
Enforcing structure in data-driven reduced modeling through nested
Operator Inference

Nicole Aretz and Karen Willcox

Abstract— We introduce the data-driven nested Operator
Inference method for learning projection-based reduced-order
models (ROMs) from snapshot data of high-dimensional dy-
namical systems. These ROMs achieve significant computational
speed-up by exploiting the intrinsic low-dimensionality of the
full-order solution trajectory through projection onto a low-
dimensional subspace. Our nested Operator Inference approach
builds upon a nested structure of the projection-based reduced-
order matrices and a hierarchy within the subspace’s basis
vectors to partition the Operator Inference learning problem
into multiple regression problems defined on subspaces. Each
regression problem is provably better conditioned than when
all reduced-order operators are learned together, reducing the
need for additional regularization. Since only O(1) unknowns
are learned at a time, nested Operator Inference is particularly
applicable to higher-order polynomial systems. We demonstrate
our method for the shallow ice equations with eighth order
polynomial operators.

I. INTRODUCTION

We present a new, nested operator inference (OpInf) ap-
proach for learning reduced-order models (ROMs) for high-
dimensional dynamical systems from snapshot data. ROMs
are essential for enabling real-time predictions and uncer-
tainty quantification in computationally expensive physical
simulations. Projection-based ROMs with low-dimensional
subspaces are well studied, with extensive analysis of stabil-
ity properties, error bounds, and generalizability outside the
training regime, and remain physically interpretable through
their connection to the governing equations [1], [2], [3],
[4] — a major advantage compared to black-box machine
learning approaches. For applications with commercial or
legacy code where a projection-based ROM cannot be con-
structed without intrusive access to the full-order operators,
the OpInf method [5] infers the ROM from snapshot data of
the full-order model (FOM) and the structure of the physical
governing equations. The data-driven OpInf approach is
physics-based, analyzed under common conditions [5], [6],
[7], [8], [9], [10], [11], and has been applied successfully in
various applications [12], [13], [14], [15], [16], [17].

While OpInf has been extended for various research di-
rections including non-polynomial FOMs [18], [19], Hamil-
tonian systems [20], [21], [22], partial differential equations
(PDEs) [23], learning on manifolds [24], [25], and parametric

Nicole Aretz and Karen Willcox are with the Oden Institute for
Computational Engineering & Sciences, University of Texas at Austin,
Austin, Texas, USA, nicole.aretz@austin.utexas.edu,
kwillcox@oden.utexas.edu

The authors would like to thank John Jakeman for providing the model
used in the numerical experiments. This work was supported in parts by the
Department of Energy grants DE-SC0021239 and DE-SC002317, and the
Air Force Office of Scientific Research grant FA9550-21-1-0084.

[26] or sparse [27] operators, a major challenge throughout
is guaranteeing the stability of the OpInf learning problem.
Regularization is one approach to address this challenge, but
can come to dominate the learned ROM in low-data regimes,
particularly for high-order polynomial FOMs. Our work
addresses this challenge by imposing additional structure on
the OpInf learning problem. We recognize that projection-
based ROMs are nested, and we exploit the hierarchy of
proper orthogonal decomposition (POD) basis vectors to
partition the OpInf regression problem into multiple smaller
problems, each of which is provably better conditioned. This
approach is particularly applicable to nonlinear systems with
high-order polynomial terms, since it shifts the number of
entries learned at a time from polynomial scaling in the
reduced dimension to O(1). This is an improvement because
it allows increasing the reduced dimension to improve the
accuracy of the ROM without diminishing the numerical
stability of the learning problem.

Section II introduces the setting for the OpInf learning
problem. In Section III we explain the reasoning behind
the nested OpInf method, outlining the hierarchy in the
POD basis, the nested structure of projection-based reduced-
order operators, and the stability improvement of learning in
subspaces. Section IV presents the nested OpInf algorithm,
and Section V demonstrates the approach for the shallow ice
equations—a nonlinear system with eighth-order polynomial
terms. Section VI concludes the paper.

Notation: The most important variable names are (in order
of appearance) the state x, the polynomial operators Aℓ, the
reduced space V and its dimension r, the data matrix D, and
the right-hand-side matrix R. Reduced-order variables (e.g.,
the reduced-order state x̂, and the reduced-order polynomial
operators Âℓ) are distinguished from full-order variables
by the hat notation. Superscripts are reserved for matrix
and vector transposes (indicated by ⊤), and for exponential
operations. Unless stated otherwise, lower-case subscripts are
enumerations; we use the index ℓ to enumerate polynomial
orders, k for time steps, and i, j for the position of entries
within a matrix or vector. In particular, xk denotes the k-
th state snapshot. For the reduced space V, an indexed set
I ⊂ {1, . . . , r} denotes the restriction to those columns with
numbers in I. For example, V{1,3} contains the first and
third column of V. For all other matrices and vectors, the
subscript I indicates a definition that employs the restricted
basis VI in place of V. For example, if Â1 = V⊤A1V,
then Â1,I = V⊤

I A1VI .

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

U.S. Government work not protected by
U.S. copyright

8046

II. LEARNING ROMS VIA OPERATOR INFERENCE

Our goal is to learn a projection-based ROM with Galerkin
structure from snapshot data of a FOM, without having
access to the individual full-order operators. We consider a
FOM of the form

ẋ(t) = f(x(t)) :=
∑
ℓ∈L

Aℓ(x(t)⊗ · · · ⊗ x(t)︸ ︷︷ ︸
ℓ times

), (1)

where L = {ℓmin ≤ · · · ≤ ℓmax} ⊂ N such that Aℓ ∈
Rn×nℓ

are operators multiplying polynomial terms1 of order
ℓ ≥ ℓmin ≥ 1. For example, A1 denotes the n × n matrix
corresponding to a linear term on the right-hand side of (1),
A2 denotes the n × n2 matricized tensor corresponding to
a quadratic term, and so on up to order ℓmax. The FOM (1)
describes the time evolution of a state vector x(t) ∈ Rn from
initial condition x(0) = x0. We target high-dimensional
systems (n > 106), such as those arising from discretization
of PDEs, whose state solution x(t) ∈ Rn is returned as part
of an expensive FOM solve.

