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Abstract— Rigid Body Localization (RBL) using range mea-
surements has recently attracted much attention. In some large
and complicated scenarios, we may not obtain the accurate
positions for anchors deployed in the environment. However,
few works have considered the anchor position uncertainty. In
this paper, we formulate the Maximum Likelihood (ML) RBL
problem with anchor position uncertainty and find that the
ML estimate is not necessarily consistent. As an alternative,
we propose a two-step estimator MGN-CULS, which is both
consistent and computationally efficient. In the first step, we
develop a closed-form initial estimate with consistency using
bias-eliminating techniques. In the second step, we design a
modified Gauss-Newton iteration to refine the initial estimate
without destabilizing the consistency. Simulation results demon-
strate the stable and accurate performance of our proposed
algorithm.

I. INTRODUCTION

Traditional source localization refers to estimating the
position of the source in a specific coordinate system. In
recent years, Rigid Body Localization (RBL) has attracted
widespread attention, which involves estimating both the
position and orientation of a rigid body [1]–[3]. It serves as
a key technology in many applications, ranging from robot
positioning and navigation [4], augmented reality [5] to 3D
reconstruction [6].

RBL generally relies on measurements between sensor
tags installed on a rigid body and anchor points with known
global positions. Range measurement is a commonly used
measurement type for RBL [7]–[9]. Under the i.i.d. Gaussian
noise assumption, the Maximum Likelihood (ML) formula-
tion of the range-based RBL is a constrained least-squares
problem [10]–[12]. Its nonlinearity and nonconvexity make it
challenging to solve, and a commonly used method is relax-
ing it into a Squared Least-Squares (SLS) problem. Chepuri
et al. [10] introduced a modification to the SLS problem
by projecting squared measurements onto the null space of
unit vectors. Chen et al. [11], leveraged the structure of the
rotation matrix, introducing a Generalized Trust Region Sub-
problem (GTRS). Jiang et al. [12] transformed the original
problem into a linear one, obtaining a consistent closed-form
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solution, and further enhancing accuracy through a single
Gauss-Newton iteration.

The above works assume the positions of anchors are
noise-free, and only the range measurement noise is con-
sidered. However, in real scenarios, the anchor positions are
obtained via some measurement methods, e.g., GPS and mo-
tion capture systems, which contain uncertainty. As far as we
know, there exists some literature studying the range-based
source localization with sensor position uncertainty [13]–
[16], while the investigation on the calibration-free range-
based RBL with anchor position uncertainty is still an open
problem.

In this paper, we consider RBL using range measurements
with anchor position uncertainty. We take both the anchor
positions and rigid body pose as optimization variables to
formulate the ML estimate and analyze the property of the
ML estimate. We mainly focus on proposing a consistent
estimate, which can converge to the true pose in probability
as the anchor number increases.

We summarize our contributions as follows:
(i). We formulate the range-based ML RBL problem with

anchor position uncertainty and prove that the ML
estimate is not necessarily consistent by presenting a
counterexample.

(ii). We design an asymptotically unbiased and consistent
closed-form RBL estimator based on an elaborate bias
elimination method.

(iii). We refine the initial consistent estimate with a modified
one-step Gauss-Newton iteration that can maintain the
consistent property.

Notations: For a vector x ∈Rn, [x]i presents the i-th element
of x. For two vectors x and y, [x;y] = [x⊤,y⊤]⊤. For
a matrix A, vec(A) yields a vector by concatenating the
columns of A. For a quantity x corrupted by anchor position
noise, we use xo to denote its noise-free counterpart. Let
p = {pi}i∈N and q = {qi}i∈N be two sequences of real
numbers. If t−1

∑
t
i=1 piqi converges to a real number its

limit ⟨p,q⟩t will be called the tail product of p and q.
We call ∥p∥t =

√
⟨p, p⟩t , if it exists, the tail norm of p.

The notation Xm = Op(am) means that the set of values
Xm/am is stochastically bounded, i.e., for any ε > 0, there
exists a finite M and a finite N such that for any m > M,
P(|Xm/am|> N)< ε .

