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Abstract— In this paper, we present a linear stability analysis
formulation for a plane Poiseuille flow developed in a continuous
time domain. Contrary to a conventional approach based on an
eigenvalue analysis, which can only proof stability with respect
to certain solutions that are assumed to be time harmonics
modulated by an exponentially growing or decaying amplitude,
the presented methodology does not make any assumptions
on a solution form. By analyzing all time-varying solutions
and not only the ones restricted to a specific functional form,
the developed stability test provides a stronger condition with
regard to the system stability. Stability analysis is performed
by first casting the corresponding linearized partial differ-
ential equation into a partial integral equation (PIE) form,
and subsequently employing a linear partial inequality (LPI)
stability test, which searches for a corresponding Lyapunov
function parameterized through polynomial expansions to prove
or disprove stability. Stability results of the continuous-time
formulation for the plane Poiseuille flow are compared with
a traditional eigenvalue-based analysis, demonstrating that
the developed methodology represents a stricter condition on
stability.

I. INTRODUCTION

Properties of a laminar-to-turbulent transition in fluid flows
is a subject of strong interest due to its critical impor-
tance, both from a canonical perspective, and in practical
applications. To analyze stability of fluid flows around an
underlying laminar profile, a linear stability theory (LST)
is often employed, which considers small perturbations to
a laminar profile and investigates asymptotic stability of
such perturbations in the linearized equations [1], [2].
Traditionally, ever since a pioneering work of Orr and Som-
merfeld in the beginning of the 19th century [3], [4], linear
stability analysis has been approached from an eigenvalue-
based perspective. In an eigenvalue-based analysis, a solution
of a certain form, specifically, in a form of an exponentially
growing or a decaying harmonic perturbation is assumed.
Correspondingly, this form of perturbations is substituted
into the underlying governing equations (linearized Navier-
Stokes equations), and the resulting eigenvalue problem, with
the eigenvalues representing a complex frequency of the as-
sumed harmonic perturbation, is solved. If an eigenvalue with
a positive imaginary part is found, a system is pronounced
unstable, otherwise it is stable.

While this approach provides important insights into sta-
bility properties of fluid flows, it is fundamentally restricted
to an analysis of disturbances that assume a form of expo-
nentially growing or decaying complex exponentials (normal
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modes). Thus, it represents a weaker condition for stability
in comparison to, for example, a test, in which all possible
solution forms, and not just the normal modes, could be
analyzed. For example, a system, which is (linearly) stable
with respect to the normal mode perturbations, can still be
(linearly) unstable with respect to some other functional
form of the perturbations. In applications, a laminar-to-
turbulent transition typically occurs earlier (with respect
to, for example, an increasing Reynolds number) than at
a threshold predicted by an eigenvalue analysis within the
LST theory [2], [5], [6]. While it can be attributed to a
variety of reasons, including boundary imperfections [7], [8],
transient amplifications [9], [10], non-linear effects [2], [11],
a possibility of a linear instability with respect to a wider
range of disturbances than previously analyzed should not
be eliminated.

The current paper develops a new stability analysis frame-
work for fluid flows, where stability with respect to an
arbitrary time-varying disturbance in a continuous time
domain is investigated. While continuous form of control
through backstepping has been previously applied to stabilize
linearly unstable perturbations in a Poiseuille flow at certain
conditions [12], [13], a stability analysis of such flows in the
sense of Lyapunov with respect to a wide range of parameters
is lacking. To this end, we introduce a novel approach to
analyze stability of the linearized Navier-Stokes equations
that leverages a recently developed partial-integral equation
(PIE) framework [14] that allows to apply a Lyapunov-based
LPI stability test to a continuous form of equations (both in
space, here represented by a wall-normal direction, and in
time), so that neither a mode decomposition nor a spatial
discretization are required to analyze stability. We show
how to reformulate the corresponding two-dimensional LNS
equation, Fourier-transformed in the streamwise direction, in
a PIE format, extend the stability proof from [14] to this new
(modified) form of the PIE equation, and demonstrate that
the corresponding LPI stability condition yields a stronger
stability test as compared to the conventional eigenvalue
stability analysis.