Given ktr training snapshots2 xk = x(tk), k =
1, . . . , ktr, obtained by solving the FOM for time steps
t1, . . . , tktr

, we construct an r-dimensional reduced space
span(v1, . . . ,vr) via POD with orthonormal basis functions
v⊤
i vj = δi,j where δi,j is the Kronecker delta. Letting

V := (v1, . . . ,vr) ∈ Rn×r denote the basis matrix, with
column j containing the jth basis vector vj , the Galerkin
projection of (1) onto the subspace spanned by V is

˙̂x(t) =
∑
ℓ∈L

Âℓx̂(t)
ℓ, (2)

to be solved for a reduced-order state x̂(t) ∈ Rr with initial
condition x̂(0) = V⊤x0 ∈ Rr. Here, we adopt the notation
from [29] where x̂ℓ ∈ Rr(ℓ) , r(ℓ) :=

(
r+ℓ−1

ℓ

)
, is an ℓ-fold

repeated Kronecker product of any single vector x̂ ∈ Rr with
all redundant entries removed, and Âℓ ∈ Rr×r(ℓ) is defined
by the form of the projected polynomial terms, such that

Âℓx̂
ℓ = V⊤Aℓ(Vx̂⊗ · · · ⊗Vx̂︸ ︷︷ ︸

ℓ−times

) ∀ x̂ ∈ Rr. (3)

The OpInf approach infers the reduced-order operators Âℓ,

directly from the snapshot data, without requiring access to
the FOM operators Aℓ (see [5]). We define the matrix of
operators to be learned as

Ô :=
(
Âℓmin , . . . , Âℓmax

)
∈ Rr×rtot , (4)

where rtot =
∑

ℓ∈L r(ℓ) is the total number of columns over
all ROM operators (noting that rtot will scale with order
rℓmax). The OpInf learning problem is obtained from (2) by
replacing x̂(tk) with the projection pk := V⊤xk ∈ Rr of the
snapshot xk, approximating the time derivative of snapshot

1For FOMs with nonpolynomial terms this structure might still be
achieved by lifting the variables in a preprocessing step, c.f., [23]. Input
terms can be considered by including additional summands to (1), see [5].

2A setting where only partial state observations are available could be
treated in combination with the learning approach in [28]; this idea will be
explored in future work.

r(2) r(3) r(4) r(5) r(6) r(7) r(8) r(9)

r = 1 1 1 1 1 1 1 1 1
r = 2 3 4 5 6 7 8 9 10
r = 3 6 10 15 21 28 36 45 55
r = 4 10 20 35 56 84 120 165 220
r = 5 15 35 70 126 210 330 495 715
r = 6 21 56 126 252 462 792 1287 2002
r = 7 28 84 210 462 924 1716 3003 5005
r = 8 36 120 330 792 1716 3432 6435 11440

TABLE I: Number of columns r(ℓ) :=
(
r+ℓ−1

ℓ

)
for a reduced-

order operator Âℓ ∈ Rr×r(ℓ) with polynomial order ℓ acting
in a reduced space of dimension r.

xk as ˙̂x(tk) ≈ V⊤ẋk, and minimizing the ensuing misfit
over all snapshots as a least squares problem:

min
Ô
∥DÔ⊤ −R∥2F . (5)

Here, the kth row of the data matrix D ∈ Rktr×rtot is defined
as

Dk,: :=
(
(pℓmin

k)⊤, . . . , (pℓmax

k)⊤
)

=
(
((V⊤xk)

ℓmin)⊤, . . . , ((V⊤xk)
ℓmax)⊤

)
,

(6)

and R ∈ Rktr×r is the matrix of approximated time deriva-
tives

R := (ẋ1, . . . , ẋktr
)⊤V ∈ Rktr×r. (7)

If D has full column rank, then (5) has a unique solution
which, moreover, converges to the intrusive ROM operators
in (3) for ∆t → 0 and ktr → ∞ (c.f., [5]). In practice,
however, full column rank can often not be achieved as
ktr ≥ rtot snapshots are required—a number that can easily
become prohibitively large. In many cases, linear depen-
dencies among snapshots cause more than rtot snapshots
to be required for achieving full column rank of D. To
illustrate the polynomial scaling in r, Table I lists the matrix
dimensions r(ℓ) for different values of r and ℓ. One major
advantage of projection-based reduced modeling is that the
ROM (2) preserves the polynomial structure of the FOM (1),
which in turn embeds structure arising from the underlying
governing physical equations; however, a disadvantage is that
the dimensions of the operators Âℓ grow rapidly, even for
moderate r. This in turn poses a challenge in achieving a
well-posed OpInf formulation.

While targeted regularization stabilizes the learning prob-
lem (5) (c.f., [17], [11]), its effects can introduce bias into
the OpInf solution. This is particularly true for the inferred
operators corresponding to higher order polynomial terms.
The methodology introduced in this paper exploits additional
structure in the ROM form to circumvent issues caused by
the polynomial scaling of the ROM operator dimensions.
This is an enabler for achieving accurate, stable OpInf
solutions for systems with high-order polynomial terms,
extending our ability to learn projection-based ROMs for a
larger class of nonlinear systems.

