (x)))V̇

= −α(1−W (x))(1 +W (x))Φ(x),

which verifies (3) with Ψ = α(1+W (x))Φ(x). It is obvious
that there are infinitely many such scalar transformations
(see Section III-B). Hence, Zubov’s PDE (3) is not unique
and we need to specify Ψ before solving it.

Remark 2: One potential advantage of Zubov’s construc-
tion of a Lyapunov function, namely W (x), is that it is
bounded and its value approaches one as x approaches
the boundary, whereas the function V (x) in Theorem 1 has
values approaching infinity as x tends to the boundary. A
bounded function can offer potential advantages in numerical
approximations, especially when we are interested in solving
a PDE to find a Lyapunov function, as will be described later
in this paper. The fact that W (x) approaches a finite value
as x approaches the boundary of its domain also makes it
possible to extend its domain to the entire space Rn (or any
desired set on which computation takes place).

Let W : D → R be a function satisfying the conditions
in Zubov’s theorem, and then D = D(A). Suppose that the
definition of W is extended to a set X containing D(A)
with W (x) = 1 for all x ∈ X \ D(A). Clearly, the domain
of attraction of A is completely characterized by the strict
sublevel-1 set of W , i.e.,

D(A) = {x ∈ X : W (x) < 1} .

C. Problem Statement

The objective of this paper is to compute neural network
approximations of a maximal Lyapunov function in the form
of a function satisfying Zubov’s PDE (3), and use these
neural Lyapunov functions to certify regions of attraction
for A, which are characterized by sublevel sets of the
neural Lyapunov functions. We rely on satisfiability modulo
theories (SMT) solvers to verify that the Lyapunov conditions
are met. Since verification is done over bounded domains
and neural approximations offer guarantees over compact
domains, we put forward the following assumption.

Assumption 2: We have D(A) ⊆ X for some compact set
X .

It is well known that the boundary of D(A) consists
of complete trajectories of (1) [1]. For instance, in a two-
dimensional system, a period orbit can bound a domain of
attraction for a stable equilibrium point.

If the set D(A) is unbounded and suppose that A is
contained in the interior of X , the proposed algorithms can

still certify regions of attractions inside X , although losing
guarantees of approximating D(A).

The main problem to be addressed is stated next.
Problem 1: Given a uniformly asymptotically stable set

A, compute neural Lyapunov functions that can certify
regions of attraction for A with provable guarantees.

III. A CONSTRUCTIVE MAXIMAL CONVERSE LYAPUNOV
FUNCTION

In this section, we use ideas from converse Lyapunov
function theory to explicity construct a maximal Lyapunov-
barrier function for a given uniformly asymptotically set A
and establish its properties.

A. Construction of V

Let ω : Rn → R be a continuous function that is positive
definite with respect to A. Define

V (x) =

∫ ∞

0

ω(ϕ(t, x))dt, x ∈ Rn, (7)

where if the integral diverges, we let V (x) = ∞.
The following is assumed for the function ω and the

resulting function V defined by (7).
Assumption 3: The following items hold true:
1) For any δ > 0, there exists c > 0 such that ω(x) > c

for all ∥x∥A > δ.
2) There exists some ρ > 0 such that the integral V (x)

defined by (7) converges for all x such that ∥x∥A < ρ.
3) For any ε > 0, there exists δ > 0 such that ∥x∥A < δ

implies V (x) < ε.
Remark 3: We can show that Assumption 3 holds if

the set A is locally exponentially stable and ω is locally
Lipschitz. A typical choice for ω is given by ω(x) = ∥x∥A.

Under this assumption, we can verify that V satisfies
the conditions for a maximal Lyapunov function stated in
Theorem 1.