II. PROBLEM FORMULATION
We focus on the RBL problem with only the posi-

tion uncertainty of anchors and discuss both the two-
dimensional (n = 2) and three-dimensional (n = 3) cases.
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Fig. 1. Planar pose estimation from range measurements with anchor
position uncertainty.

As tags are mounted on the rigid body, their position
uncertainty is often small enough to be ignored compared
with the range measurement errors, while anchors are placed
in the global environment, making it much more difficult
to obtain accurate positions, especially in some large and
complicated situations. An example of a planar scenario is
shown in Fig. 1. M range measurement anchors (simplified as
anchors in later paragraphs) are placed in the environment
and N range measurement tags (simplified as tags in later
paragraphs) are placed on the rigid body. Let G ao

m ∈ Rn

represent the fixed and accurate global position of the m-
th anchor. The measured global position of the m-th anchor
with uncertainty has the form

G am = G ao
m + εεεm, (1)

where εεεm ∈ Rn denotes the position measurement noise.
We denote Bsi ∈ Rn as the fixed and accurate position of
the i-th tag in the rigid body frame and assume it can be
obtained exactly. Let Ro and to represent the pose of the
rigid body in the global frame. For the sake of simplicity,
in the following, we abbreviate G am, G ao

m and Bsi as am,
ao

m and si, respectively. The range measurement model with
anchor position error is

dim = ∥(am − εεεm)−Rosi − to∥+ rim, (2)

where rim is the range measurement noise.
Next, we list several assumptions of this work.
Assumption 1: The range measurement noises rim’s are

i.i.d. Gaussian noises with zero mean and known variance
σ2 < ∞. The anchor position noises εεεm’s are i.i.d. Gaussian
noises with zero mean and known covariance σ2

a In, where
σ2

a < ∞. In addition, the range measurement noises and
anchor position noises are independent.

Assumption 2: For the two-dimensional planer case (n =
2), there exist at least two tags and three non-colinear
anchors. For the three-dimensional case (n= 3), there exist at
least three non-colinear tags and four non-coplanar anchors.
There is a range measurement dim between every pair of tag
and anchor, for i = 1 . . .N and m = 1 . . .M.

Assumption 3: The sample distribution Fm of the sequence
ao

1,a
o
2, . . . converges to some distribution Fµ , and denote the

probability measure induced from Fµ as µ .
Assumption 4: In the asymptotic case, there does not exist

any line (any plane) L such that µ(L )= 1 for n= 2 (n= 3).

A. ML estimator and consistency

In general, the ML estimator is quite important for its
consistency and asymptotic efficiency. In other words, the
ML estimate can converge to the true value with minimum
variance in most cases. However, in the range-based RBL
with anchor position uncertainty, we interestingly find out
that the ML estimate cannot converge to the true value, which
means that the ML estimator loses its consistency.

Motivated by works studying range-based source localiza-
tion with sensor position uncertainty [17], we first formulate
the following ML RBL problem considering anchor position
uncertainty:

min
P,R,t

1
MN

(
N

∑
i=1

M

∑
m=1

(dim −∥pm −Rsi − t∥)2

σ2 +
M

∑
m=1

∥am −pm∥2

σ2
a

)

s.t. R ∈ SO(n), t ∈ Rn, P ∈ Rn×M,
(3)

where P= [p1, · · · ,pM]∈Rn×M denotes the estimated anchor
positions. Set A= [a1, · · · ,aM]∈Rn×M as the anchor position
measurements and d = [d11, · · · ,dNM]⊤ ∈ RNM .

An optimal solution to the ML problem (3) is called
the ML estimate and denoted as P̂ML, R̂ML, t̂ML. In the
range-based RBL without anchor position uncertainty, un-
der Assumptions 1-4, the ML estimate is consistent and
asymptotically efficient [12]. However, the ML estimate to
problem (3) is not necessarily consistent.

Theorem 1: The ML estimate is not necessarily consis-
tent. In other words, as the anchor number M increases, R̂ML

and t̂ML may not converge to Ro and to.
Proof: We prove this by presenting a counterexample.