8047

III. NESTED OPERATOR INFERENCE

In our nested OpInf approach, we restructure the OpInf
learning problem (5) such that the dynamics governing the
most important POD modes are learned first and reliably
through targeted snapshot acquisition that exploits ROM
structure, while the remaining entries of Ô are learned con-
servatively within a regularized problem using the approx-
imated time derivatives for the original snapshot data. The
approach is motivated by the three main observations (O1),
(O2), (O3) described below. The nested OpInf algorithm is
described in Section IV.

(O1) Hierarchical basis structure: The POD basis matrix
V is optimal in the sense that its snapshot projection error

ktr∑
k=1

∥xk −VV⊤xk∥22 =

ktr∑
j=r+1

σ2
j (8)

is minimal amongst all linear subspaces of dimension r.
Here, σj denote the singular values of the snapshot matrix
(x1, . . . ,xktr

) ∈ Rn×ktr , in which column k contains snap-
shot xk. Projection-based model reduction is most effective
when the singular values decay exponentially fast, meaning
that r can be chosen to be small leading to a computationally
efficient ROM. This fast singular value decay also implies
that, for recovering a full-order state through

x(t) ≈ Vx̂(t) =

r∑
j=1

(x̂(t))jvj (9)

where (x̂(t))j denotes the j-th component of the reduced
state x̂ at time t, it is most important for the ROM to
capture the dynamics governing those first few entries of
x̂(t) associated to the dominant POD modes.

In our nested OpInf approach we respect the hierarchical
structure of the basis by spending any computational budget
available on reliably and stably learning those entries in Ô
that evolve the first POD modes, starting with the first POD
mode, v1. To specifically target these entries of Ô, we iden-
tify learning problems within subspaces of span(v1, . . . ,vr).
We write these problems using the following notation: Given
a subset of indices I = {i1 ≤ · · · ≤ id} ⊂ {1, . . . , r},
where we select d < r indices, we define the basis matrix
VI := (vi1 , . . . ,vid) ∈ Rn×d, which has as columns the
basis vectors vij with ij ∈ I. Using trial space VI and test
space V in a Petrov-Galerkin projection would result in the
operators Âℓ,I ∈ Rr×d(ℓ)

such that

Âℓ,I x̂
ℓ
I = V⊤Aℓ(VI x̂I ⊗ · · · ⊗VI x̂I︸ ︷︷ ︸

ℓ−times

) ∀ x̂I ∈ Rd,

noting that each Âℓ,I is rectangular (with r rows and
d(ℓ) columns) and the corresponding reduced state x̂I has
dimension d < r.

Remark 1: Note that we do not intend to infer a Petrov-
Galerkin ROM for the reduced-order dimension r; however,
we will shortly see that these Âℓ,I are sub-matrices of the
Âℓ operators that we aim to infer.

We collect these Petrov-Galerkin sub-matrix operators in
ÔI := (Âℓmin,I , . . . , Âℓmax,I) ∈ Rr×dtot , where dtot :=∑

ℓ∈L d(ℓ). Using the projections of the snapshots xk onto
VI , we also define the data matrix DI ∈ Rktr×dtot , which
has as its kth row

(DI)k,: :=
(
((V⊤

I xk)
ℓmin)⊤, . . . , ((V⊤

I xk)
ℓmax)⊤

)
. (10)

(O2) Nested structure: A property that all projection-
based reduced-order operators share by construction is that
(Âℓ)i,j (the (i, j)th entry of Âℓ ∈ Rr×r(ℓ)) depends on
at most ℓ trial basis vectors (according to the particular
Kronecker product term represented in column j) and exactly
one test basis vector specified by the row i. This means in
particular that when a smaller subspace defined by the basis
VI , I ⊂ {1, . . . , r} is expanded to V by including the other
basis vectors {1, . . . , r} /∈ I, then the larger reduced-order
operator matrix Âℓ ∈ Rr×r(ℓ) includes Âℓ,I as a submatrix.

For our nested OpInf approach, observation (O2) implies
that we can partition our inference into multiple steps. First,
we can learn the entries of Âℓ,I with I = {1, . . . , d} com-
prising the indices for the most important modes, through a
OpInf learning problem of the form

min
ÔI

∥DIÔ
T
I −RI∥2F . (11)

Next, we can learn the remaining entries of Ô, enforcing
the entries already learned as submatrices within each Âℓ.
(Note that we could also consider a sequence of submatrix
problems building up to the entire reduced dimension r.)
Before we specify how RI ∈ Rktr×r should be chosen, we
discuss the stability of the learning problem (11).

(O3) Stability improvement for smaller subspaces:
Since V⊤

I xk is a submatrix of V⊤xk, the data matrix DI is
a submatrix of D by construction (compare (10) to (6)).
Consequently, there exists PI ∈ {0, 1}rtot×dtot such that
DI = DPI . Using this relationship, we bound the minimum
singular value σmin(DI) of DI through

σmin(DI)
2 = min

y∈Rdtot

y⊤D⊤
I DIy

∥y∥22

= min
y∈Rdtot

y⊤P⊤
I D

⊤DPIy

∥y∥22

≥ min
y∈Rrtot

y⊤D⊤Dy

∥y∥22
= σmin(D)2.

(12)

Analogously, the largest singular value σmax(DI) of DI
is no larger than σmax(D), that is σmax(DI) ≤ σmax(D).
Together, these bounds imply that the least squares learning
problem (16) is at least as stable as (11). Further, as the
dimension of I decreases, the conditioning of (11) will
improve.