Proposition 1: The function V : Rn → R∪ {∞} defined
by (7) satisfies the following:

1) V (x) <∞ if and only if x ∈ D(A);
2) V (x) → ∞ as x→ ∂D(A);
3) V is positive definite with respect to A;
4) V is continuous on D(A) and

V̇ (x) = −ω(x), (8)

for all x ∈ D(A).
Proof: 1) Suppose x ∈ D(A). Let ρ > 0 be

from Assumption 3. There exists some Tx > 0 such that
∥ϕ(t, x)∥A < ρ for all t ≥ Tx. It follows that

V (x) =

∫ Tx

0

ω(ϕ(t, x))dt+

∫ ∞

Tx

ω(ϕ(t, x))dt

=

∫ Tx

0

ω(ϕ(t, x))dt+

∫ ∞

0

ω(ϕ(t, ϕ(Tx, x)))dt

=

∫ Tx

0

ω(ϕ(t, x))dt+ V (ϕ(Tx, x)) <∞,

8008

where we used finiteness of the first integral and Assumption
3 to conclude V (ϕ(Tx, x)) < ∞. Now suppose that x ̸∈
D(A). Then ϕ(t, x) ̸∈ D(A) for any t ≥ 0. Since D(A) is
open and A is compact, there exists some δ > 0 such that
∥ϕ(t, x)∥A > δ for all t ≥ 0. By Assumption 3, V (x) = ∞.

2) Let {xn} be a sequence such that xn → y for some
y ∈ ∂D(A). Choose δ ∈ (0, ρ), where ρ > 0 is from the
definition of set stability of A. Let Tn be the first time that
∥ϕ(t, xn)∥A ≤ δ. Then by continuity, ∥ϕ(Tn, xn)∥A = δ
and for all t ∈ [0, Tn), we have ∥ϕ(t, xn)∥A > δ and
ω(ϕ(t, xn)) > c for some c > 0 because of Assumption
3. Hence

V (xn) =

∫ ∞

0

ω(ϕ(t, xn))dt ≥
∫ Tn

0

ω(ϕ(t, xn))dt ≥ cTn.

We can conclude V (xn) → ∞ if Tn → ∞. Suppose that this
is not the case. Then {Tn} contains a bounded subsequence,
still denoted by {Tn}, that converges to T . It follows that
ϕ(Tn, xn) → ϕ(T, y) and ∥ϕ(T, y)∥A = δ < ρ. Hence
ϕ(T, y) ∈ D(A). It follows that y ∈ D(A). Since D(A)
is open, this is a contradiction. We must have V (xn) → ∞
as n→ ∞.

3) Positive definiteness of V follows from positive defi-
niteness of ω and by a continuity argument.

4) For x ∈ D(A), we have

V̇ (x) = lim
t→0+

V (ϕ(t, x))− V (x)

t

= lim
t→0+

∫∞
0
ω(ϕ(s, ϕ(t, x)))ds−

∫∞
0
ω(ϕ(s, x))ds

t

= lim
t→0+

∫∞
0
ω(ϕ(s+ t, x))ds−

∫∞
0
ω(ϕ(s, x))ds

t

= lim
t→0+

∫∞
t
ω(ϕ(s, x))ds−

∫∞
0
ω(ϕ(s, x))ds

t

= lim
t→0+

∫ 0

t
ω(ϕ(s, x))ds

t
= −ω(x).

The proof is complete.

B. Construction of W

Let β : [0,∞) → R satisfy

β̇ = (1− β)ψ(β) β(0) = 0, (9)

where ψ : [0,∞) → R is a locally Lipschitz function
satisfying ψ(s) > 0 for s > 0.

Lemma 1: Any function satisfying (9) is continuously
differentiable, strictly increasing, and satisfies β(0) = 0 and
β(s) → 1 as s→ ∞.

With V defined by (7) and satisfying the conditions in
Proposition 1, let

W (x) =

{
β(V (x)), if V (x) <∞,

1, otherwise,
(10)

where β : [0,∞) → R satisfies (9).
We can verify the following properties for W .

Proposition 2: The function W : Rn → R defined
by (10) satisfies the conditions in Theorem 2 on D(A).
Furthermore, W is continuous on Rn.