We simulate a planar situation in which all anchors are
randomly placed inside a 100m × 100m room, and two tags
are placed at [0,5]⊤ and [5,5]⊤ in the rigid body local frame.
The noise level for range measurements is σ = 1 and the
uncertainty level for anchor positions is σa = 5. The rigid
body is located at [5,5]⊤ and the rotation angle is at 60o.
We run 10 Monte-Carlo experiments and present the average
cost results.

In terms of the ML problem (3), based on the first-order
optimality condition, we can obtain the optimal P as a
function of R and t, denoted as P∗(R, t). On the one hand,
we substitute the true pose Ro, to and P∗(Ro, to) into the
ML objective function. On the other hand, we take Ro,
to and P∗(Ro, to) as initial values and apply the Gauss-
Newton method to seek a local minimum of the ML objective
function. The two cost values are shown in Fig. 2. We
observe that the cost gap between the true pose and the
Gauss-Newton refined estimate converges to a fixed non-
zero quantity as the anchor number increases. This result
implies that the true pose is not a local minimum even in
the large sample case, and indicates that the ML estimate is
not consistent.
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Fig. 2. Cost comparison.

B. Cramér-Rao lower bound analysis

Denote the ground truth of parameters as ΩΩΩ
o =

[vec(Ro); to;vec(Ao)], we write the log-likelihood function
as follows:

l (A,d;ΩΩΩ
o) =

M

∑
m=1

(−
∥am −ao

m∥2

2σa2 + log
1√

(2π)nσn
a
)

+
N

∑
i=1

M

∑
m=1

(−
(dim −µim)

2

2σ2 + log
1

√
2πσ

),

where µim = ∥ao
m −Rosi − to∥.

Then, we obtain the Fisher Information Matrix (FIM) by

F = E

∂ l (A,d;ΩΩΩ
o)

∂ΩΩΩ
o

(
∂ l (A,d;ΩΩΩ

o)

∂ΩΩΩ
o

)⊤
 .

The involved derivative can be written as

∂ l (A,d;ΩΩΩ
o)

∂ΩΩΩ
o =



∂ l (A,d;ΩΩΩ
o)

∂vec(Ro)
∂ l (A,d;ΩΩΩ

o)

∂ to

∂ l (A,d;ΩΩΩ
o)

∂vec(Ao)

 ,

and

∂ l (A,d;ΩΩΩ
o)

∂vec(Ro)
=

N

∑
i=1

M

∑
m=1

(dim −µim)(si ⊗ In)(ao
m − G si)

σ2∥ao
m − G si∥

,

∂ l (A,d;ΩΩΩ
o)

∂ to =
N

∑
i=1

M

∑
m=1

(dim −µim)(ao
m − G si)

σ2∥ao
m − G si∥

,

∂ l (A,d;ΩΩΩ
o)

∂ao
m

=
N

∑
i=1

−
(dim −µim)(ao

m − G si)

σ2∥ao
m − G si∥

+
am −ao

m

σ2
a

.

where G si = Rosi + to.
To account for constraints of the rotation matrix, the

constrained Cramér-Rao Lower Bound (CRLB) is given by

CRLB = U(U⊤FU)−1U⊤,

where the matrix U is related to the SO(n) constraint and is
derived in [12] for n = 2 and [18] for n = 3. In simulations,
we use the trace of the CRLB as a lower bound and present
it along with the RMSE of different estimators.

III. A CONSISTENT TWO-STEP ESTIMATOR

In this section, we first propose a consistent estimator
for the rigid body pose. Then, we devise a one-step Gauss-
Newton iteration that can refine the initial consistent solution
while maintaining the consistent property. Before that, we
give the definition of a

√
M-consistent estimate, which is

frequently used in this section.
Definition 1: Suppose ŷ is an estimate of yo. If ŷ = yo +

Op(1/
√

M), then we call ŷ a
√

M-consistent estimate of yo.
It has two meanings: First, the estimate ŷ converges to yo as
M increases; Second, the convergence speed is 1/

√
M.

For the sake of simplicity, in the rest of this paper, we
use the notation ≈ to denote that the difference between
two variables is in the order of Op(1/

√
M). In other words,

ŷ ≈ yo implies ŷ = yo +Op(1/
√

M).