For our nested OpInf approach, we conclude from obser-
vation (O3) that, for stability purposes, it is most beneficial to
learn the entries of Ô in the smallest possible subproblems of
the form (11). In combination with the hierarchical structure
of the POD basis (observation (O1)), we should thus first

8048

set d = 1. We set I = {1} to learn Ô{1}, and we set
I = {2} to learn Ô{2}. Next, we set d = 2, we enforce
Ô{1} and Ô{2} to be submatrices of Ô{1,2}, and we learn
the remaining entries of Ô{1,2}. By following this structure,
each learning problem (11) is as small as possible; in fact,
after first learning the entries of ÔI associated to all Ĩ ⊊ I,
only

∑
ℓ∈ℓ,ℓ≥d

(
ℓ
d

)
entries of ÔI are left to be learned in

each column. As this scaling is independent of the reduced
dimension r of the final ROM (2), it is a strong improvement
over the original OpInf learning problem (5) where all rtot
column entries are learned together (see Table I).

The main complication with learning entries of Ô first
through small subspaces VI before enforcing them in larger
subspace problems or in Ô itself, is that any errors intro-
duced in ÔI will be propagated into the subsequent learning
problems. It is therefore of utmost importance that ÔI are
learned reliably in (11) with as little error as possible. To
guarantee this, we follow the re-projection approach of [6].
Specifically, we define the time-derivative matrix RI ∈
Rktr×r in (11) as

RI :=
(
f(VIV

⊤
I x1), . . . , f(VIV

⊤
I xktr

)
)⊤

V. (13)

If DI has full column rank, then ÔI is indeed the unique
solution to (11) (see [6], Corollary 3.2), and we avoid
introducing an error. The downside of the choice (13) is that
it requires simulating the FOM to evaluate f at the requi-
site states. In many applications it is possible to compute
f(VIV

T
I xk) for a given I, either because the full right-

hand side f of (1) can be evaluated, or because it can be
approximated sufficiently well3 by computing a single time
step of the FOM with initial condition x(0) = VIV

⊤
I xk

(c.f., [6], [7]). Either option increases the computational
cost of training, due to the additional evaluations of the
FOM. This increased computational cost can be mitigated
by introducing to the nested OpInf approach a constraint on
the number of extra evaluations of f (or its approximation)
beyond the initial snapshot set. Under a constrained training
budget, these evaluations can be prioritized to learn the
dynamics governing the most important POD modes first.

An advantage of using the re-projection approach to define
the time-derivative matrix RI in (13) is that we are guaran-
teed to recover the intrusive reduced-operators Âℓ, ℓ ∈ L.
Through their definition in (3) as a Galerkin projection, the
intrusive operators inherit some stability properties from the
full-order operators. For example, if the FOM includes a
negative definite linear operator A1, then its intrusive ROM
counterpart Â1 = V⊤A1V is also negative definite. Our
nested approach hence not only improves the numerical
stability of each learning problem, but also may improve
the stability properties of the learned ROM itself.

IV. ALGORITHM

Our proposed nested OpInf algorithm is outlined in Algo-
rithm 1, with a call SubmatrixLearning to Algorithm 2

3Note that for |I| small enough, DI is well conditioned such that an
O(∆t) approximation error can be tolerated, as discussed in observation
(O3).

for the learning problems within the nested subspaces.
The algorithms are divided into sections through comments
(“\\”), with each section explained individually below, start-
ing with those in Algorithm 1. A reference implementation
is provided at https://github.com/nicolearetz/Nested-OpInf.

Algorithm 1: Nested Operator Inference

Input: training snapshots Str = {xk}ktr

k=1, POD
space V ∈ Rn×r, reduced dimension r,
budget K+ ∈ N, submatrix buffer β0 ∈ N

\\Main variables
Construct the data matrix D ∈ Rktr×rtot for the

training snapshots in Str using (6) where
rtot =

∑
ℓ∈L

(
r+ℓ−1

ℓ

)
for the polynomial orders L of

the FOM (1)
Build R ∈ Rktr×r from (7) using a finite difference

approximation of ẋk for each xk ∈ Str
Initialize S+ = ∅
Initialize T = 0 ∈ Rr×rtot ,
b = (1, . . . , 1)⊤ ∈ {0, 1}rtot

\\Nested structure
for i = 1, . . . , r do

for d = 1, . . . , i do
for I ⊂ {1, . . . , i}, i ∈ I, |I| = d do

T, b, S++, R+, K+ =
SubmatrixLearning(Str,K+,

T, I,V,b, β0)

Expand S+ ← S+ ∪ S++

Expand R ← (R⊤,R⊤
+)

⊤

if K+ = 0 then
break all for loops

if S++ = ∅ then
break the two inner for loops

\\Final learning problem on V
Construct D+ ∈ R|S+|×rtot with (6) using the states
contained in S+ in place of the snapshots in Str

Expand D ←
(
D⊤,D⊤

+

)⊤
Compute weight matrix W with (15)
Solve learning problem (14) for Ô

return Ô

Inputs: The inputs to Algorithm 1 include a set of training
snapshots, denoted Str, and a reduced space V ∈ Rn×r

with r orthonormal basis functions in each column obtained
through POD. The input budget variable K+ counts the
maximum number of available evaluations of the full-order
time derivative function f , either in the form of a direct
call, or through re-projection of the FOM (1) (c.f., [6]).
The budget variable K+ is counted down throughout the
algorithm. The final input β0 is a buffer variable ensuring
that all least-squares subspace learning problems are over-

8049

determined as an additional means to provide stability.