Proof: Items (1), (2), (4) of Theorem 2 directly follow
from Proposition 1 and Lemma 1. To verify item (3), by
Assumption 3, we know for any δ > 0, there exists c > 0
such that ω(x) > c for all ∥x∥A > δ. By local Lipschitz
of f , it takes at least τ > 0 time for any solutions to reach
from the level set {∥x∥A = 2δ} to {∥x∥A = δ}. Hence for
V (x) ≥ cτ for all x such that ∥x∥A > 2δ. By the properties
of β, item (3) of Theorem 2 holds for W . Continuity of
W follows from its definition outside D(A) and item (4) of
Theorem 2.

To check (5), taking the derivative of W (x) along solu-
tions of (1) gives

Ẇ (x) = β̇V̇ = −(1− β(V (x)))ψ(β(V))ω(x)

= −(1−W (x))Φ(x),

where Φ(x) = ψ(β(V))ω(x).
Remark 4: The constructions in Remark 1 are special

cases of Proposition 2. In particular, (4) is given by setting
ψ(s) = α for some constant α > 0 and (6) is given by
ψ(s) = α(1 + s).

Example 3.1 (A concrete example of W): Consider the
scalar system ẋ = −x + x3. It has three equilibrium points
at {0,±1}. The equilibrium point A = {0} is uniformly
asymptotically stable with D(A) = (−1, 1). Consider

V (x) =

∫ ∞

0

|ϕ(t, x)|2 dt,

where β > 0. By Proposition 1, we have

V̇ (x) = V ′(x)(−x+ x3) = −x2.

For x ∈ (0, 1), assuming differentiability of V , we have

V ′(x) =
x

1− x2
.

Integrating this with the condition V (0) = 0 gives

V (x) = −1

2
ln(1− x2).

Taking W (x) = 1− exp(−αV (x)) as in (4), we obtain

W (x) = 1− (1− x2)
α
2 , α > 0.

One can easily verify that W (x) satisfies conditions in
Zubov’s theorem.

IV. TRAINING LYAPUNOV FUNCTIONS WITH
PHYSICS-INFORMED NEURAL NETWORKS

Given the constructions of V (x) and W (x) in Section
III, we propose a physics-informed neural network (PINN)
approach to train neural Lyapunov functions that can ap-
proximately capture the domain of attraction. Furthermore,
the PINN approach can be augmented with a data-driven
approach to improve its performance.

8009

In this work, a neural network is trained to solve the
Zubov’s PDE with a particular choice of Ψ(x). For the
numerical examples in this paper, we choose

Ψ(x) = α(1 +W (x))Φ(x), (11)

with Φ(x) = ∥x∥2A. The details of constructing the loss
function are discussed next.

Let WN (x; θ) be a neural approximation for solving
Zubov’s PDE (3). The loss function consists of three terms:

L(θ) = Lr(θ) + Lb(θ) + Ld(θ), (12)

where Lr is the residual error of the PDE, evaluated over
a set of collocation points S = {xi}Ni=1 ⊆ X , where X is
assumed to be a compact set on which training takes place.
For example, we can choose it to be the mean-square error
defined by

Lr =
1

N

N∑
i=1

(∇xWN (xi; θ)f(xi)+Ψ(xi)(1−WN (xi; θ)))
2.

(13)
The loss Lb captures the boundary conditions. In this case,
we want W (x) = 1 for x ̸∈ D(A) and W (x) = 0 for
all x ∈ A. While it may not be able to precisely define
the boundaries, some approximation knowledge suffices. For
example, if an over-approximation U of D(A) is known, the
loss can be defined as

Lb =
1

Nb

∑
xi∈S∩(X\U)

(WN (xi; θ)− 1)2, (14)

where Nb is the number of points in S ∩ X \ U . If A is
an equilibrium point, adding W (0) = (0) alone may not
be ideal. If the equilibrium point is exponentially stable, we
know that locally V (x) constructed in (7) with ω(x) = ∥x∥2
is a Lyapunov function for exponential stability in the sense
that

c1 ∥x∥2 ≤ V (x) ≤ c2 ∥x∥2 , (15)

and
V̇ (x) ≤ −c3 ∥x∥3 ,

for x in a small neighborhood of the origin. Hence it is
without loss of generality to assume that (15) holds locally,
which translates to a boundary constraint to W as

β(c1 ∥x∥2) ≤W (x) ≤ β(c2 ∥x∥2), (16)

where β is given by (9). As discussed in Remark 1, we can
simply choose β(s) = (tanh(αs)) or β(s) = 1− exp(−αs)
for some α > 0, which needs to be consistent with the PDE
that is being solved. For the numerical examples in this paper,
we choose β(s) = (tanh(αs)), which is consistent with the
PDE (3) with Ψ given by (11).

