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Abstract— Controlling dynamic ensemble systems is an es-
sential yet challenging step to enable diverse applications in
science and engineering. In this paper, we present a generalized
moment method that gives rise to a moment representation
of the control-affine ensemble system. The induced moment
system is equipped with a banded structure that is beneficial
to conducting systems-theoretic analysis and control design
for ensemble systems. In addition, we introduce a Lie alge-
braic technique for exact bilinearization of nonlinear ensemble
systems. This transformation provides a unified paradigm for
studying highly intricate nonlinear ensemble systems through
the associated bilinear moment systems. To demonstrate the
applicability of the proposed method, we present numerical
examples involving the control of nonlinear ensemble systems.

I. INTRODUCTION

Dynamic ensembles are population systems consisting
of collections of structurally similar dynamic units. Such
systems are prevalent in nature and engineering fields, and
the ability to finely control their collective behavior is critical
to enable cutting-edge applications, such as nuclear magnetic
resonance [1], swarm behavior control [2], systems neuro-
science [3], [4], and robotics [5]. The fundamental challenge
in these applications lies in their under-actuated and large-
scale nature, i.e., using a single broadcast input to address
the entire population. To tackle this challenge, moment-based
methods have been proposed [6]–[9], which established
a dynamic connection between an ensemble system and
its moment system. These developments facilitate intricate
systems-theoretic analysis and control designs for ensemble
systems. However, they were limited to some classes of linear
and bilinear ensemble systems and compelled the need of
devising new methods for accommodating general ensemble
systems.

In this paper, we present a generalized-moment method for
addressing ensemble control problems. We start our analysis
with linear ensembles governed by time-invariant parameter-
dependent vector fields, in which we establish a systematic
approach to construct the moment transform resulting in
structured moment systems. Adopting this construction, we
introduce a Lie algebraic technique providing conditions for
exact bilinearization of nonlinear ensemble systems. This bi-
linearization provides a unified paradigm for studying highly
complex nonlinear ensemble systems through the associated
bilinear moment systems. We present numerical examples,
involving the control of nonlinear ensemble systems, to
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demonstrate the applicability of the proposed generalized-
moment method.

The paper is organized as follows. In Section II, we
introduce the notion of ensemble moments and present
a systematic approach to construct a generalized moment
system associated with an ensemble system defined on a
Hilbert space. In Section III, we derive a sufficient condition
for exact bilinearization of nonlinear ensemble systems.
In Section IV, we present examples to demonstrate the
application of the developed generalized-moment method to
ensemble control design.

II. GENERALIZATION MOMENT METHODS

In this paper, we focus on studying the control-affine
ensemble system, indexed by the parameter β, of the form

d

dt
x(t, β) = f(β, x(t, β)) +

m∑
j=1

uj(t)gj(β, x(t, β)), (1)

where x(t, ·) is the state variable defined on a separable
Hilbert space H, β ∈ K ⊂ R lies in a compact set K,
u ∈ L∞([0, T ],Rm) is the control input, and f and gj are
smooth vector fields defined on H. To tackle this nonlinear
ensemble system for the purpose of control design, we
present a moment-based method by introducing generalized-
moments defined with respect to a basis of H. Leveraging
the proposed moment method associated with the nonlinear
ensembles, we transform the nonlinear ensemble system into
a more tractable system and utilize the new system for
ensemble control design.

A. Ensemble-moments under different bases

In a separable Hilbert space H, the ensemble state
x(t, β) can be represented as formal linear combination
of a countable basis Bψ = {ψk(β)}∞k=0, i.e., x(t, β) =∑∞
k=0mk(t)ψk(β) [10]. By utilizing this representation, the

ensemble system as in (1) can be transformed into an infinite-
dimensional system free of parameter β, which is referred
to as the moment system.