Main variables: We initialize the data matrix D from (6)
of the standard OpInf learning problem for the snapshots
Str. Throughout the algorithm, D is first used to obtain the
submatrices DI for each encountered subset I ⊂ {1, . . . , r},
and in a final OpInf learning problem for Ô blending all
available data. We initialize the time derivative matrix R
from (7) using a finite difference approximation of ẋk for
each training snapshot xk ∈ Str. The set S+ is initialized as
empty; throughout the nested learning loop, it collects states
for which the exact time derivative is computed. The matrix
T ∈ Rr×rtot is the current approximation to the intrusive Ô;
its rows are populated with the learned entries of Ô during
the nested loop. The Boolean vector b ∈ {0, 1}rtot keeps
track which rows Tj,: have already been learned (bj = 0),
and which are still unknown (bj = 1).

Nested structure: The nested loops prioritize the first
modes (outer loop over mode index i) to respect the hi-
erarchical basis structure (O1). The nested structure (O2) is
respected by increasing the subspace dimension (middle loop
over dimension d) only once operators have been learned
for all possible subspaces of this dimension (inner loop over
index subsets I, |I| = d). This looping order guarantees that
we are always learning as few entries together as possible to
obtain best learning stability (O3), starting with the interac-
tions of the most dominant modes. The operator entries them-
selves are learned within the call SubmatrixLearning
to Algorithm 2 where the budget K+, the operator matrix
T and the row index tracker b are updated. Moreover, the
call returns a set S++ of states VIV

⊤
I xk for which the

exact projected time derivative VT f(VIV
⊤
I xk) has been

computed, and a matrix R+ in which these derivatives are
stored. Both S++ and R+ are used to extend S+ and R,
respectively, for later use in a final OpInf learning problem
employing all available information. The latter is reached
when all nested loops have terminated or if the budget of
calls to f has been depleted (K+ = 0), While budget is
still available, i.e. K+ > 0, we break the nested structure
only when no new information was learned (S++ = ∅).
This case arises when the data matrix DI within the call
SubmatrixLearning to Algorithm 2 is ill-posed. If so,
we proceed with the next iteration of the outermost loop,
hence resetting the subspace dimension back to d = 1. This
reset brings the next encountered data matrix back down to
width |L|, for which it is most likely to be again well-posed.

Final learning problem on V: Once no more calls to
the FOM are available, i.e., K+ = 0, we return to the
full reduced space V for an OpInf learning problem for
all entries of Ô. This final learning problem incorporates
all available information: The original snapshots in Str and
their approximated time derivatives, and the states in S+ for
which the action of f was computed within Algorithm 1. To
this end, we first expand the data matrix D with the data
matrix D+ that is obtained from (6) when using the states

in S+ as snapshots. We then solve the minimization problem

min
Ô
∥W 1

2 (DÔ−R)∥2F + λ∥Ô−T∥2F . (14)

The tracker variable T is used as regularization to encourage
nested structure. Since T was initialized with zeros, any
entries that were not inferred during the nested part of the
algorithm are regularized with standard Tikhonov regular-
ization. The strength λ ≥ 0 of the regularization can be
optimized in an outer loop if necessary (see [17]).4 The least
squares problem (14) is weighted with

W := diag(∆t2, . . . ,∆t2︸ ︷︷ ︸
ktr times

, 1, . . . , 1︸ ︷︷ ︸
|S+| times

). (15)

This weighting is necessary because the first ktr entries of R
for the original snapshots include additional projection and
time derivative approximation error, while the action of f
was explicitly computed for all states in S+.

We continue with the call SubmatrixLearning to
Algorithm 2 which infers those entries of ÔI that have
not been learned in previous interations within the nested
structure of Algorithm 1, and stores them in T.

Submatrix setup: We first restrict the data matrix D, the
operator matrix T, and the position vector b to only those
entries that are associated to the trial subspace VI . The exact
implementation of this step depends on the order chosen for
the exponential operation x̂ℓ, but can generally be expressed
through a matrix multiplication. The matrix B = DITI
contains the action of all operator entries learned thus far
on the projected snapshots. Since we are only interested in
learning those entries of ÔI that have not yet been learned,
i.e., those for which bI is still equal to one, we construct
the matrix Ib such that the multiplication DIIb removes all
other columns of DI .

Stability check: Before computing the entries of the time
derivative matrix RI using expensive calls to the full-order
f , it is important to note that DIIb can have redundant rows
or be ill-conditioned. To not needlessly deplete the budget
K+, we aim to achieve a minimal stability with a condition
number above ∆t−2 without using more than β0 calls to f
than strictly necessary given the number ∥bI∥1 of entries to
be inferred. To this end, we perform a QR decomposition
QL⊤ = I⊤bD

⊤
I P with pivoting: The first β columns of the

permutation matrix P identify β = min{∥bI∥1 + β0,K+}
linearly independent rows of DI (see [30] for details).
We save these columns in the matrix Iβ ∈ {0, 1}ktr×β ,
and let k1, . . . , kβ be the identified row indices. The mul-
tiplication I⊤β DIIb then eliminates all rows of DIIb but
rows k1, . . . , kβ . If the condensed matrix I⊤β DIIb satisfies
the stability condition κ2(I

⊤
bD

⊤
I IβI

⊤
β DIIb) > ∆t−2, we

continue learning the remaining entries in TI ; otherwise,
we return to the outer algorithm 1 without any changes or
waste of computational budget.

4The regularization term can be expanded to target different parts of each
reduced operator in Ô separately, in particular to enforce learned entries
in T or to drive higher-order polynomial operators more strongly towards
zero (see [17], [11]).