Remark 5: Inequality constraints can be encoded in the
cost function by defining a loss term L+ = max(h, 0) or
L− = min(h, 0). It is easy to see that L+ = 0 if and only
if h ≤ 0, and similarly, L− = 0 if and only if h ≥ 0.
It is suggested in [7] that relaxing a Zubov-type equation
V̇ (x) = −∥x∥2 to an inequality V̇ (x) ≤ −∥x∥2 can

improve the process of training V . However, in our examples,
we did not notice any issues using physics-informed neural
networks to solve the Zubov PDE directly. Solving the PDE
more globally, as opposed to locally in the examples in [7],
seems to help the training process. Moreover, to accurately
capture the domain of attraction, solving Zubov’s PDE, in
one way or another, seems unavoidable.

Finally, Ld is a data loss defined by an optional set of data
points Sd = {yi}Nd

i on which approximate values Ŵ (yi) for
W (yi) can be obtained. According to the analysis in Section
III, W (yi) can be approximated by simulating ϕ(t, yi) for a
sufficiently long period of time until it converges to the set
A, or when the value of V (yi) defined by the integral in (7)
exceeds a certain threshold. To be consistent with the PDE
that is being solved, we should use (6) to evaluate Ŵ (yi)
based on simulated data for V (yi), if β(s) = (tanh(αs)) is
used to define the PDE loss in (13) and boundary constraints

in (16). Based on the values of
{
Ŵ (yi)

}Nd

i
, the data loss

Ld can be defined as

Ld =
1

Nd

Nd∑
i=1

(WN (yi; θ)− Ŵ (yi))
2. (17)

Our numerical examples indicate that the data loss term is
optional. Adding it, however, can potentially improve the
accuracy of approximating the domain of attraction.

The training process is standard, and we omitted a detailed
description of the algorithm. Interested readers can refer to
an earlier preprint of the paper [12] for details.

V. FORMAL VERIFICATION OF NEURAL LYAPUNOV
FUNCTIONS

One perceived weakness of neural network approximation
is its lack of formal guarantees. To overcome this, formal
verification of the learned neural Lyapunov functions is
conducted using satisfiability modulo theories (SMT) solvers.
In this section, we will discuss the details of verifying neural
Lyapunov functions using SMT solvers, and for simplicity,
we will limit our discussion to the case of a stable equilib-
rium point at the origin. We discuss verification of both local
and global stabiltiy.

A. Verification of Local Stability and Region of Attraction

In this section, we assume that f is continuously differ-
entiable. We further assume that the origin is exponentially
stable, i.e., (1) admits a linearization

ẋ = Ax, (18)

where A is a Hurwitz matrix. Now write the nonlinear system
(1) as

ẋ = Ax+ g(x), (19)

where g(x) = f(x) − Ax satisfies limx→0
∥g(x)∥
∥x∥ = 0.

The linear system (18) has a quadratic Lyapunov function
V (x) = xTPx given by solving P from the Lyapunov
equation

PA+ATP = −Q, (20)

8010

for any positive definite matrix Q. Consider two sets

Sr :=
{
x ∈ Rn : 2xTPg(x) ≤ r ∥x∥2

}
and

Ωc :=
{
x ∈ Rn : xTPx ≤ c

}
.

Suppose that we can choose c > 0 and r > 0 such that
Ωc ⊆ Sr. Then for all x ∈ Ωc, we have

V̇ (x) = xT (PA+ATP)x+ 2xTPg(x)

= −xTQx+ 2xTPg(x)

≤ (−λmin(Q) + r) ∥x∥2 .