II. PROBLEM FORMULATION

We consider a two-dimensional (2D) fluid flow between
two parallel plates governed by the incompressible Navier-
Stokes equations

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u,

∇ · u = 0,
(1)
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where u = (u, v) is the velocity in x (streamwise) and
y (wall-normal) directions, respectively, p is the pressure,
and Re = Uc δ/ν is the Reynolds number based on the
characteristic velocity Uc and the channel half-width δ. With
this definition, the velocities in (1) are normalized with Uc,
and the spatial variables are normalized with δ. Boundary
conditions are the no-slip at the plate walls u|y=±1 = 0.
We decompose instantaneous variables into a sum of a
corresponding laminar solution and a perturbation as u =
U+u′, p = P + p′, with the parallel mean flow assumption
U = {U(y), 0}, and linearize Eqs. (1) around the laminar
solution to yield

∂u′

∂t
+ U · ∇u′ + u′ · ∇U = −∇p′ + 1

Re
∇2u′,

∇ · u′ = 0.
(2)

Taking a curl of the momentum equation and using the
continuity equation allows one to eliminate the pressure from
the system (2) and arrive at a single linear PDE to fully
describe the 2D LNS operator[(

∂

∂ t
+ U

∂

∂x

)
∇2 − d2U

d y2
∂

∂x
− 1

Re
∇4

]
ψ = 0, (3)

where the stream function ψ(x, y, t) has been introduced,
such that u′ = ∂ ψ/∂ y, v′ = −∂ ψ/∂ x. Owing to the
problem periodicity in streamwise direction, we perform a
Fourier transform of (3) in x yielding, for a streamwise wave-
number k, a one-dimensional PDE,[(

∂

∂ t
+ i k U

)
∆̂2 − i k d

2U

d y2
− 1

Re
∆̂4)

]
ψ̂ = 0, (4)

where ψ̂(y, t) is the corresponding Fourier coefficient of the
stream function for the wave-number k, i is an imaginary
unit, and the one-dimensional differential operator ∆̂2 =
∂2/∂ y2 − k2 with ∆̂4 = (∆̂2)2. Boundary conditions on
ψ̂ can be derived from the boundary conditions on u as

B(ψ̂) : ψ̂|±1 = ψ̂y|±1 = 0. (5)

III. DEFINITION OF STABILITY

We introduce the following definition of an exponential
stability in the sense of Lyapunov for the solutions of Eq. (4):

Definition 1: The PDE (4) with boundary conditions (5) is
exponentially stable in L2 in the sense of Lyapunov if there
exist constants δ, K, γ > 0 such that for any ψ̂(y, 0) ∈
B(ψ̂): ‖ψ̂(y, 0)‖L2

< δ, a solution ψ̂(y, t) of the PDE (4)
with (5) satisfies

‖ψ̂(y, t)‖L2
≤ K‖ψ̂(y, 0)‖L2

e−γ t. (6)
We also introduce a definition of a “normal-mode” (or

“eigenvalue”) - stability of the PDE (4):
Definition 2: The PDE (4) with boundary conditions (5)

is said to be an “eigenvalue-stable” if there exist constants
δ, K, γ > 0 such that for any solution of (4) of the form
ψ̂(y, t) = ψ̃(y) exp(−i ω t), with f(±1) = fy(±1) = 0,
ω ∈ C, and ‖ψ̃(y)‖L2

< δ, we have

‖ψ̂(y, t)‖L2 ≤ K‖ψ̃(y)‖L2e
−γ t. (7)

The following theorem proves that the eigenvalue stability
is a weaker condition than a Lyapunov-based exponential
stability.

Theorem 1: If the PDE (4) is stable according to the
Definition 1, it is also stable according to the Definition 2.
Conversely, if (4) is unstable according to the Definition 2,
it is also unstable according to the Definition 1.

Proof: Suppose the PDE (4) is stable according to the
Definition 1. Consider a solution to this PDE in the form
ψ̂(y, t) = ψ̃(y) exp(−i ω t). According to the Definition 1,
the Equation (6) is valid, therefore (7) is valid, and the PDE
is stable according to the Definition 2.