A. Initial Consistent Estimator

First, we consider the model of range measurements
without position uncertainty:

dim = ∥ao
m −Rosi − to∥+ rim. (4)

Let θ o ∈R for n = 2 (θθθ o ∈R3 for n = 3) denote the rota-
tion angle vector of the rigid body. Following the procedure
in [12], we can obtain a closed-form solution

ŷB = (Ho⊤Ho)−1Ho⊤d̄o, (5)

where ŷB = [x̂B; t̂B], Ho = [Ho
1,H

o
2], Ho

1 = −2(S⊤⊗ Āo⊤)ΓΓΓ,
Ho

2 = −21N ⊗ Āo⊤, Āo = AoP, S = [s1 s2 · · ·sN ], P = IM −
(1M1⊤M)/M,

d̃o =

 d̃o
11 . . . d̃o

N1
...

. . .
...

d̃o
1M . . . d̃o

NM

 ,
d̃o

im = d2
im−∥ao

m∥2 −σ2, and d̄o = (IN ⊗P)vec(d̃o).
For the planar situation (n=2), x̂B = [sin θ̂ B; cos θ̂ B] and

ΓΓΓ =

[
0 1 −1 0
1 0 0 1

]⊤
.

For the 3-D situation (n=3), the rotation matrix R̂B can be
written as

R̂B =

x1 x4 x7
x2 x5 x8
x3 x6 x9

 ,
and x̂B = [x1,x2,x3,x4,x5,x6,x7,x8,x9]

⊤, ΓΓΓ = I9.
Theorem 2 (Theorem 2 [12]): Under Assumptions 1-4,

the estimate ŷB is
√

M-consistent, i.e., ŷB ≈ yo.
Equation (5) provides a consistent estimate for the problem

without anchor position uncertainty as stated in [12]. How-
ever, in our problem, we cannot obtain the precise position
ao

m. Directly replacing ao
m with am will introduce uncertainty

into the H term. As we obtain estimate ŷ using
H⊤H
MN

and

H⊤d̄
MN

, noises in those two terms appear in quadratic form,
which will bring bias in estimating ŷ. Hence, we design a
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consistent estimator that estimates the bias-eliminated esti-
mate ŷ which eliminates the bias caused by anchor position
uncertainty:

ŷ =

(
H⊤H−Ga1

MN

)−1(H⊤d̄−Ga2

MN

)
, (6)

where H and d̄ are defined by replacing ao
m with am in Ho

and d̄o, respectively, and

Ga1 = 4KMσ
2
a

[
Ga11 Ga12
Ga13 Ga14

]
, Ga2 = 4Kσa

2
[

Ga21
Ga22

]
,

Ga11 = ΓΓΓ
⊤(SS⊤⊗ In)ΓΓΓ, Ga12=ΓΓΓ

⊤(S1N ⊗ In), Ga13=G⊤
a12,

Ga14 = NIn, Ga21 = ΓΓΓ
⊤(S1N ⊗A1M), Ga22 = NA1M.

Lemma 1 ( [19, Lemma 4]): Let {Xk} be a sequence of
independent random variables with E[Xk] = 0 and E

[
Xk

2
]
≤

ϕ < ∞ for all k. Then, there holds ∑
M
k=1 Xk/M ≈ 0.

Theorem 3: Under Assumption 1 and Lemma 1, the bias-
eliminated estimate ŷ is

√
M-consistent, i.e., ŷ ≈ yo.

Proof: The main idea is to analyze and eliminate
the asymptotic biases of H⊤H/(MN) and H⊤d̄/(MN) to
approach Ho⊤Ho/(MN) and Ho⊤d̄o/(MN), respectively. Ac-
cording to Assumption 1 and Lemma 1, we can obtain

H⊤H
MN

≈ Ho⊤Ho

MN
+

Ga1

MN
,

H⊤d̄
MN

≈ Ho⊤d̄o

MN
+

Ga2

MN
. (7)

Therefore, ŷ ≈ ŷB. Since ŷB in (5) is
√

M-consistent, so is
ŷ, which completes the proof. The detailed derivation of (7)
is shown in Appendix I.