Definition 1: (Generalized ensemble-moments) Given
an ensemble system as in (1) with the state variable
x(t, ·) = (x1(t, ·), . . . , xn(t, ·))⊺, we define the generalized
kth ensemble-moment mk(t) = (mk1(t), . . . ,mkn(t))

⊺ with
respect to a basis Bϕ = {ϕk(β)}∞k=0 of H as

mki(t) = ⟨ϕk(·), xi(t, ·)⟩, (2)

where the expression ⟨u, v⟩ denotes the inner product of u
and v. The ensemble-moment sequence is thus an infinite
sequence denoted by m(t) = (m⊺

0(t),m
⊺
1(t), . . .)

⊺.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 1654



Remark 1: For instance, when H = L2(K,Rn), the inner
product is defined as the integral over the subset K, i.e.
⟨u, v⟩ =

∫
K
u⊺ ·v dµ. This definition can be further extended

if we consider the generalized inner product, mki(t) =
⟨ψk(·), xi(t, ·)⟩w =

∫
K
ψk(·)xi(t, ·)w(·) dµ, where w(·) is a

weight function on the subset K.
Orthogonal bases are commonly used in a Hilbert space

to approximate a given element. Thus, we consider an
orthogonal basis Bp = {pk(β)} and the associated weighted
ensemble-moments, i.e. mk(t) = ⟨pk(·), x(t, ·)⟩w.

Definition 2: (Orthogonal Polynomial Sequence) A se-
quence of polynomials {pk(β)}∞k=0 is said to be an orthog-
onal polynomial sequence (OPS) with respect to a (non-
negative) weight function w(β) if

⟨pm(·), pn(·)⟩w = Knδmn, (3)

where Kn ̸= 0 and δmn is the Kronecker’s delta function.
If Kn = 1, then {pk(β)} is said to be an orthonormal
polynomial sequence.

Remark 2: From the theory of orthogonal polynomials,
an OPS is defined satisfying Ψw [pm(·)pn(·)] = Knδmn,
where Ψw is a linear functional satisfying Ψw[β

k] = µk,
and µk is a given sequence called moment [11]. A necessary
and sufficient condition for an OPS to exist for Ψw is if the
linear functional Ψw is quasi-definite, i.e., the determinant of
moment Hankel matrix is non-zero for all orders. Moreover,
if Ψw is positive-definite1, then by the Riesz representation
theorem, we can define an inner product with a proper weight
function w(β), which is consistent with the definition of
orthogonality stated in Definition 2 in an inner product space.

The generalized moments defined in (2) can be directly ap-
plied to ensemble dynamics with nonlinear parameterization.
In the following, we will start with analyzing linear ensemble
dynamics with nonlinear parameterization to illustrate the
main idea of utilizing generalized moments to transform
the ensemble system as in (1) to an associated moment
system where ensemble analysis and ensemble control design
become tractable.

B. Moment dynamics of linear ensemble systems with non-
linear parameterization

To fix ideas, we consider a linear ensemble system with
nonlinear parameterization, given by

d

dt
x(t, β) = f(β)A(t)x(t, β) + g(β)B(t)u(t), (4)

where β ∈ K ⊂ R, f(·), g(·) ∈ C∞(K) with f being
injective; x(t, ·) ∈ L2(K,Rn), u ∈ L∞([0, T ],Rm), A(t) ∈
Rn×n, and B(t) ∈ Rn×m. We establish an orthogonal basis
starting by choosing a set of functions Bf that consists of
all the monomials fk, i.e., Bf = {f0(β), f1(β), f2(β), . . .}.
By invoking Stone-Weierstrass theorem, we observe that
Bf is a dense set in the function space L2(K,R), since
Bf separates points in K. Then, by applying the Gram-
Schmidt orthogonality procedure with respect to η = f(β)

1We say Ψw is positive-definite if the moment sequence µk is real value
and the determinant of moment Hankel matrix is positive for all orders.

(see Appendix V-A), we obtain the corresponding orthogonal
basis Bψ|f = {ψ0, ψ1, . . .} with respect to the weight
functional Ψw. Furthermore, the constructed OPS satisfies
the three terms recursive relation, i.e. there exist real-
valued sequences {ak}, {bk}, {ck} such that ψk(η) satisfies
ηψk(η) = akψk+1(η) + bkψk(η) + ckψk−1(η), for all
k = 0, 1, . . . with ck+1 > 0 and ψ−1(η) = 0 [11].
This recursive property results in a banded structure for the
moment dynamic associated with the ensemble system (1),
which is preferable for the ensemble control design.