Now suppose (4) is unstable according to the Definition 2.
Then for some solution ψ̂(y, t) = ψ̃(y) exp(−i ω t) of this
PDE, the condition (7) is violated. For the same solution,
the condition (6) is also violated, and the system is unstable
according to the Definition 1.

Theorem 2 shows that the eigenvalue stability is weaker
(necessary but not sufficient) condition for the exponential
stability of the system in the Lyapunov sense. In fact, a region
of stability in the sense of Lyapunov is contained within the
region of the eigenvalue stability, which is summarized in
the following corollary.

Corollary 1: Denote SLyap(k,Re) as the region of Lya-
punov exponential stability (with respect to the PDE pa-
rameters k and Re) according to the Definition 1, and
Seig(k,Re) as the region of eigenvalue stability according
to the Definition 2. Then we have that

SLyap(k,Re) ⊆ Seig(k,Re). (8)

IV. STABILITY ANALYSIS

A. EIGENVALUE STABILITY

The eigenvalue stability analysis proceeds with sub-
stituting the assumed form of the solution ψ̂(y, t) =
ψ̃(y) exp(−i ω t) into Eq. (4), upon which the equation
transforms into a well-known Orr-Sommerfeld equation [3],
[4][
k U

(
d2

d y2
− k2

)
− kd

2U

d y2
+

i

Re

(
d2

d y2
− k2

)2
]
ψ̃ =

ω

(
d2

d y2
− k2

)
ψ̃. (9)

The PDE eigenvalue problem (9), with ω being the eigen-
value, is then solved numerically, typically via discretizing
the wall-normal coordinate y with Chebyshev methods [5].
The resulting generalized matrix eigenvalue problem is then
solved with iterative approaches. The eigenvalue stability
methods are well established, and their detailed description
can be found elsewhere [1], [2], [3], [4].

B. LYAPUNOV STABILITY

This section presents a novel approach developed in this
paper to analyze stability of the linearized Navier-Stokes
equation without invoking a normal-mode assumption on
the solution form, by keeping a continuous formulation of
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the PDE (4) both in time and in a vertical coordinate y.
Such an analysis is enabled through a transformation of
the original PDE into an equivalent partial integral equation
(PIE) representation and analyzing the stability of the PIE
with the techniques based on linear partial inequality (LPI)
approaches developed in previous papers [14]–[16].

1) REPRESENTATION OF A PDE AS A PARTIAL-
INTEGRAL EQUATION: We now consider a representation
of Eq. (4) in a partial-integral equation (PIE) form. PIE
representation allows one to transform the boundary condi-
tions into the equation dynamics, which, in turn, makes the
formulation amenable to a stability analysis in a continuous
framework [14]. For that, we first rewrite Eq. (4) in its state-
space form

∆̂2 ˙̂
ψ = ik

∂2U

∂y2
ψ̂ − ik U∆̂2ψ̂ +

1

Re
∆̂4ψ̂, (10)

where we use the notation ˙̂
ψ = ∂ ψ̂/∂ t for compactness.

Since Eq. (10) is in a complex form, while the PIE
framework, including the corresponding open-source soft-
ware PIETOOLS for manipulating PIEs [16], was previously
developed for real-valued functions, we let ψ̂ = ψ̂R + i ψ̂I ,
and decompose Eq. (10) into a coupled system of equations
for the real and imaginary components as

[
− 1
k2 0

0 − 1
k2

] [ ˙̂
ψRyy
˙̂
ψI yy

]
+

[
˙̂
ψR
˙̂
ψI

]
=[

− 1
k2Re 0

0 − 1
k2Re

][
ψ̂Ryyyy

ψ̂I yyyy

]
+

[
2
Re −Uk
U
k

2
Re

][
ψ̂Ryy

ψ̂I yy

]
+[

− k2

Re
1
kUyy + k U

− 1
kUyy − k U − k2

Re

] [
ψ̂R
ψ̂I

]
,

(11)

where [ ]yy and [ ]yyyy denote 2nd and 4th partial derivatives
with respect to y. We define the set of boundary constraints
as

B(ψ̂R, ψ̂I) : ψ̂R|±1 = ψ̂Ry|±1 = ψ̂I |±1 = ψ̂I y|±1 = 0
(12)

A solution to Eq. (11) satisfying the boundary constraints
(12), ψ̂(y, t) = [ψ̂R, ψ̂I ]

T ∈ H4[−1, 1] ∩ B(ψ̂R, ψ̂I), where
H4[−1, 1] is the Sobolev space of functions with square-
integrable derivatives up to 4th order, will be denoted as a
PDE state.