8050

Algorithm 2: Submatrix learning

Input: training snapshots Str = {xk}ktr

k=1, training
data matrix D, budget K+, operator estimate
T, learned position tracker b, index set I,
reduced basis V, submatrix buffer β0

\\Submatrix setup
Construct the projection matrix PI ∈ {0, 1}rtot×|I|tot

from (O3)
Compute DI = DPI , TI = P⊤

I T, bI = P⊤
I b

Compute action B = DITI of the operator entries
that have already been learned

Set Ib = diag(bI), and remove all zero-columns

\\Stability check
Set β = min{∥bI∥1 + β0,K+}
Compute QR decomposition QL⊤ = I⊤bD

⊤
I P with

pivoting and let Iβ ∈ {0, 1}ktr×β be the first β
columns of the permutation matrix
P ∈ {0, 1}ktr×ktr

if κ2(I
⊤
bD

⊤
I IβI

⊤
β DIIb) > ∆t−2 then

return T, b, ∅, 0 ∈ R0×r, K+

\\Time derivative information
Initialize RI = 0 ∈ Rβ×r, S++ = ∅
Let k1, . . . , kβ be the unique indices of the non-zero

rows in Iβ
for i = 1, . . . , β do

Compute f(VIV
⊤
I xki

)
Set the ith row of RI to be f(VIV

⊤
I xki

)⊤V
Store new state: S++ ← S++ ∪ {VIV

⊤
I xki

}
Adjust remaining budget: K+ ← K+ − 1

\\Subspace learning problem
Solve minimization problem (16) for T+

Populate T with the values in T+ such that
I⊤bP

⊤
I T = T+ and all other entries remain the same

Set the values for each learned position in b to 0
such that I⊤bP

⊤
I b = 0 and all other entries remain

the same

return T, b, S+, RI , K+

Time derivative information: For each of the identified
row indices ki, i = 1, . . . , β we compute the projected time
derivative f(VIV

⊤
I xki)

⊤V and store it as a row of the time
derivative matrix RI . These computations can be performed
either through a direct call to f , or through the re-projection
method (c.f., [6]). In either case, the remaining budget of
FOM calls is reduced for each evaluation, and the set S++

is expanded to include the additional state VIV
⊤
I xki for use

in the final learning problem of the outer Algorithm 1.
Subspace learning problem: Finally, we learn the miss-

ing reduced-order operator entries in the least squares prob-
lem

min
T+∈Rr×∥bI∥1

∥I⊤β DIIbT
⊤
+ − (RI − I⊤β B)∥2F . (16)

The inclusion of Ib in the first term in (16) restricts DI
to those columns for which operator entries still need to be
learned, while the second term is adjusted to account for
those parts of the operator that have already been learned
in previous iterations. The multiplication with I⊤β restricts
the problem to using only β equations instead of ktr. Since
I⊤β DIIb has passed the stability check, and because RI was
computed using the full-order operator f , the learned entries
T+ are guaranteed to recover the corresponding entries of
Ô with high precision. Once these entries T+ are computed,
we store them in T, and update the position vector b to mark
which entries are computed. We return the updated operator
matrix T, the updated position vector b, and the remaining
budget K+ of calls to f , as well as the time derivative matrix
RI and the set S++ of the states of which RI contains the
time derivative information.

The key advantage of the proposed approach is that it
transforms the OpInf learning problem from a single regres-
sion problem with a large number of unknowns into multiple
smaller regression problems that exploit the nested structure
of the reduced operators that are being inferred. This has
the advantage of improving numerical conditioning, which
is particularly important for reduction of nonlinear systems
with terms of high polynomial order.

V. NUMERICAL EXAMPLES

To demonstrate the nested OpInf method, we construct a
ROM for the shallow ice equations

∂x

∂t
=

ρg

α
x2∂ξx+

2γρ3g3

5
x5|∂ξx|2∂ξx =: f(x) (17)

for ξ ∈ [0, 1000], and initial condition

x(ξ, 0) = 10−2 + 630(
ξ

2000
+ 0.25)4(

ξ

2000
− 0.75)4,

(18)

constant rate factor γ = 10−4[s−1Pa−3], ice density ρ =
910[kg/m3], gravitational acceleration g = 9.81[m/s2],
and homogeneous Neumann boundary conditions. The state
x(ξ, t) describes the variation in space ξ and time t of the
thickness of an ice sheet on even ground under no slip
conditions (α = 1e − 15) (see [31], section 5.6.1). We
discretize (17) in pyapprox [32] with linear finite elements
of dimension n = 512. This leads to a FOM of the form
(1), which we solve using implicit Euler time stepping with
∆t = 10−3. The runtime from t = 0 to t = 10 is 103s.

The model (17) has two polynomial terms: one of order
ℓ = 3 and one of order ℓ = 8, i.e., L = {3, 8}. We construct
a ROM of the form (2), whose reduced-order operators Â3 ∈
Rr×r(3) and Â8 ∈ Rr×r(8) act on

x̂(3) =
(
x3
1, x

2
1x2, x1x

2
2, x

3
2, . . .

)⊤ ∈ Rr(3) ,

x̂(8) =
(
x8
1, x

7
1x2, x

6
1x

2
2, x

5
1x

3
2,

x4
1x

4
2, x

3
1x

5
2, x

2
1x

6
2, x1x

7
2, x

8
2, . . .

)⊤ ∈ Rr(3) ,
(19)

where the redundant terms (e.g., x2x
2
1, which duplicates

x2
1x2) have been removed (see Table I for reference). For

8051

Fig. 1: Left: POD singular value decay after snapshot rescal-
ing, normalized by the sum of all singular values σj . Right:
Remaining energy

∑r
j=1 σ

2
j /

∑ktr

j=1 σ
2
j .

training, we run the FOM from t = 0 until t = 2 for a
total of ktr = 2001 snapshots. We apply POD to construct
the reduced basis V. Figure 1 (left) shows the singular
value decay of the training snapshots. Based on the residual
energy (Figure 1, right), it can be seen that with a POD
basis of dimension r = 4 the snapshots can be reconstructed
with relative error less than 10−7. Increasing the reduced
dimension to r = 7 reduces the relative reconstruction error
further to approximately 10−10.

