
Transfer Learning for Barrier Certificates

Alireza Nadali, Ashutosh Trivedi, and Majid Zamani

Abstract— A principled approach to safety verification of
dynamical systems demands formal guarantees. Barrier cer-
tificates are an effective tool for searching safety proofs in
the form of inductively verifiable invariants. However, finding
barrier certificates is an expensive and time-consuming process
that demands human expertise in selecting various templates,
hyperparameters, and decision procedures. Is it possible to
transfer the knowledge gained in finding a barrier certificate and
control algorithm from a given environment (source environment)
to a different but related environment (target environment)?
This paper presents a transfer learning approach to adapt the
barrier certificates (of any template) in the form of neural
networks from the source to the target environment. We derive
a validity condition to formally guarantee the correctness of
network by leveraging its Lipschitz continuity. To demonstrate
the effectiveness of our approach, we apply it to two case
studies, namely the inverted pendulum, DC motor and Room
temperature control. Our results show that transfer learning
can successfully adapt barrier certificates from the source to
the target environment, reducing the need for human expertise
and speeding up the verification process.

I. INTRODUCTION

The importance of safety in hybrid systems has grown
significantly due to the rising prevalence of autonomous sys-
tems in safety-critical infrastructure such as self-driving cars,
implantable medical devices, robotics, and industrial control
systems. Barrier certificates [1]–[3] facilitate a deductive
approach to safety by enabling an easy-to-verify condition
that the system stays clear from unsafe regions. Intuitively, a
barrier certificate is a real-valued function over the state space
whose level sets can separate the reachable state space from
the unsafe space, acting as a “barrier” between two regions.
The search for a barrier certificate with a desired template
can be automated using powerful decision procedures such
as sum-of-squares optimization [4] or satisfiability modulo
theory (SMT) solvers [5]. However, this process still requires
considerable human insight and remains a computationally
and intellectually challenging task that demands expertise in
control theory and optimization.

This paper proposes the use of tools from transfer learn-
ing [6], [7] as a practical and efficient method to lift safety
guarantees enabled by barrier certificates from one system to
a different but related environment. By leveraging existing
barrier certificates and transferring them to new systems, we
can reduce the time and compute resources [8] required
for synthesizing new certificates. Our approach aims to

This work was supported in part by the NSF under grants CNS-2145184,
CNS-1952223, and A22-0123-S003.

A. Nadali, A. Trivedi and M. Zamani are with the
Department of Computer Science, University of Colorado Boulder,
Boulder, USA. Email:{a_nadali,ashutosh.trivedi,
majid.zamani}@colorado.edu

facilitate the safe deployment of autonomous systems in
new environments while reducing the verification burden.

Transfer Learning for Safety. While for traditional software
systems it is safe to assume that guarantees established at
design time will continue to hold, this assumption does
not hold for software controlling hybrid dynamical systems.
The dynamics of the environment may evolve over time
due to several factors, including mechanical wear and tear,
changes in operating conditions (such as ambient temperature
and humidity), and changes in requirements. As a result, it
is not always possible to rely on barrier certificate-based
guarantees established at design time to continue to hold for
all future manifestations of the system. However, oftentimes,
the changes in system dynamics are not drastic and may
not require a costly redesign of the entire system. This
underscores the need for efficient and systematic approaches
to transfer guarantees from previous versions of the system
to adapt to new realities. In this paper, we explore transfer
learning approaches to leverage existing barrier certificates
to provide safety guarantees for new versions of the system
without requiring a full-scale verification of the entire system.

Advances in Transfer Learning. Transfer learning is a
mature sub-field of AI that utilizes a previously learned
knowledge in source domain in order to apply it to target do-
main. Transfer learning started with using previously learned
weights of a neural network to speed up the training of a new
one [9]. Recently, new training methods for neural networks
were introduced, including domain adversarial training [10]
and adversarial discriminative domain adaptation [11]. These
methods provide invariance to small shifts in data distribution
by extracting robust features that do not depend on a specific
data set. Adversarial learning methods are a promising tool
in training robust neural networks, by which they attempt
to mitigate the domain shift. Fine-tuning and retraining a
network from scratch for similar domains is computationally
expensive, or labeled data is sparse or non-existent in target
domain [10], [11]. Though transfer learning has achieved
astounding results in practice [10], [11], it does not provide
formal guarantee.