We seek a representation of the above system (11), with
the boundary conditions (12), as a PIE. To formulate an
equation as a PIE, we first need to define a fundamental (PIE)
state z(y, t), typically expressed as a vector of the highest
spatial derivatives of the states entering the PDE, z(y, t) =
[zR, zI ]

T = [ψ̂Ryyyy, ψ̂I yyyy]T in the current case. Note
that, by definition, the fundamental state z(y, t) ∈ L2[−1, 1],
where L2[−1, 1] is a space of square-integrable functions on
the domain y ∈ [−1, 1]. The next step is to define a map
between the PDE state ψ̂(y, t) = [ψ̂R, ψ̂I ]

T (satisfying the

boundary conditions) and the fundamental state z(y, t) as

ψ̂(y, t) = T z(y, t). (13)

This can be accomplished by multiple application of a fun-
damental theorem of calculus while taking into account the
corresponding boundary conditions [14]. It can be shown that
the operator T resulting from such a map can be written in
a form of a partial-integral (PI) operator as T = T{R0,R1,R2}
defined as follows.

Definition 3: A partial integral operator P = P{R0,R1,R2}
is defined as a three-component operator acting on a funda-
mental state as

Pz(y, t) = P{R0,R1,R2}z(y, t) = R0(y)z(y, t)+∫ y

−1
R1(y, s)z(s, t) d s+

∫ 1

y

R2(y, s)z(s, t) d s,
(14)

where {R0(y), R1(y, s), R2(y, s)} are the matrices with the
entries that are polynomials in the variables y and s [14].
Considering the left-hand side of Eq. (11), we also need
to define an auxiliary map between the second-derivative
state φ̂yy(y, t) = [φ̂Ryy, φ̂I yy]T and the fundamental state
as φ̂yy(y, t) = T2 z(y, t). In a general case, the maps T , T2
are domain and boundary-conditions specific [14], [16]. For
the current case of y ∈ [−1, 1] with homogeneous Dirichlet
and Neumann boundary conditions on ψ̂R and ψ̂I , Eq. (12),
we find that

T{R1} =
[
− 1

24
y3s3 +

1

8
(y3s− y2s2 + ys3) +

1

12
(y3 − s3)

+
1

4
(ys2 − y2s)− 1

8
(y2 − y s+ s2) +

1

24

]
I,

T{R2} =
[
− 1

24
y3s3 − 1

8
(y3s− y2s2 + ys3) +

1

12
(y3 − s3)

+
1

4
(ys2 − y2s)− 1

8
(y2 − ys+ s2) +

1

24

]
I,

(15)

T2{R1} =
[
− 1

4
ys3 +

3

4
ys− 1

4
s2 +

1

2
y − 1

2
s− 1

4

]
I,

T2{R2} =
[
− 1

4
ys3 +

3

4
ys− 1

4
s2 − 1

2
y +

1

2
s− 1

4

]
I,

(16)

T{R0} = T2 {R0} = 0, with I being a 2 × 2 identity matrix.
Substituting the corresponding mappings with the operators
T , T2 defined by Eqs. (15), (16) into Eq. (11), we obtain its
equivalent PIE representation as

M ż = A z, (17)

where the solution vector z(y, t) = [zR, zI ]
T ∈ L2[−1, 1],

and thus is free of boundary conditions. The operators M,
A in Eq. (17) are given by

M = − 1

k2
T2 + T , (18)

A =

[
− 1

k2Re
+

2

Re
T2 −

k2

Re
T
] [

1 0

0 1

]
+[

U

k
T2 −

1

k
UyyT − k UT

] [
0 −1

1 0

]
.

(19)
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It can be seen that M is a PI operator by construction,
while A is also a PI operator, as long as the mean velocity
profile U(y) is polynomial in y. In the current analysis, U(y)
is given by U(y) = 1−y2, corresponding to a Poiseuille flow
between two parallel plates, normalized with the centerline
velocity Uc.