Theorem 3: (Moment system with banded structure)
Given the linear ensemble system in (4), where f is injective.
Consider the kth ensemble-moment defined as in (2) with
respect to an orthogonal basis {ψk}, then the corresponding
moment system is a linear system with the system matrix Â
in a banded form, give by

d

dt
m(t) = Âm(t) + B̂u(t), (5)

where

Â =


b0 a0
c1 b1 a1

c2 b2
. . .

. . . . . .

⊗A, B̂ =

⟨ψ0, g⟩w
⟨ψ1, g⟩w

...

⊗B,

in which ⊗ denotes the Kronecker product.
Proof: The time derivative of the kth ensemble-moment

is given by

d

dt
mk(t) = ⟨ψk(η),

d

dt
x(t, η) ⟩w

= A⟨ηψk(η), x(t, η)⟩w +Bu(t)⟨ψk(η), g(η)⟩w
= A

(
akmk+1(t) + bkmk(t) + ckmk−1(t)

)
+Bu(t)⟨ψk, g⟩w,

which results in the banded structure shown above.
From Appendix V-A, the coefficients of the recursive

relation to the constructed OPS Bψ|f are given by ak =
1, bk = dk+1, ck = lk+1. If we further normalize the
constructed OPS Bψ|f and denote as Bψ̃|f , i.e., Bψ̃|f =

{ψ̃k = ψk/∥ψk∥}, then, from Theorem 3, the ensemble-
moments are given by

mki = ⟨ψ̃k(·), xi(t, ·)⟩w, (6)

with the sequence {ak}, {bk}, {ck} in Â given by

ak = ∥ψk+1∥
∥ψk∥ , bk = dk+1, ck = lk+1

∥ψk+1∥
∥ψk∥ .

For instance, the Legendre polynomials can be viewed as
the set Bψ|

βk
obtained from Gram-Schmidt process to the

monomials βk defined on [−1, 1] with respect to a constant
weight function w ≡ 1.

As illustrated above, the chosen basis determines the
structure of the moment dynamics associated with the en-
semble system. For instance, if the function g(·) is a linear
combination of the basis functions, the resulting B̂ is a sparse
matrix. We take the following example to illustrate this idea.
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Example 1: Let us consider an ensemble of the form,

d

dt
x(t, β) = cos(β)x(t, β) + u1(t), β ∈ [0, π];

if we choose Bf = {1, cos(β), cos2(β), . . .}, we obtain

d

dt
mk(t) = mk+1(t) + u1(t)⟨cosk(β), 1⟩; (7)

whereas using orthogonal basis Bψ|f = {cos(kβ)}∞k=0

constructed by the Gram–Schmidt procedure with w(β) =
1

sin(β) , yields a moment system with a banded structure,

d

dt
mk(t) =

k+1∑
i=k−1

cimi(t) + u1(t)⟨ψk, 1⟩w, (8)

with ⟨ψk, 1⟩w non-zero only when k = 0 due to or-
thogonality, and ci are constant coefficients. Notice that in
this particular case the moment system under the Legendre
basis Pk(β) will not equip with a banded structure, since
cos(β)Pk(β) cannot be expressed as a sum of finite terms
under the Legendre basis.

Therefore, the representation of the moment dynamics
depends on the choice of bases. More importantly, ensemble-
moments defined with respect to an orthogonal basis yield a
moment system with a sparse representation equipped with
a banded system matrix Â as shown in (5). This distinct
structure benefits us in evaluating truncated error [12] and
therefore advantage us to leverage the truncation of the
moment dynamical system for control design.

C. Moment systems of bilinear ensembles

The application of the introduced moment method goes
beyond linear ensembles and encompasses the realm of non-
linear ensembles that are prevalent in practice. One popular
method to approach a nonlinear system is to approximate it
through bilinear system and leverages the bilinear structure to
facilitate analysis and control design [13]. In this section, we
will adopt such “bilinearization” ideas to develop techniques
by which the control-affine ensemble system in (1) can be
transformed into a bilinear ensemble system. Before delving
into the detailed development, we first illustrate that the
introduced generalized moment transformation preserves the
structure of the bilinear ensemble system.