Neural Network Based Barrier Certificates. Neural net-
works are universal approximators that can be trained using
input-output data to learn to approximate arbitrary Borel-
measurable function with arbitrary precision. This has rev-
olutionized the capability of autonomous systems due to
their applications in perception, adaptation via reinforcement
learning, and control. More recently, neural networks has been
exploited to develop data-driven methodology to learn barrier
certificates for systems where explicit dynamics in unavailable.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7994

Fig. 1. A simple neural network with 1 hidden layer

They provide formal [12] and statistical [13] guarantees on
the barrier certificate based on various assumptions (Lipschitz-
continuity) about the underlying system. Recently, new
methods have emerged in order to provide formal guarantee
for neural networks by utilizing semidefinite constraints, yet
these methods are still plagued with high complexity [14].
Our work builds upon and complements these approaches
by transferring barrier certificates of any template (neural
networks or polynomial functions) as a neural network based
barrier certificate [15], [16] and establishes formal guarantees
on its properties.

Contributions. We propose a novel transfer learning method
by leveraging previously learned knowledge to ensure safety
of the system. We provide formal guarantee by deriving a
validity condition based upon Lipschitz continuity. In addition,
we implement the validity condition in neural network training
by enforcing small Lipschitz constant on the neural network.
Hence, there is no need for posterior verification. Finally,
we illustrate suitability of our method by applying it to two
relevant case studies.

II. PRELIMINARIES

Let Rn be the n-dimensional Euclidean space equipped
with infinity norm ∥·∥. We write N and N>0 to denote the sets
of non-negative and positive integers, respectively. A rectified
linear unit (ReLU) is a commonly used activation function
σ : R→ R defined as σ(x) = max{x, 0}. We can generalize
this function from scalars to vectors as σ : Rn → Rn in a
straightforward fashion by applying ReLU component-wise.

A. Feedforward Neural Networks

A feedforward neural network (henceforth, network) is a
weighted directed acyclic graph (see Figure 1) organized in a
sequence of layers performing linear mappings followed by
non-linear activations. We focus on networks with k fully-
connected layers where each layer i is characterized with a
weight matrix Wi and a bias vector bi of appropriate size
and is followed by a ReLU.

A neural network [17] can be viewed as a function F :
Rni → Rno . Given an input y0 ∈ Rni , a neural network will
compute an output yk ∈ Rno as follows:

x(1) = W1y0 + b1, y1 = σ(x(1))

x(2) = W2y1 + b2, y2 = σ(x(2))

...
x(k) = Wkyk−1 + bk, yk = σ(x(k))

We call yi−1 and yi the input and output of the i-th layer,
respectively, and x(i) the intermediate values at layer i. It
is easy to see that neural networks with ReLU activations
represent a Lipschitz continuous functions.

Backpropagation [18] is a popular algorithm to learn
various parameters of the network (Wi, bi)

k
i=1 from input-

output data driven by a loss function LF characterizing the
closeness of F with the dataset.

B. Safety via Barrier Certificates

We consider discrete-time control systems operating under
a given feedback control defined as the following.

Definition 2.1 (Discrete-Time Control System): A
discrete-time control system (henceforth, system) S
is a tuple (X,X0, U, f) where X ⊆ Rn is the bounded set
of states, X0 ⊆ X is the set of initial states, U ⊆ Rm is the
set of inputs, and f : X × U → X is the state transition
function.

The evolution of S from an initial state x0 ∈ X0 under a
feedback control u : X → U is the infinite state sequence
Xx0,u = ⟨x(0), x(1), x(2), . . .⟩ where x(0) = x0 and

x(t+ 1) = f(x(t), u(t)) for all t ∈ N. (1)

We write Su for a system S evolving under the controller
u : X → U . When clear from context, we write Xx0,u to
also denote the set of states in the evolution Xx0,u. We define
the set of reachable states of under u as the set

Xu =
⋃

x0∈X0

Xx0,u.

Given a system S, a feedback controller u : X → U , and
a set of unsafe states X† ⊆ X , we say that system Su is
safe if Xu ∩X† = ∅. Barrier certificates [1] are real-valued
functions over X whose zero-level sets separate reachable
and unsafe states and can be used to guarantee safety.