2) STABILITY ANALYSIS USING LINEAR PARTIAL IN-
EQUALITIES: Similarly to the definition of the exponential
stability of the PDE system (4) stated in the Definition 1, we
can define the exponential stability of the PIE system (17).

Definition 4: The PIE system (17) is exponentially stable
in L2 if there exist constants δ, K, γ > 0 such that for any
‖z(y, 0)‖L2

< δ, a solution z(y, t) of the PIE satisfies

‖Mz(y, t)‖L2 ≤ K‖Mz(y, 0)‖L2e
−γ t. (20)

Exponential stability of PIE is tested by defining and veri-
fying a feasibility of a linear partial inequality (LPI) encap-
sulated in the following theorem.

Theorem 2: Suppose there exist δ, β, σ > 0, and a self-
adjoint coercive PI operator P{R0,R1,R2} such that P = P∗,
〈z,Pz〉L2

≥ β‖z‖2L2
, and

A∗PM+M∗PA < −σM∗M, (21)

where M, A are as defined in Eqs. (18), (19). Then any
solution of the PIE system (17) with ‖z(y, 0)‖L2

< δ satisfies

‖Mz(y, t)‖L2
≤
(
ξM
β

)1/2

‖Mz(y, 0)‖L2
e−σ/(2ξM )t,

(22)
where ξM = ‖M‖L(L2).

Proof: Suppose z(y, t) solves the PIE system (17)
for some z(y, 0) satisfying ‖z(y, 0)‖L2

< δ. Consider the
candidate Lyuapunov function defined as

V (z) = 〈Mz,PM z〉L2
≥ β‖M z‖2L2

. (23)

The derivative of V along the solution trajectory z(y, t) is

V̇ (z) = 〈Mż,PMz〉L2
+ 〈Mz,PM ż〉L2

=

〈Az,PM z〉L2
+ 〈Mz,PA z〉L2

=

〈z, (A∗PM+M∗PA) z〉L2
≤ −σ‖Mz‖2L2

.

(24)

Applying Gronwall-Bellman lemma to (23), (24), and using
ξM = ‖M‖L(L2), proves the theorem.
We now prove the main result of the current paper, namely
the equivalence of the PIE stability condition tested by
Theorem 2, and the stability of the original 2D LNS PDE
system.

Theorem 3: Suppose there exist κ, β, σ > 0, and a self-
adjoint coercive PI operator P{R0,R1,R2} such that P = P∗,
〈z,Pz〉L2

≥ β‖z‖2L2
, and

A∗PM+M∗PA < −σM∗M, (25)

where M, A are as defined in Eqs. (18), (19). Then there
exists a constant C > 0, such that any solution of the PDE
system (4) with boundary conditions (5) and ‖ψ̂(y, 0)‖L2

<
κ satisfies

‖ψ̂(y, t)‖L2 ≤ C‖ψ̂(y, 0)‖L2e
−σ/(2ξ)t. (26)

Proof: Denote ξM = ‖M‖L(L2), ξT = ‖T ‖L(L2),
ξT2

= ‖T2‖L(L2). From Theorem (2), we have that, as long
as ‖z(y, 0)‖L2 < δ,

‖Mz(y, t)‖L2 ≤
(
ξM
β

)1/2

‖Mz(y, 0)‖L2
e−σ/(2ξ)t. (27)

Considering that ψ̂(y, t) = T z(y, t), and T =M + T2/k2,
we have

‖ψ̂(y, t)‖L2
≤ ‖Mz(y, t)‖L2

+
1

k2
‖T2 z(y, t)‖L2

≤ ‖Mz(y, t)‖L2
+
ξT2

k2
‖z(y, t)‖L2

.
(28)

Furthermore, we can write

‖Mz(y, t)‖L2
≤ ξM‖z(y, t)‖L2

= CM‖z(y, t)‖L2
, (29)

where CM > 0 is some constant such that CM ≤ ξM , from
where we have that

‖z(y, t)‖L2
=
‖Mz(y, t)‖L2

CM
. (30)

Continuing with Eq. (28), we have

‖ψ̂(y, t)‖L2
≤ ‖Mz(y, t)‖L2

(
1 +

1

k2
ξT2

CM

)
≤
(
ξM
β

)1/2(
1 +

1

k2
ξT2

CM

)
‖Mz(y, 0)‖L2

e−σ/(2ξ)t.