Then, we can recover R̃ from ŷ. Denote the SVD of
R̃ as R̃ = UΣΣΣV⊤. The projection of R̃ onto SO(2) is
given by R̂ = Udiag([1,det(UV⊤)])V⊤. In 3D case, R̂ =
Udiag([1,1,det(UV⊤)])V⊤. As long as R̃ is

√
M-consistent,

so is R̂ [12].

B. Bias-Eliminated One-Step Gauss-Newton Method

With a consistent estimate as the initial value, we can
apply Gauss-Newton iterations to obtain a more precise
consistent estimate. However, as stated in Section II, the ML
estimate is not necessarily consistent. As a result, applying
the Gauss-Newton method directly to the ML problem (3)
could lose the consistency of the estimate.

Here, we design a bias-eliminated Gauss-Newton algo-
rithm that is asymptotically equivalent to the Gauss-Newton
algorithm applied to the squared-range problem without
anchor position uncertainty and thus can retain the consistent
property. First, we give the squared-range problem without
anchor position uncertainty as follows:

min
θθθ ,t

1
MN

N

∑
i=1

M

∑
m=1

(d2
im −σ

2 −∥ao
m −Livec(R(θθθ))− t∥2)2,

(8)
where Li =(si⊗In)

⊤ and R(θθθ) is the rotation matrix induced
from the Euler angle vector θθθ . In 2D case, θθθ is a scalar and
represents the yaw angle of the rigid body.

Lemma 2: Denote the optimal solution to problem (8) as
θ̂θθ

SR
and t̂SR. It holds that θ̂θθ

SR ≈ θθθ
o and t̂SR ≈ to.

Proof: Set ΘΘΘ = [θθθ ; t] and f o
im(ΘΘΘ) = ∥ao

m−Livec(R(θθθ))
− t∥. Then, we have dim = f o

im(ΘΘΘ
o)+ rim and

(d2
im −σ

2 −∥am −Livec(R(θθθ))− t∥2)2 =

( f o
im(ΘΘΘ)2 − f o

im(ΘΘΘ
o)2 + r2

im +2 f o
im(ΘΘΘ

o)rim −σ
2)2.

Let f o(ΘΘΘ) and f o(ΘΘΘ)2 denote the sequence { f o
im(ΘΘΘ)}N,M

i,m=1
and { f o

im(ΘΘΘ)2}N,M
i,m=1, respectively. From Lemma 1 and As-

sumption 1, as the anchor number goes to infinity, the objec-
tive function in (8) convergences to ∥( f o(ΘΘΘ)2− f o(ΘΘΘo)2∥2

t +
c, where c is a constant.

According to [12], ∥( f o(ΘΘΘ)− f o(ΘΘΘo)∥2
t has a unique

minimum at ΘΘΘ = ΘΘΘ
o. Note that f o(ΘΘΘ) ≥ 0 for any ΘΘΘ.

Hence, ∥( f o(ΘΘΘ)2 − f o(ΘΘΘo)2∥2
t also has a unique minimum

at ΘΘΘ = ΘΘΘ
o. As c is a constant, the minimizer of the objective

function in (8) converges to ΘΘΘ
o, and the convergence speed

is 1/
√

M based on Lemma 1.
For the optimization problem shown in (8), we can write

its one-step Gauss-Newton iteration as

Θ̂ΘΘ
GN

=

[
θ̂θθ

t̂

]
+

(
Jo⊤

T Jo
T

MN

)−1(Jo⊤
T
(
φφφ − f o(Θ̂ΘΘ)2

)
MN

)
, (9)

where Jo
T denotes the Jacobian matrix for (8), and

φφφ =

 d2
11
...

d2
NM

−σ
21MN .

Based on Lemma 2, the following lemma is straightfor-
ward:

Lemma 3: The estimate Θ̂ΘΘ
GN

is
√

M-consistent if the
initial value is

√
M-consistent.