Definition 2.2: Consider a system S = (X,X0, U, f). A
function B : X→R is a barrier certificate for S under a
controller u : X → U against unsafe states X† ⊆ X , if there
exists η ≤ 0 such that

B(x) ≤ η for all x ∈ X0,
B(x) > −η for all x ∈ X†, and

B(f(x, u(x)))− B(x) ≤ η for all x ∈ X .
(2)

The following lemma characterizes the correctness of the
barrier certificates.

Lemma 1: Consider a system S = (X,X0, U, f). The
existence of a barrier certificate B : X→R satisfying (2)
for S under a controller u : X → U against unsafe states
X† ⊆ X implies that Su is safe.

Proof: Note that the zero sublevel set of the barrier
certificate B≤0 = {x : B(x) ≤ 0} characterizes an inductive
invariant over the reachable state space. It is easy to verify
that every evolution ⟨x(0), x(1), x(2), . . .⟩ remains in B≤0:

• the initial states x(0) ∈ B≤0 as B(x(0)) ≤ η, and
• for every t assuming x(t) ∈ B≤0 implies that x(t+1) ∈

B≤0 as B(f(x, u(x)))− B(x) ≤ η.
Finally noting that no state in X† is in B≤0, as B(x) > −η
for all x ∈ X†, completes the proof.

7995

Hence, in order to provide formal guarantee for safety of
the system S, it is sufficient to find a controller and the
corresponding barrier certificate. Given a controller, one
restricts the search for a barrier certificate within a given
template (e.g., polynomial functions of a fixed degree)
and employs decision procedures such as sum-of-squares
programming [19] or satisfiability-modulo-theory (SMT)
solver [20]. In practice, one can combine combine the search
for control and barrier certificates [2], [3].

Despite over twenty years of research in synthesizing
barrier certificates, the search for barrier certificates require
human insight in selecting the template, decision procedures,
and requires considerable computational resources in estab-
lishing the barrier certificate conditions. More often than
not, fixing the barrier certificate’s template is too restrictive
and one may not be able to find a barrier certificate. To
tackle both challenges, feedforward neural networks have
been proposed [15], [16] to represent barrier certificates.

III. TRANSFER LEARNING FOR BARRIER CERTIFICATES

We are interested in the following problem of transferring
barrier certificates from the source system to the target.

Definition 3.1 (Barrier Transfer): Consider two different
but related systems: the source S = (X,X0, U, f) and the
target T = (X,X0, U, f̂). Assume that the control law u :
X → R and barrier certificate B : X → R for S are given.
The barrier transfer problem is to find a barrier certificate
B̂ : X → R demonstrating the safety of T under u.

If the system T is close to the system S , we should be able
to adapt the previously acquired knowledge in B to learn
the barrier certificate B̂. This is the central thesis behind
transfer learning [21]. We develop a solution to the barrier
transfer problem by designing a novel architecture combining
the ideas from generative adversarial networks (GANs) [22]
and a recent transfer learning approach known as adversarial
discriminative domain adaptation (ADDA) [11].

The GAN is an adversarial training approach to learn a
generative model where two networks (the generator and the
discriminator) have interdependent loss functions such that
the goal of the generator network is to increasingly learn
a more refined concept, while the goal of the discriminator
network is to continue to improve in finding errors in generator
network. As they are trained iteratively, both networks get
increasingly performant in their respective tasks. The ADDA
approach, on the other hand, is a transfer learning approach to
transfer a classifier from one setting to another. The key idea
is based on the common wisdom [23] that the initial layers
of a neural network tend to extract features, while the latter
layers perform a classification task [24] based on the learned
features. In this approach, network is forced to learn robust
features that do not depend on a specific domain. Hence, if
we can learn the to extract features from the new environment
such that a discriminator network cannot distinguish if the
features is coming from the source environment or the target,
the feature extraction is learned from the target environment in
such a manner that is consistent with the source environment.

Fig. 2. Transferring formal guarantee. Our proposed method consists of
two neural networks, discriminator and generator. Generator is learning how
to represent a barrier certificate for target system while discriminator is
distinguishing between source and target barriers.

Thus, one can use the classifier network (which maps the
features into labels) from source domain in target domain.