Based on these singular values, we conduct a numerical
study of ROMs with dimensions r = 4, 5, 6 and 7. Con-
sequently, the OpInf data matrix D has ktr = 2001 rows
and rtot = 185 (r = 4), rtot = 530 (r = 5), rtot = 1413
(r = 6), or rtot = 3087 (r = 7) columns. In each case, the
OpInf learning problem (5) is vastly underdetermined with
rank(D) between 20 and 25.

To obtain a comparative reference using the standard
OpInf approach, we compute RI using K+ := ktr calls to
f . Note that since D is rank deficient, there does not exist a
unique solution to (5) and Corollary 3.2 in [6] does not apply.
Instead, we apply Tikhonov regularization as described in
[17], [11], with regularization parameters chosen in a grid
search to minimize the reconstruction misfit of the snapshots.
Figure 2 shows that the best standard OpInf ROM is obtained
for r = 4, where only rtot = 185 entries need to be learned
in each row of Ô. For this case, enough snapshot data are
available to learn a reasonable ROM, although the quality
of the ROM prediction beyond the training interval degrades
quickly. Increasing the reduced dimension r introduces ad-
ditional richness into the reduced approximation. Figure 2
shows that this reduces the error over the training interval,
but it leads to ROMs that exhibit blowup as we attempt to
predict further in time. While these results for the standard
OpInf approach could potentially be improved through better
tuning of the regularization parameters, they illustrate the
challenges of inferring operators for nonlinear systems with
high-degree polynomial terms.

For our nested OpInf approach we proceed as described
in Section IV with a computational budget of K+ = 2001.
This budget is exhausted within the loop for i = 6, at
which point we solve the final, extended OpInf problem (14)
where the time derivative matrix R is estimated from the

Fig. 2: Relative approximation error ∥x(t) −
Vx̂(t)∥2/∥x(t)∥2 for t ∈ [0, 10] of the nested and
regularized OpInf ROMs for different reduced dimensions
r. The grey area marks the training interval.

original snapshots using central finite differences and thereby
polluted with O(∆t) error.

Remark 2: Since the FOM uses implicit Euler time step-
ping, the backward finite difference method would recover
f(xk) ≈ f(VV⊤xk) for each snapshot. While advantageous
in practice, here we explicitly refrain from this trick to pro-
vide a fair comparison with the regularized OpInf approach
where the budget K+ was spent to compute f(VV⊤xk).

Figure 2 shows that the ROMs learned with the nested
OpInf approach overcome these limitations. Within the
training interval, the nested OpInf ROMs exhibit a similar
reconstruction error to the standard OpInf ROMs. Outside
the training interval, the nested OpInf ROMs remain stable
and this error level is maintained. Notable in Figure 2 is
that the nested OpInf ROMs incur slightly larger training
reconstruction errors but achieve vastly improved prediction
performance. This indicates that the nested OpInf formula-
tion helps to avoid overfitting. The magnitude of the nested
OpInf prediction error could be improved further with a
larger budget K+ available for computing f during training.

In these results, the ROMs were solved using the Runge-
Kutta midpoint method. A ROM solve from t = 0 until
t = 10 takes up to 4.6s, leading to computational speed-up
factors of 22 and greater.

VI. CONCLUSION

This paper introduces the nested OpInf method for learn-
ing physics-based ROMs from snapshot data while exploit-
ing the nested structure of projection-based ROMs and the
hierarchy of basis functions spanning the reduced space.

8052

Given a budget of calls to the full-order solver, nested OpInf
first learns the dynamics of the most important modes, and
fills the remaining entries conservatively using approximated
data once the budget is depleted. As a result, the nested
OpInf approach solves multiple smaller regression problems
that are numerically better conditioned that the single large
regression problem in the standard OpInf method. Numerical
results for the shallow ice equations illustrate the importance
of these advancements, particularly for nonlinear systems
with high-order polynomial operators where an all-at-once
approach to OpInf leads to unstable ROMs due to extreme
ill-conditioning.

In this paper we have considered the case of having full
state snapshots that arise from a high-fidelity simulation;
however, the approach could be extended to the case of noisy
and/or partial snapshot data. A possible direction of future
work would be to combine the Bayesian OpInf approach
[33] or the goal-oriented learning approach [28] with the
exploitation of nestedness as proposed here. This would, for
example, permit the learning of ROMs from experimental
data.

Code availability: The code and both training and test data
used to generate the results in this paper are available at
https://github.com/nicolearetz/Nested-OpInf.

REFERENCES

[1] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based
model reduction methods for parametric dynamical systems,” SIAM
review, vol. 57, pp. 483–531, 2015.

[2] P. Benner, M. Ohlberger, A. Cohen, and K. Willcox, Model reduction
and approximation: theory and algorithms. SIAM, 2017.

[3] C. Gräßle, M. Hinze, and S. Volkwein, “Model order reduction by
proper orthogonal decomposition,” 2020.

[4] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis
methods for parametrized partial differential equations, vol. 590.
Springer, 2016.

[5] B. Peherstorfer and K. Willcox, “Data-driven operator inference for
nonintrusive projection-based model reduction,” Computer Methods in
Applied Mechanics and Engineering, vol. 306, pp. 196–215, 2016.

[6] B. Peherstorfer, “Sampling low-dimensional Markovian dynamics for
preasymptotically recovering reduced models from data with operator
inference,” SIAM Journal on Scientific Computing, vol. 42, pp. A3489–
A3515, 2020.