For the problem with position uncertainty, we cannot
obtain Jo, so we apply a modified one-step Gauss-Newton
method shown below:

Θ̂ΘΘ
MGN

=

[
θ̂θθ

t̂

]
+

(
J⊤T JT −Q

MN

)−1(J⊤T
(
φφφ− f (Θ̂ΘΘ)2

)
−C

MN

)
,

(10)
where JT is the Jacobian matrix for (8) with ao

m replaced by
am, and Q and C are the eliminated bias terms, where

Q =

[
Q11 Q12
Q21 Q22

]
, Q11 =

N

∑
i=1

4Mσ
2
a (BiB⊤

i ),

Q12 =
N

∑
i=1

4Mσ
2
a Bi, Q21 = Q⊤

12, Q12 = 4MNσ
2
a In.

C =

[
C1
C2

]
, C2 =

N

∑
i=1

M

∑
m=1

(2n+4)σ2
a fim(Θ̂ΘΘ)

C1 =
N

∑
i=1

M

∑
m=1

(2n+4)σ2
a Bifim(Θ̂ΘΘ),

Bi = Ψ
⊤(In ⊗ R̂⊤)L⊤

i ,Ψ =
∂vec(R(0))

∂θ
,

and fo
im(Θ̂ΘΘ) = ao

m−Livec
(
R̂
)
− t̂ and fim(Θ̂ΘΘ) = fo

im(Θ̂ΘΘ)+εεεm =
am −Livec

(
R̂
)
− t̂.
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Theorem 4: Under Assumption 1, the estimate Θ̂ΘΘ
MGN

in (10) is
√

M-consistent if the initial value is
√

M-consistent.
Proof: According to Lemma 1, Assumption 1, and the

detailed bias-eliminated process described in Appendix II,
we can approach Jo⊤

T Jo
T/(MN) and Jo⊤

T (φφφ − f o(Θ̂ΘΘ)2)/(MN)
as follows:

J⊤T JT

MN
≈Jo⊤

T Jo
T

MN
+

Q
MN

,

J⊤T (φφφ − f (Θ̂ΘΘ)2)

MN
≈Jo⊤

T (φφφ − f o(Θ̂ΘΘ)2)

MN
+

C
MN

.

This proves that Θ̂ΘΘ
MGN ≈ Θ̂ΘΘ

GN
. As Θ̂ΘΘ

GN
is

√
M-consistent

(Lemma 3), Θ̂ΘΘ
MGN

is also
√

M-consistent.
At the end of this section, we summarize our proposed

estimator, named Consistent Unconstrained Least Squares
refined by a one-step Modified Gauss-Newtion iteration
(MGN-CULS), in Algorithm 1. We then analyze the time
complexity of our Algorithm. Line 1 has O(M) (linear) time
complexity, Line 2 has O(1) (constant) time complexity, and
Line 3 has O(M) (linear) time complexity. Therefore, the
whole algorithm has O(M) (linear) time complexity, which
is computationally efficient in the large sample case.

Algorithm 1 MGN-CULS Estimator
Input: d, σ , σa, A, and S.
Output: the estimates of Ro and to.

1: Calculate the CULS estimate as (6).
2: Obtain R̃ and t̂ from the CULS estimate and recover R̂

by projecting R̃ onto SO(n).
3: Implement the modified one-step Gauss-Newton itera-

tion (10) and obtain the MGN-CULS estimate.

IV. SIMULATION
We design several planar (n = 2) simulations to test our

algorithm performance. There exist M anchors which are
placed randomly in a 100m × 100m room and a rigid
body placed at position to = [5,5]⊤ and rotation angle θ o =
60o. Two tags are mounted on the rigid body at [10,0]⊤

and [10,10]⊤ in the body frame. Each anchor and tag can
communicate multiple times and obtain T measurements.

We run L = 1000 Monte-Carlo experiments for each
setting to evaluate RMSEs. The RMSEs for the rotation angle
and translation vector are given by

RMSE(θ̂) =

√
1
L

L

∑
l=1

(θ̂(ωl)−θ o)2,

RMSE(t̂) =

√
1
L

L

∑
l=1

∥t̂(ωl)− to∥2,

where θ̂(ωl) and t̂(ωl) is the estimate in the l-th Monte-
Carlo experiment. We compare our algorithm with previous
work including GTRS [11], GN-SDP [7], GN-ULS [12],
and WLS [13] and also with the lower bound, which is the
square root of the trace of CRLB [10], denoted as

√
CRLB.