Our work combines GAN and ADDA approaches to
transfer barrier certificates from the source system to the
target. Our architecture is depicted in Figure 2 where the
generator network for the barrier certificate (in blue) and the
discriminator network (in gold) distinguishing between source
and target systems by only observing barrier function values.
As the transfer learning approaches do not provide formal
guarantees, we enclose our learning approach within a formal
framework of data-driven learning of barrier certificates to
establish formal guarantees. In particular, we sample the
state space by picking data points using a fine grid and
exploit Lipschitz continuity argument to establish that a barrier
certificate faithful to the grid point remains faithful to all
unseen points within the grid.

The rest of the paper is organized a follows. We begin
(Section III-A) by talking about of data generation, followed
by the validity condition (Section III-B) to ensure the
correctness of barrier certificates. Our key contribution of the
architecture of our transfer learning is discussed in Section III-
C followed by some optimization to the architecture in
Section III-D.

A. Data Generation

Our approach to barrier transfer problem is to learn B̂ as
a neural network by forming a uniform grid on state space.

Xgrid = ⟨x1, . . . , xN ⟩, (3)

where N is the total number of grid points. we form the data
sets (I,U , E) as

I = Xgrid ∩X0,

U = Xgrid ∩X†, and

E = ⟨(xi, f(xi, u(xi)), f̂(xi, u(xi)))⟩Ni=1.

(4)

Using grid points, we construct cover sets consist of hyper-
rectangles

Ri (xi, ϵi) := {x ∈ X | 0 ≤ ∥x− xi∥ ≤ ϵi} (5)

7996

centered at sampled points (xi), by defining ϵ̂ = maxi ||ϵi||,
then for all x ∈ X , there exists xi, i ∈ {1, . . . , N},
such that ||x − xi|| ≤ ϵ̂. Therefore, data sets I, U ,
and E corresponding to X0, X† and X are constructed
by considering corresponding representative points, which
networks is trained on.

B. Validity Condition

When the training is done, generator would be the barrier
for target system, thus it needs to satisfy conditions in (2).
To ensure safety, we need to provide formal guarantee for
the neural network, since the network is trained on finitely
many data points. As it was mentioned before, the state set
is discretized with N samples. In order to provide formal
guarantee for unseen data, we propose Theorem I.

Theorem 1: Consider a system S with controller u, initial
and unsafe sets X0 and X†, respectively. Let B be a Lipschitz
continuous barrier for the given system S that has been
acquired using finitely many samples. Furthermore η∗ is a
value that satisfies (2) for the said data points. If

Lϵ̂+ η∗ ≤ 0, (6)

in which L is the Lipschitz constant of the barrier with respect
to x, then B is valid for the entire state set as it has been
mentioned in (2).

Proof: Assuming η∗ satisfies (2), following conditions
hold.

B (xi) ≤ η∗, ∀xi ∈ I,
B (xi) > −η∗, ∀xi ∈ U ,
B (f (xi, u (xi))− B (xi) ≤ η∗, ∀xi ∈ E ,

(7)

for all i ∈ {1, . . . , N}. Based on Lipschitz continuity property
of the barrier B we have

B(xj)− B (xk) ≤ L∥xj − xk∥ . (8)

where xi, xk ∈ X . Furthermore, for all x ∈ X0 there exists
xi such that ||x− xi|| ≤ ϵ̂. Incorporating this property, we
get

B(x)− B (xi) ≤ L∥x− xi∥ ≤ Lϵ̂, (9)

where xi is a center of a hyper-rectangle. Rearranging the
equation

B(x) ≤ Lϵ̂+B(xi). (10)

According to barrier definition B(xi) ≤ η∗ for all xi ∈ X0.
Thus

B(x) ≤ Lϵ̂+ η∗. (11)

which is negative according to (6). Similarly, one can show
that B(x) > 0 for all x ∈ X† and B(f(x, u(x))− B(x) ≤ 0
for all x ∈ X . Hence, B satisfies (2) for entire state set.