[7] W. I. T. Uy and B. Peherstorfer, “Operator inference of non-markovian
terms for learning reduced models from partially observed state
trajectories,” Journal of Scientific Computing, vol. 88, pp. 1–31, 2021.

[8] O. Ghattas and K. Willcox, “Learning physics-based models from
data: perspectives from inverse problems and model reduction,” Acta
Numerica, vol. 30, pp. 445–554, 2021.

[9] W. I. T. Uy and B. Peherstorfer, “Probabilistic error estimation for non-
intrusive reduced models learned from data of systems governed by
linear parabolic partial differential equations,” ESAIM: Mathematical
Modelling and Numerical Analysis, vol. 55, pp. 735–761, 2021.

[10] B. Kramer, “Stability domains for quadratic-bilinear reduced-order
models,” SIAM Journal on Applied Dynamical Systems, vol. 20,
pp. 981–996, 2021.

[11] N. Sawant, B. Kramer, and B. Peherstorfer, “Physics-informed regular-
ization and structure preservation for learning stable reduced models
from data with operator inference,” Computer Methods in Applied
Mechanics and Engineering, vol. 404, p. 115836, 2023.

[12] H. Sharma, D. A. Najera-Flores, M. D. Todd, and B. Kramer,
“Lagrangian operator inference enhanced with structure-preserving
machine learning for nonintrusive model reduction of mechanical
systems,” Computer Methods in Applied Mechanics and Engineering,
vol. 423, p. 116865, 2024.

[13] Y. Filanova, I. P. Duff, P. Goyal, and P. Benner, “An operator inference
oriented approach for linear mechanical systems,” Mechanical Systems
and Signal Processing, vol. 200, p. 110620, 2023.

[14] O. Issan and B. Kramer, “Predicting solar wind streams from the
inner-heliosphere to earth via shifted operator inference,” Journal of
Computational Physics, vol. 473, p. 111689, 2023.

[15] P. Jain, S. McQuarrie, and B. Kramer, “Performance comparison of
data-driven reduced models for a single-injector combustion process,”
p. 3633, 2021.

[16] R. Swischuk, B. Kramer, C. Huang, and K. Willcox, “Learning
physics-based reduced-order models for a single-injector combustion
process,” AIAA Journal, vol. 58, pp. 2658–2672, 2020.

[17] S. McQuarrie, C. Huang, and K. Willcox, “Data-driven reduced-
order models via regularised operator inference for a single-injector
combustion process,” Journal of the Royal Society of New Zealand,
pp. 1–18, 2021.

[18] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, “Lift & Learn:
Physics-informed machine learning for large-scale nonlinear dynami-
cal systems,” Physica D: Nonlinear Phenomena, vol. 406, p. 132401,
2020.

[19] P. Benner, P. Goyal, B. Kramer, B. Peherstorfer, and K. Willcox,
“Operator inference for non-intrusive model reduction of systems
with non-polynomial nonlinear terms,” Computer Methods in Applied
Mechanics and Engineering, vol. 372, p. 113433, 2020.

[20] H. Sharma, Z. Wang, and B. Kramer, “Hamiltonian operator inference:
Physics-preserving learning of reduced-order models for canonical
Hamiltonian systems,” Physica D: Nonlinear Phenomena, vol. 431,
p. 133122, 2022.

[21] H. Sharma and B. Kramer, “Preserving Lagrangian structure in data-
driven reduced-order modeling of large-scale dynamical systems,”
Physica D: Nonlinear Phenomena, p. 134128, 2024.

[22] A. Gruber and I. Tezaur, “Canonical and noncanonical Hamiltonian
operator inference,” Computer Methods in Applied Mechanics and
Engineering, vol. 416, p. 116334, 2023.

[23] E. Qian, I.-G. Farcas, and K. Willcox, “Reduced operator inference
for nonlinear partial differential equations,” SIAM Journal on Scientific
Computing, vol. 44, pp. A1934–A1959, 2022.

[24] R. Geelen, L. Balzano, S. Wright, and K. Willcox, “Learning physics-
based reduced-order models from data using nonlinear manifolds,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 34,
2024.

[25] R. Geelen, S. Wright, and K. Willcox, “Operator inference for non-
intrusive model reduction with quadratic manifolds,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 403, p. 115717, 2023.

[26] S. McQuarrie, P. Khodabakhshi, and K. Willcox, “Nonintrusive
reduced-order models for parametric partial differential equations via
data-driven operator inference,” SIAM Journal on Scientific Comput-
ing, vol. 45, pp. A1917–A1946, 2023.

[27] L. Gkimisis, T. Richter, and P. Benner, “Adjacency-based, non-
intrusive model reduction for vortex-induced vibrations,” Computers
& Fluids, p. 106248, 2024.

[28] P. Mlinarić and S. Gugercin, “L2-optimal reduced-order modeling
using parameter-separable forms,” SIAM J. Sci. Comput., vol. 45,
pp. A554–A578, Apr. 2023.

[29] B. Kramer, B. Peherstorfer, and K. Willcox, “Learning nonlinear
reduced models from data with operator inference,” Annual Review
of Fluid Mechanics, vol. 56, pp. 521–548, 2024.

[30] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press,
2013.

[31] R. Greve and H. Blatter, Dynamics of ice sheets and glaciers. Springer
Science & Business Media, 2009.

[32] J. D. Jakeman, “Pyapprox: A software package for sensitivity analysis,
Bayesian inference, optimal experimental design, and multi-fidelity
uncertainty quantification and surrogate modeling,” Environmental
Modelling & Software, vol. 170, p. 105825, 2023.

[33] M. Guo, S. McQuarrie, and K. Willcox, “Bayesian operator inference
for data-driven reduced-order modeling,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 402, p. 115336, 2022.

8053