If r < λmin(Q), then we verified local stability of the origin
and obtained Ωc as a verified invariant set that is attracted
to the origin. To summarize, the conditions required for
verifying local stability of the origin and Ωc being a local
region of attraction are

r < λmin(Q), (21)

xTPx ≤ c =⇒ 2xTPg(x) ≤ r ∥x∥2 . (22)

The inequality (21) can be readily verified by computing the
eigenvalue of Q and picking r accordingly. To verify (22),
one could use sums of squares (SOS) or SMT verification. In
this paper, we emphasize the use of SMT solvers because it
can potentially handle a broader class of nonlinear functions
[4]. However, at a glance, inequality (22) may not be
amenable to SMT verification because the identity holds
trivially at the origin. Hence δ-decidable tools such as dReal
[4] may have trouble verifying (22) directly, as the origin
always satisfies a δ-weakened version of (22) for any δ > 0.
Fortunately, a closer examination of the inequality (22) and
the assumption on g reveals that, since g is continuously
differentiable, we can leverage this fact to help verify (22).
Indeed, by the mean value theorem, we have

Pg(x) = Pg(x)− Pg(0) =

∫ 1

0

P ·Dg(tx)dt · x, (23)

where Dg is the Jacobian of g given by Dg = Df − A.
Clearly, Dg(0) = Df(0)−A = 0 by construction. Hence

∥Pg(x)∥ ≤ sup
0≤t≤1

∥P ·Dg(tx)∥ ∥x∥ , (24)

which implies

2xTPg(x) ≤ 2 sup
0≤t≤1

∥P ·Dg(tx)∥ ∥x∥2 .

As a result, to verify (22), we just need to verify

xTPx ≤ c =⇒ 2 sup
0≤t≤1

∥P ·Dg(tx)∥ ≤ r. (25)

Since Dg(0) = 0 and Dg is continuous, for any r >
0, one can always choose c > 0 sufficiently small such
that (25) can be verified. While SMT solvers may not be
able to directly handle matrix 2-norm in (25), other easily
computable norms, such as the Frobenious norm, can be used
to over-approximate ∥P ·Dg(tx)∥.

Example 5.1 (Reversed Van der Pol): Consider the re-
versed Van der Pol oscillator

ẋ1 = −x2, ẋ2 = x1 − (1− x21)x2,

which has a stable equilibrium point at the origin. The lin-

earization at the origin is given by (18) with A =

(
0 −1
1 −1

)
.

Solving the Lyapunov equation (20) with Q = I gives

P =

(
1.5 −0.5
−0.5 1

)
. With r = 0.9999, we can verify (25)

with c = 0.29. The ellipsoid Ωc =
{
x ∈ Rn : xTPx ≤ c

}
provides a verified local region of attraction for the origin.

B. Verification of Regions of Attraction in the Large

Having verified a local ROA, we can use the learned neural
Lyapunov function WN to enlarge the verified ROA. To do
this, we can verifiy the following conditions using SMT:

c1 ≤WN (x) ≤ c2 =⇒ ẆN ≤ −ε, (26)

WN (x) ≤ c1 =⇒ xTPx ≤ c, (27)

where ε > 0, c2 > c1 > 0, and c and P are from Section
V-A. We can immediately show the following result.

Proposition 3: If (26) and (27) hold for all x ∈ X and the
set Wc2 = {x ∈ X : WN (x) ≤ c2} does not intersect with
the boundary of X , then Wc2 is contained in the ROA of
the origin.

Proof: A solution starting from Wc2 remains in Wc2

as long as the solution do not leave X . However, to leave X
it has to cross the boundary of Wc2 first. This is impossible
because of (26). Within Wc2 , solutions converge to Ωc ={
x ∈ Rn : xTPx ≤ c

}
in finite time, which is a verified

region of attraction.

VI. NUMERICAL EXAMPLES

In this section, we provide numerical examples to demon-
strate the proposed approach for learning and verifying neu-
ral Lyapunov functions. For consistency, the reported com-
putation times were recorded on a MacBook Pro equipped
with a 2GHz Quad-Core Intel Core i5 processor and 16GB
of memory. However, computations testing the feasibility of
the work were performed on clusters provided by the Digital
Research Alliance of Canada. Code for the numerical exam-
ples can be found at https://github.com/j49liu/
cdc23-zubov-pinn.