C. Transfer Learning Architecture

Our architecture for barrier transfer consists of two in-
dependent networks: the generator network G : Rn → R
and the discriminator network D : R → R. Both of these
networks are fully-connected with ReLU activation units and
the number of hidden layers is left as a hyperparameter in our
architecture. The generator network is being trained to capture

the barrier certificate for target system. On the other hand,
the discriminator network takes a single input, which can
be from the generator (barrier for target system) or barrier
of the source system. As its name suggests, this network
tries to distinguish whether the given input is from target
or source barrier. Output of this network is a real number
corresponding to the probability of belonging to either source
or target barrier. This task of distinguishing data is known as
supervised learning, where you assign a label to each data
instance [24].

In order to train the discriminator, we model the probability
using logistic function v(z) = (1 + e−z(l))−1 where z(l) is
some function of the scaler input l which can be optimized.
Since we can classify the inputs with two labels (source and
target), we assign v(l) = 1 to the source and v(l) = 0 to the
target data. Assuming D(l) is the output of the discriminator,
the probability of l belonging to source and target is vy=1 =

ŷ = (1 + e−D(l))
−1

and vy=0 = 1 − ŷ, respectively. Here
y denotes the true label and ŷ is the label predicted by the
discriminator. Therefore, we employ cross-entropy loss as a
measure of dissimilarity between these two

H(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ), (12)

Note that the loss is zero when y = ŷ.
Generator is trained on how well it managed to trick the

discriminator
LG = H(1, D(G(x))). (13)

In addition to (13), we add the Lipschitz constant of the
network to its loss to encourage the generator to minimize
its Lipschitz constant. Therefore generator’s loss is

LG = H(1, D(G(x))) + L, (14)

where L is Lipschitz constant. Small Lipschitz constant is
paramount for our validity condition; which will be discussed
later. Similarly, discriminator is trained on how well it
manages to distinguish between real barrier and generated
barrier output

LD = H(0, D(G(x))) +H(1, D(B(x))), (15)

where B(x) denotes the barrier for source system.
We employ data-driven methods to estimate L. Assume

B : Rn → R is a Lipschitz continuous neural network barrier.
Firstly, we sample M points in the state space and calculate
the absolute value of the slopes

sij =
|B(xi)−B(xj)|

|xi−xj | ∀i, j such that i ̸= j, (16)

where xi and xj are two sampled points. Then we choose
the maximum of sij . This procedure is repeated M

′
times

and an inverse weibull distribution is fitted to the maximum
slopes. The location parameter is an estimate of the Lipschitz
constant [25]. One can get a more accurate estimation if
|xi − xj | ≤ δ for a small δ > 0. Based on proposition 1 in
[25], as M,M

′ → ∞ and for small δ > 0, the estimated
Lipschitz constant converges to its true value.

Throughout this paper, we do not consider the error in
estimating the Lipschitz constant since we use sufficiently
large M and M

′
and small δ such that the error is negligible.

7997

D. Adaptive Training for Barrier Transfer

In order to facilitate training, we use two different discrim-
inator networks and, consequently, we have two different
phases of training. The first phase consists of randomly
sampling points from each data set I, U , and E , then
generating the corresponding barrier values for each of three
conditions. When the generator can satisfy first and second
barrier conditions for all points, we move to the second phase.

In the second phase, we directly use the data that are
violating the third condition. Using adaptive training, we
managed to reduce the number of iteration considerably.
Additionally, if most of the points in the data set satisfy
the barrier conditions, then the loss would likely be zero or
a small value and network will not learn anything. Thus, it
is intuitive to use the points that violate barrier conditions to
train the network, instead of relying on sampling. Training
stops when all three conditions of barrier certificate and
Lϵ̂+ η ≤ 0 for all the data points are satisfied. Algorithm 1
outlines our proposed method.

IV. CASE STUDIES

In this section, we illustrate effectiveness of our method
by utilizing two case studies. For all case studies, we trained
the neural network on Nvidia RTX 4090 GPU coupled with
Intel core I7 13700k CPU. We use Adam optimizer in order
to train the neural networks [26].