All algorithm simulations are run on an i7-14700K CPU
using Matlab.

A. Simulation 1: Increasing anchor number

In this simulation, we set the number of anchors M =
3,10,100,1000,10000, respectively, and σ = 5, σa = 5. The
RMSE result is shown in Fig. 3, and the computation time
result is presented in Fig. 4.
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Our algorithm is consistent and close to CRLB as the
number of anchors increases. Compared with GN-ULS,
our algorithm has a slightly worse performance when the
anchor number is small. However, the GN-ULS algorithm is
asymptotically biased and has a worse performance when the
anchor number increases. Compared with other algorithms,
our estimator has better performance in all situations. Our
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estimator performs well when the anchor number is large
because it is asymptotically unbiased. For computation time,
our estimator resembles the GN-ULS method and is much
less than the other methods.

B. Simulation 2: Increasing anchor position uncertainty

In this simulation, we set the anchor number M = 5000
and σa = 0.1,0.5,1,5,10, respectively. The result is shown
in Fig. 5. This result shows that our algorithm has a good
performance when the noise level is small and has a better
performance when the noise level is large compared with
other algorithms.

V. CONCLUSION AND FUTURE WORK
This work studied the pose estimation of a rigid body

using range measurements with anchor position uncertainty.
We observe that the ML estimate will not converge to the
ground truth as the anchor number increases, in other words,
the ML estimate is not necessarily consistent. Based on a
two-step estimation scheme, we designed an asymptotically
unbiased and consistent estimator MGN-CULS. Through
various simulations, we verify that MGN-CULS outperforms
existing methods under a large number of measurements
and large noise levels and has a relatively low computa-
tional complexity. One possible application for this method
is estimating a static object’s pose using several moving
objects. For example, several driving cars with GPS and
tags on their bodies will provide an increasing number of
distance measurements and positions with uncertainties as
time increases. Our method may have better performance in
the above situation.

In future work, we want to extend current results in
three directions. Firstly, we plan to improve MGN-CULS’s
performance in the few anchor cases. Secondly, We want
to relax the assumption of position uncertainty and consider
noises with limited characterization. Last but not least, we
plan to fuse range measurements with other sensors to obtain
an accurate odometry.

APPENDIX I
PROOF FOR THEOREM 3

Proof: The proof is based on Lemma 1 and Assump-
tion 1: We can write H1, H2 and d̃im as

H1 =−2(IN ⊗P)(S⊤⊗ (Ao + εεε)⊤)ΓΓΓ

=−2(IN ⊗P)(S⊤⊗Ao⊤)ΓΓΓ−2(IN ⊗P)(S⊤⊗
εεε
⊤)ΓΓΓ

=Ho
1 + rH1,

H2 =−2(IN ⊗P)(1N ⊗ (Ao + εεε
⊤))

=−2(IN ⊗P)(1N ⊗Ao⊤)−2(IN ⊗P)(1N ⊗ εεε
⊤)

=Ho
2 + rH2.

d̃im =d̃o
im − εεεm

⊤
εεεm −2εεεm

⊤ao
m.

Then, we have d̃ = d̃o −bA − eA, where

bA=

 εεε⊤1 εεε1 . . .εεε
⊤
1 εεε1

...
. . .

...
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1
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M

.

We can further obtain

d̄ = (IN ⊗P)vec(d̃)
= d̄o − (IN ⊗P)(1N ⊗bA1)− (IN ⊗P)(1N ⊗ eA1),

where

bA1 =

 εεε⊤1 εεε1
...

εεεm
⊤εεεm

= nσ
2
a 1M, eA1 =

 2εεε⊤1 ao
1

...
2εεεm

⊤ao
M

 .
Therefore, according to Lemma 1 and Assumption 1, we
have
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APPENDIX II
PROOF FOR THEOREM 4

Proof: Set

J=
[

J1
J2

]
=

∂ fim(Θ̂ΘΘ)2

∂ (θ̂θθ , t̂)
=

[
−2Bi(fo
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⊤
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For term J⊤J, textcolorredaccording to Assumption 1, we
have equations below:
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