(31)

Considering an estimate similar to Eq. (30) for the T
operator, we have that

‖z(y, t)‖L2 =
‖T z(y, t)‖L2

CT
, (32)

with 0 < CT ≤ ξT . Applying Eq. (32) to ψ̂(y, 0) = T z(y, 0)
and substituting into Eq. (31), we have that, as long as
‖ψ̂(y, 0)‖L2

< κ, with κ = CT δ,

‖ψ̂(y, t)‖L2 ≤(
ξM
β

)1/2(
1 +

1

k2
ξT2

CM

)(
ξM
CT

)
‖ψ̂(y, 0)‖L2

e−σ/(2ξ)t,

(33)

which proves the theorem.

V. RESULTS

A. VERIFICATION OF THE PIE SYSTEM

We verify our representation of the 2D LNS equation
as a PIE through the Method of Manufactured Solutions
(MMS). With MMS, we construct an analytical solution to
the PDE (11), with the boundary conditions (12), by first
specifying the form of the solution as

ψ̂R(y, t) = f(y)eαt, ψ̂I(y, t) = g(y)eαt, (34)
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and substituting this form of the solution into Eq. (11) to
yield [

− 1
k2 0

0 − 1
k2

] [ ˙̂
ψRyy
˙̂
ψI yy

]
+

[
˙̂
ψR
˙̂
ψI

]
=[

− 1
k2Re 0

0 − 1
k2Re

][
ψ̂Ryyyy

ψ̂I yyyy

]
+

[
2
Re −Uk
U
k

2
Re

][
ψ̂Ryy

ψ̂I yy

]
+[

− k2

Re
1
kUyy + k U

− 1
kUyy − k U − k2

Re

] [
ψ̂R
ψ̂I

]
+

[
QR(y, t)

QI(y, t)

]
,

(35)

with the forcing terms QR(y, t), QI(y, t) expressed as

QR(y, t) =[
1

k2Re
fyyyy − (

α

k2
+

2

Re
)fyy + (α+

k2

Re
)f

− (
Uyy
k

+ kU)g +
U

k
gyy]eαt,

(36)

QI(y, t) =[
1

k2Re
gyyyy − (

α

k2
+

2

Re
)gyy + (α+

k2

Re
)g

+ (
Uyy
k

+ kU)f − U

k
fyy]eαt.

(37)

The functions f(y), g(y) in (34) are chosen as the poly-
nomials satisfying the boundary conditions (12) as

f(y) = (−1

2
y5 − 2y4 + y3 + 4y2 − 1

2
y − 2),

g(y) = (−4y5 − 3

2
y4 + 8y3 + 3y2 − 4y − 3

2
).

(38)

The PDE equation (35) with the boundary conditions (12) is
transformed into a PIE as

M ż = A z +Q(y, t), (39)

where Q(y, t) = [QR(y, t), QI(y, t)]
T , with M, A,

QR(y, t) and QI(y, t) given by Eqs. (18), (19), (36) and
(37), respectively. The analytical solution to the PIE equation
constructed with MMS is given by

zR(y, t) = fyyyye
αt, zI(y, t) = gyyyye

αt. (40)

PIE system (39) with the initial conditions zR(y, 0) =
fyyyy, zI(y, 0) = gyyyy was numerically solved by a recently
developed computational methodology for solving partial-
integral equation systems implemented in the open-source
numerical solver PIESIM [17], which is a part of the PIE
analysis software PIETOOLS [16]. In PIESIM, the PIE state
variables z(y, t), together with the forcing functions Q(y, t),
are decomposed into a series of Chebyshev polynomials
z(y, t) =

∑N
i=1 ak(t)Tk(y), Q(y, t) =

∑N
i=1 qk(t)Tk(y)

with ak(t), qk(t) being the vector-valued Chebyshev coef-
ficients, and Tk(y) are the Chebyshev polynomials of the
first kind [18]. The actions of the PI operators M, A on
the Chebyshev polynomials Tk(y) is evaluated analytically
using recursive relations for multiplication and integration
of Chebyshev polynomials [18]. This allows one to obtain a
system of the ODE equations for the Chebyshev coefficients,
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Fig. 1: Verification of the PIE system for 2D LNS with
PIESIM [17].

which can be integrated in time analytically or using tradi-
tional time-stepping techniques [17]. Once the PIE solution
z(y, t) is obtained, the PDE solution ψ̂(y, t) is reconstructed
via a PIE-to-PDE map ψ̂(y, t) = T z(y, t), discretized in
Chebyshev space using the same techniques as the ones
employed for the PIE system.