A. Inverted Pendulum

For the first case study, we consider an inverted pendulum.
Dynamics of the system can be described as

S :
[

x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + τ (x2(k))

x2(k) + τ g
l

(
sin (x1(k)) +

1
ml2u

)]
,

where x1, x2 are angular position and velocity, respectively.
Constants m = 1 and l = 1 are the mass and the length of
the pendulum, g = 9.8 is the gravitational acceleration and
sampling time τ = 0.01. The state set is X = [−π

4 ,
π
4]

2,
initial state set X0 = [− π

15 ,
π
15]

2, safe state set Xs =
[−π

6 ,
π
6]

2 and unsafe state X† = X \ Xs. For the target

Algorithm 1 Learning barrier
Input: X0, Xu, X, ϵ̂, Bs, us

Output Bt, η

Construct data sets I,U , and E from X0, X† and X .
Initialize η, generator Gt and discriminators D1, D2.
while Conditions not satisfied do

if Gt(I) ≤ η and Gt(U) > −η then
ind← {i | Gt(Ei)−Gt(xi) > η}
Update loss LG(X[ind]) and LD2

(X[ind])
else

bX ← Random batch
Update loss LG(bX) and LD1(bX)

end if
end while
Return Bt, η

Fig. 3. State trajectories with different initial conditions. As it can be
inferred, starting from X0 system will not reach the unsafe set.

TABLE I
DIFFERENT PARAMETERS FOR TARGET SYSTEM

m l Iterations Convergence
time (min)

1.05 1.05 600 7

1.1 1.1 2458 19

1.2 1.1 3689 25

1.2 1.2 7000 30

1.5 1.5 NA NA

system, we assume m = 1.2 and l = 1.1. Additionally,
barrier and controller for the source system are obtained
using [12], but barrier does not satisfy the third condition in
(2) for the target system.

Our method converged quite fast with roughly 4000
iterations, η∗ = −0.002, L = 1.9 and ϵ̂ = 0.001 as
final parameters. Four different trajectories of the system
are depicted in Figure 3, xij denotes the jth state of
ith trajectory. Table I shows different target systems and
number of iterations. The method presented in [12] typically
converges in approximately 50 minutes on average, with minor
adjustments to the Lipschitz constant estimation. The findings
in [12] involve the computation of the global Lipschitz
constant, which is computationally intensive. To ensure a
fair comparison, we adopted the same sampling technique
for Lipschitz constant estimation, resulting in a significant
reduction in convergence time.

As we can see, the more parameters change compared to
the source system, neural network require more iterations to
converge. This trend continues until we reach a point where
source and target differ so drastically that neural network
cannot converge; meaning one cannot use the same controller
for target system.

B. DC Motor

In this case study, we consider a discrete-time DC motor.
The dynamics of the system are

S:
[

x1(k + 1)
x2(k + 1)

]
=

[
x1(k)+τ

(−R
L x1(k)− K

L x2(k) +
1
Lu

)
x2(k) + τ

(
K
J x1(k)− b

J x2(k)
)]

,

7998

where states x1 and x2 are the armature current and rotational
speed of the shaft, parameters R = 1, L = 0.5, J = 0.01
,τ = 0.01 and b = 0.1 are the electric resistance, the electric
inductance, the moment of inertia of the rotor, sampling time
and the friction constant, respectively. In addition, K = 0.01
represents both the motor torque and electromotive force
constant. For the target system, we consider R = 1.5,
L = 0.55, J = 0.011, b = 0.11 and K = 0.011. Barrier
and controller are obtained via [12] for the source system.
As before, barrier for the source system violates the third
condition in (2) for the target system.

Regions of interest are X0 = [−0.005, 0.005] ×
[−0.05, 0.05], Xu = [0.5, 0.7] × [0.06, 0.1] and X =
[−0.7, 0.7] × [−0.1, 0.1]. The input of the system, i.e. u,
is the voltage, and it is within the set U = [−1, 1]. Our
method converged with only 2000 iterations in 5 minutes with
η∗ = −0.02, L = 19.2 and ϵ̂ = 0.001 as final parameters.
The method proposed in [12] typically converges in an average
time of 35 minutes, as previously mentioned, with minor
adjustments made to the Lipschitz constant estimation.

Remark 1 (Systems with disturbance): In our simulations
we have also considered target system to have the same
parameters, but with added and multiplicative disturbance for
dc motor and inverted pendulum, respectively. For inverted
pendulum, the amplitude of the disturbance was 0.05% of the
states, and for the DC Motor, amplitude of added disturbance
was 0.1. Needless to say, disturbance caused the barrier for
the source system to fail. Our proposed method was able to
compute a barrier for the target system while adhering to
validity condition in (7). Henceforth, one can also utilize this
method to provide formal guarantee for a target system that
has been plagued with disturbance.