Example 6.1 (Reversed Van der Pol, continued): Revisit
the reversed Van der Pol oscillator in Example 5.1. We
know the real domain of attraction of the origin is bounded
by a period orbit. To compute a neural Lyapunov function
that can approximately capture the true ROA, we use a
data-driven mechanism to generate data for the integral

V (x) =

∫ ∞

0

∥ϕ(t, x)∥2 dt

as described in Section IV. A total of 90, 000 uniformly
spaced samples on the domain X = [−2.5, 2.5]× [−3.5, 3.5]
are generated. The total time for data generation is 2,156
seconds. The set X contains the domain of attraction as

8011

a subset2. The terminating condition for numerical inte-
gration to determine V is either ∥ϕ(T, x)∥ ≤ 10−3 or∫ T

0
∥ϕ(t, x)∥2 dt ≥ 200. We then set W (x) = tanh(αV (x))

with α = 0.1. The parameters chosen are similar to those
in [11], except that we choose a larger set of samples to
demonstrate the limit of the data-driven approach compared
to a physics-informed neural network approach that incor-
porates Zubov’s PDE in the training process. The ellipsoidal
local region of attraction verified in Example 5.1 is shown
with the dashed line.

We trained neural networks of different sizes as detailed in
Table I. A batch size of 32 collocation points was used, and
the learning rate was chosen to be 10−3 after some testing.
We terminated training when the mean-square training loss
was smaller than 10−5 or after 200 epochs. For the purely
data-driven approach, we run full gradient descent for 200
steps. The learned neural Lyapunov functions were verified
using dReal with its Python binding [4]. The computation
times for training and verification are recorded in Table I.
Figure 1 depicts the result of training and verification with a
learned Lyapunov function and a verified region of attraction
close to the boundary of the domain of attraction.

In Table I, a “data-driven” approach refers to a network
trained with 90,000 data samples without using Zubov’s
equation explicitly, even though as shown in III, the con-
struction results in a solution to Zubov’s equation. This is
close to the method proposed in [11]. A PINN approach
refers to learning a neural Lyapunov function only through
evaluations of the residual errors at 90,000 collocation points.
No data is required except for the evaluation of loss at these
points. A “PINN + data” approach refers to a neural network
trained with PINN and Zubov’s PDE, but also incorporated a
data loss in the training process. The number of data points
chosen is 900, which is 1% of the total number of samples
in a data-driven approach. It is evident from the results in
this table that a PINN+data approach performs the best in
terms of obtaining a larger certified region of attraction.

Example 6.2 (Polynomial system): We consider the poly-
nomial system in [15]:

ẋ1 = x2, ẋ2 = −2x1 +
1

3
x31 − x2.

The origin of this system is known to have an unbounded
domain of attraction, delimited by the stable manifolds of
the saddle equilibrium points at (±

√
6, 0). We restricted our

computations to the domain [−6, 6] × [−6, 6] and similarly
generated 90,000 samples. The computational results for
training and verification are summarized in Table II. Figure

2The domain of attraction can be estimated roughly by numerical simula-
tions or observational data. If there is no prior knowledge of D(A), we can
still arbitrarily specify a set X containing A, assuming we know A. Then
we run into a similar situation as in an unbounded domain of attraction. As
shown in Example 6.2, although we cannot approximate the entire domain
of attraction, we can still obtain verified regions of attraction inside X .

3Training results may vary due to randomization. Note that, although not
reported here, both data generation and dReal verification can be easily done
in parallel to significantly reduce time. Furthermore, we only used CPU for
training, and training time can be significantly improved by using GPUs. A
bisection search can be used to determine the largest c2 such that the level
set WN (x) ≤ c2 is a verified ROA.

Fig. 1. A neural network, consisting of three hidden layers with 10 neurons
per layer and trained using Zubov’s PDE (3), is capable of approximately
representing a verifiable Lyapunov function that closely approximates the
domain of attraction for the stable equilibrium point of the Van der Pol
equation. The dashed lines represent a local verified region of attraction
computed in Example 5.1.