Verification of the 2D LNS equation solution in a PIE form
using the second-order backward differentiation scheme for
time advancement with the time step ∆ t = 10−3, N = 32,
U(y) = (1− y2) and (k,Re, α) = (1, 180, 0.5) is presented
in Fig. 1 at t = 5.

B. STABILITY ANALYSIS USING LPIS

We perform stability analysis of the two-dimensional
linearized Navier-Stokes equations system in its continuous
spatio-temporal formulation by testing feasibility of the
LPI condition stated in Theorem 2. The feasibility test is
accomplished via an open-source MATLAB-based software
PIETOOLS developed for analysis and manipulation of the
PIE equations [16]. In PIETOOLS, the feasibility problem is
formulated as a convex optimization problem, which enforces
a positivity of a PI operator parameterized by polynomial
functions [14], [16]. Once formulated, a convex optimization
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problem is solved via a semi-definite programming solver
SeDuMi of the package YALMIP [19].

Figure 3 documents the results of the stability analysis
of the 2D LNS equation for a plane Poiseuille flow in the
sense of Lyapunov as compared to the eigenvalue-based
method [2], [5]. The neutral stability curve (that is the curve
separating a region of stability from the region of instability)
is plotted for each method. The results are consistent with
the Corollary 1 which indicates that the stability region of
the system in the sense of Lyapunov is contained within the
region identified by the eigenvalue test.
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Fig. 2: Stability of 2D LNS equation via LPIs (solid line)
compared to an eigenvalue stability for a plane Poiseuille
flow (dashed line). Unstable regions are inside the curves.
Plot is in agreement with Corollary 1: SLyap(k,Re) ⊆
Seig(k,Re).

VI. CONCLUSIONS
The current paper presents a methodology for a linear

stability analysis of the fluid flow between two parallel plates
capable of identifying the region of exponential stability
in the sense of Lyapunov based on a continuous form of
the governing equations. Navier-Stokes equations in a two-
dimensional formulation are first linearized around the mean
velocity profile and then Fourier-transformed in the stream-
wise direction to arrive at, for each streamwise wave-number,
a linear fourth-order PDE equation in time and a wall-normal
coordinate. As opposed to a conventional eigenvalue-based
analysis that is restricted to certain forms of the solution,
stability of the 2D LNS PDE equation is performed in a
continuous setting, employing the results from the optimal
control theory. For that, the PDE together with the boundary
conditions is first transformed into an equivalent partial
integral equation (PIE) representation. Within the PIE, the
boundary conditions are implicitly embedded into the form
of the partial integral operator, thus making the PIE solution
reside in an L2 space, free of boundary conditions. The PIE
form makes it possible to apply a stability test in an infinite-
dimensional setting by testing a feasibility of a linear partial
inequality. We have proved that the PIE stability implies the
stability of the underlying PDE system, and vice versa. The

presented stability analysis is compared with the eigenvalue-
based method for a plane Poiseuille flow. As expected, it
is shown that the region of exponential stability of the
system as identified by the LPI test is narrower than the one
predicted by approximation methods based on an eigenvalue
analysis. In fact, the eigenvalue test provides a necessary
condition, why the LPI test provides a sufficient condition for
stability. Further work will include a synthesis of the infinite-
dimensional stabilizing controllers for the given problem,
enabled by a reformulation of the 2D LNS PDE problem
as a partial integral equation. In fact, a stabilizing controller
synthesis can be posed as an LPI feasibility problem [15],
and the developed PDE to PIE transformation for the parallel
shear flow equations will serve as a departure point to pursue
these efforts in the near future.
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