V. CONCLUSION

Our paper proposes a novel model-free approach to
transferring formal guarantee between two iterations of a
system. By utilizing neural networks to represent barrier
certificates, we can overcome the problem of unknown model
and only require data samples from the given system, without
any prior mathematical knowledge. Our approach employs
two distinct neural networks: a generator and a discriminator,
which work together to, respectively, generate and critique
the barrier certificate. Furthermore, we proposed a validity
criteria that ensures the correctness of the barrier certificate
over the entire state set, rather than just the finite data points
used for training. We have demonstrated the effectiveness of
our method through two relevant case studies, showing that
our approach can significantly improve the transfer of safety
proofs between different iterations of a system.

For future work, we intend to provide a formal theory for
transferring barrier certificates with clear notion of closeness
and convergence guarantees.

REFERENCES

[1] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems
using barrier certificates,” in Hybrid Systems: Computation and Control,
(Berlin, Heidelberg), pp. 477–492, Springer Berlin Heidelberg, 2004.

[2] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in
European control conference (ECC), pp. 3420–3431, IEEE, 2019.

[3] P. Jagtap, S. Soudjani, and M. Zamani, “Formal synthesis of stochas-
tic systems via control barrier certificates,” IEEE Transactions on
Automatic Control, vol. 66, no. 7, pp. 3097–3110, 2021.

[4] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical programming, vol. 96, pp. 293–320, 2003.

[5] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduc-
tion and applications,” Communications of the ACM, vol. 54, no. 9,
pp. 69–77, 2011.

[6] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[7] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan, “A theory of learning from different domains,” Machine
Learning, vol. 79, pp. 151–175, Oct. 2009.

[8] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research
on machine learning applications and trends: algorithms, methods,
and techniques, pp. 242–264, IGI global, 2010.

[9] B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in
transfer learning?,” Advances in neural information processing systems,
vol. 33, pp. 512–523, 2020.

[10] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavi-
olette, M. Marchand, and V. Lempitsky, “Domain-adversarial training
of neural networks,” The journal of machine learning research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[11] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial
discriminative domain adaptation,” 2017.

[12] M. Anand and M. Zamani, “Formally verified neural network control
barrier certificates for unknown systems,” in 22nd IFAC World Congress,
to appear, IFAC, 2023.

[13] R. Mazouz, K. Muvvala, A. Ratheesh Babu, L. Laurenti, and
M. Lahijanian, “Safety guarantees for neural network dynamic systems
via stochastic barrier functions,” Advances in Neural Information
Processing Systems, vol. 35, pp. 9672–9686, 2022.

[14] P. Pauli, N. Funcke, D. Gramlich, M. A. Msalmi, and F. Allgöwer,
“Neural network training under semidefinite constraints,” in 2022 IEEE
61st Conference on Decision and Control (CDC), pp. 2731–2736, IEEE,
2022.

[15] H. Zhao, X. Zeng, T. Chen, and Z. Liu, “Synthesizing barrier certificates
using neural networks,” in Proceedings of the 23rd international
conference on hybrid systems: Computation and control, pp. 1–11,
2020.

[16] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods,” arXiv
preprint arXiv:2202.11762, 2022.

[17] S. Haykin, Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1998.

[18] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” nature, vol. 323, no. 6088,
pp. 533–536, 1986.

[19] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic
problems,” Mathematical programming, vol. 96, pp. 293–320, 2003.

[20] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduc-
tion and applications,” Communications of the ACM, vol. 54, no. 9,
pp. 69–77, 2011.

[21] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan, “A theory of learning from different domains,” Machine
learning, vol. 79, pp. 151–175, 2010.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, vol. 27, Curran
Associates, Inc., 2014.

[23] M. Nixon and A. Aguado, Feature extraction and image processing
for computer vision. Academic press, 2019.

[24] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” Ma-
chine learning techniques for multimedia: case studies on organization
and retrieval, pp. 21–49, 2008.

[25] G. Wood and B. Zhang, “Estimation of the lipschitz constant of a
function,” Journal of Global Optimization, vol. 8, pp. 91–103, 1996.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

7999