2 depicts the learned Lyapunov function, and the verified
region of attraction using a neural network with three hidden
layers of width 10. It can be seen that even though the actual
domain of attraction is unbounded, the proposed algorithm
approximates the largest region of attraction that can be
certified by the choice of neural Lyapunov function. Similar
to Example 5.1, we were able to verify a local region of
attraction of the form Ωc =

{
x ∈ Rn : xTPx ≤ c

}
, using

the SMT solver dReal [4] by verifying (21) and (25) with

P =

(
1.75 0.25
0.25 0.75

)
, Q = I , r = 0.9999, and c = 1.05. The

region Ωc is depicted with a dashed line in Figure 2.

Fig. 2. A neural network, consisting of three hidden layers with 10 neurons
per layer and trained using Zubov’s PDE (3), is capable of representing a
verifiable Lyapunov function that captures a region of attraction for the
stable equilibrium point of the polynomial system in Example 6.2 inside
the domain [−6, 6]× [−6, 6], even though the actual domain of attraction
for the origin is unbounded. The dashed lines represent a local verified
region of attraction.

VII. CONCLUSIONS

In this paper, we present a physics-informed neural net-
work approach for learning nearly maximal Lyapunov func-
tions using Zubov’s equation. Our work provides theoretical
justification on the existence of such Lyapunov functions
that can be approximated by neural networks and verified
using SMT solvers. The proposed algorithms allow for the
computation of Lyapunov functions that can approximate

8012

TABLE I
VERIFICATION OF NEURAL LYAPUNOV FUNCTIONS FOR VAN DER POL EQUATION (EXAMPLE 6.1) 3

Approaches Layer Width No. of
params.

Data gen.
time

Training
time Epochs Final loss Verification

time
Verified level

(WN (x) ≤ c2)
Volume

%
Data-driven 2 10 151 2,156 (s) 326 (s) 200 9× 10−5 46 (s) 0.7 84.93%

PINN 2 10 151 0 636 (s) 200 11× 10−5 24 (s) 0.84 87.20%
PINN + data (1%) 2 10 151 216 943 (s) 200 56× 10−3 60 (s) 0.77 87.45%

Data-driven 2 30 1,051 2,156 (s) 363 (s) 200 3× 10−5 3,207 0.82 92.52%
PINN 2 30 1051 0 729 (s) 200 36× 10−5 538 (s) 0.86 91.55%

PINN + data (1%) 2 30 1051 216 (s) 1,293 (s) 200 15× 10−5 842 (s) 0.86 94.22%
Data-driven 3 10 261 2,156 (s) 381 (s) 200 10−5 51,301 (s) 0.86 95.00%

PINN 3 10 261 0 129 (s) 32 9× 10−6 8,416 (s) 0.88 93.42%
PINN + data (1%) 3 10 261 216 (s) 593 (s) 107 8× 10−6 24,533 (s) 0.90 96.31%

TABLE II
VERIFICATION OF NEURAL LYAPUNOV FUNCTIONS FOR EXAMPLE 6.2

Approaches Layer Width No. of
params.

Data gen.
time

Training
time Epochs Final loss Verification

time
Verified level

(WN (x) ≤ c2)
Volume

%
PINN + data 2 10 151 97 (s) 989 (s) 200 37× 10−5 16 (s) 0.91 74.15%
PINN + data 2 30 1,051 97 (s) 1,075 (s) 200 2× 10−5 295 (s) 0.95 85.03%
PINN + data 3 10 261 97 (s) 725 (s) 123 6× 10−6 2,990 (s) 0.95 84.92%

the entire domain of attraction for an asymptotically stable
compact set. We also provide formal verification of the
Lyapunov candidate generated by the neural network, both
locally and globally, which allows us to find verified regions
of attraction that are close to the domain of attraction. Our
work demonstrates that combining a physics-informed neural
network approach with a small number of data points can
improve the results of learning and verification.

One potential limitation of the work is its scalability to
high-dimensional systems, as is the case with other com-
putational approaches to constructing Lyapunov functions.
Future work could focus on investigating the scalability of
the proposed approach. It is believed that a compositional
structure can help break the curse of dimensionality in
learning function approximations using neural networks [16].
Both [11] and [7], [8] have discussed this in the context of
approximating Lyapunov functions. It would be interesting
to investigate whether such compositionality can alleviate
the curse of dimensionality in the formal verification of
Lyapunov functions as well. Another interesting direction
is to provide theoretical guarantees of learning a solution
to Zubov’s equation if one exists. Combining computation
and verification of neural Lyapunov functions with a policy
iteration scheme to provide verifiable guarantees of neural
policy iteration is another promising research direction.

REFERENCES

[1] Nam P Bhatia and George P Szegö. Dynamical Systems: Stability
Theory and Applications, volume 35. Springer, 1967.

[2] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov
control. In NeurIPS, pages 3245–3254, 2019.

[3] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with
learned certificates: A survey of neural Lyapunov, barrier, and contrac-
tion methods for robotics and control. IEEE Transactions on Robotics,
pages 1–19, 2023.

[4] Sicun Gao, Soonho Kong, and Edmund M Clarke. dreal: an SMT
solver for nonlinear theories over the reals. In Proc. of CADE, 2013.

[5] Peter Giesl. Construction of Global Lyapunov Functions Using Radial
Basis Functions, volume 1904. Springer.

[6] Peter Giesl and Sigurdur Hafstein. Review on computational methods
for Lyapunov functions. Discrete & Continuous Dynamical Systems-B,
20(8):2291, 2015.

[7] Lars Grüne. Computing Lyapunov functions using deep neural
networks. Journal of Computational Dynamics, 8(2), 2021.

[8] Lars Grüne. Overcoming the curse of dimensionality for approximat-
ing Lyapunov functions with deep neural networks under a small-gain
condition. IFAC-PapersOnLine, 54(9):317–322, 2021.

[9] Wassim M Haddad and VijaySekhar Chellaboina. Nonlinear Dynam-
ical Systems and Control: A Lyapunov-based Approach. Princeton
University Press, 2008.

[10] Morgan Jones and Matthew M Peet. Converse Lyapunov functions
and converging inner approximations to maximal regions of attraction
of nonlinear systems. In Proc. of CDC, pages 5312–5319. IEEE, 2021.

[11] Wei Kang, Kai Sun, and Liang Xu. Data-driven computational
methods for the domain of attraction and Zubov’s equation. arXiv
preprint arXiv:2112.14415, 2021.

[12] Jun Liu, Yiming Meng, Maxwell Fitzsimmons, and Ruikun Zhou.
Towards learning and verifying maximal neural Lyapunov functions.
arXiv preprint arXiv:2304.07215v1, 2023.

[13] A. M. Lyapunov. The general problem of the stability of motion.
International Journal of Control, 55(3):531–534, 1992.

[14] José L Massera. Contributions to stability theory. Annals of Mathe-
matics, pages 182–206, 1956.

[15] Alexandre Mauroy and Igor Mezić. Global stability analysis using
the eigenfunctions of the koopman operator. IEEE Transactions on
Automatic Control, 61(11):3356–3369, 2016.

[16] Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Mi-
randa, and Qianli Liao. Why and when can deep-but not shallow-
networks avoid the curse of dimensionality: a review. International
Journal of Automation and Computing, 14(5):503–519, 2017.

[17] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–707, 2019.

[18] Rodolphe Sepulchre, Mrdjan Jankovic, and Petar V Kokotovic. Con-
structive Nonlinear Control. Springer, 2012.

[19] Anthony Vannelli and Mathukumalli Vidyasagar. Maximal Lyapunov
functions and domains of attraction for autonomous nonlinear systems.
Automatica, 21(1):69–80, 1985.

[20] Ruikun Zhou, Thanin Quartz, Hans De Sterck, and Jun Liu. Neural
Lyapunov control of unknown nonlinear systems with stability guar-
antees. In NeurIPS, 2022.

[21] V. I. Zubov. Methods of A. M. Lyapunov and Their Application.
Noordhoff, 1964.

8013