Example 2 (Bloch ensemble system): We consider an en-
semble of Bloch systems, which describes the time-evolution
of the bulk magnetization of a sample of nuclear spins
immersed in an external field, given by [8],

d

dt
x(t, β) = β

[
u1B1 + u2B2

]
x(t, β). (9)

where x(t, β) ∈ R3 for each t ∈ [0, T ] and β ∈ [1− δ, 1+ δ]
representing the rf-inhomogeneity with 0 < δ < 1; B1 and
B2 are the generators of rotation around the y- and the x-
axis, i.e.,

B1 =

0 0 −1
0 0 0
1 0 0

 , B2 =

0 0 0
0 0 1
0 −1 0

 .

Since the system (9) has linear parameterization β, the
constructed orthogonal basis Bψ|

βk
by following the previous

discussion in II-B with a constant weight function w ≡ 1 is
the Legendre polynomials. Therefore, we apply the moment
transformation (6) under normalized Legendre basis to this
reparametrized system with η = (β − 1)/δ = [−1, 1], and
we derive the kth moment dynamic given as

d

dt
mk(t) = ⟨ψk(η),

d

dt
x(t, η)⟩

=
[
u1B1 + u2B2

]
⟨(δη + 1)ψk(η), x(t, η)⟩

= δ
[
u1B1 + u2B2

](
akmk+1(t) + bkmk(t)

+ ckmk−1(t)
)
+
[
u1B1 + u2B2

]
mk(t),

which results in the moment dynamical system

d

dt
m(t) =

[
u1B̂1 + u2B̂2

]
m(t), (10)

where B̂i = S ⊗ Bi are bounded operators with banded
structure, and S is the coefficient matrix derived as

S = δ


b0 a0
c1 b1 a1

c2 b2
. . .

. . . . . .

+ I

with ak−1 = ck = k/
√
4k2 − 1, bk = 0, k ∈ Z+ and I

denoting the infinite dimension identity operator.
This example of bilinear Bloch equations showcases that

the proposed generalized moment transformation not only
preserves the bilinear structure but leads to a moment system
free of parameter β. Moreover, a finite truncation of such
infinite-dimensional bilinear system, i.e., a classical finite-
dimensional bilinear system, renders us a tractable way to
facilitate analysis and ensemble control design (see Section
IV for further discussion).

III. EXACT BILINEARIZATION OF NONLINEAR
ENSEMBLES

Despite the advantages the moment transformation pro-
vides, it is in general difficult to know the structure of the
moment system corresponding to a general nonlinear en-
semble system. The analysis for the control-affine ensemble
system as in (1) will become feasible if it can be exactly
bilinearized, i.e., transformed into a bilinear ensemble sys-
tem. In the following, we provide a sufficient condition for
exact bilinearization of nonlinear control-affine systems by
introducing higher dimensional embedding and demonstrate
this bilinearization can be effectively applied to nonlinear
ensembles.

To fix ideas, we start by considering the following control-
affine nonlinear system defined on Rn, in the form of

ẋ(t) = g0(x) +

m∑
i=1

ui(t)gi(x), (11)
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where g0, g1, . . . , gm are smooth vector fields defined on
Rn. Let gi =

∑n
k=1 gik(x)

∂
∂xk

and assume g0k(x) are
not constant function for all k. We further define H =
{h ∈ C∞(Rn,R) : h(x) = ek(x) or gik(x); 0 ≤ i ≤
m, 1 ≤ k ≤ n} and B = {η ∈ C∞(Rn,R) : η(x) =
Lgi1 . . .Lgirh(x); 0 ≤ ir ≤ m, 1 ≤ r < ∞} where
ek(x) = xk and Lgh denotes the Lie derivative of (real-
valued) function h along vector field g. Furthermore, let
V = {1, v1, v2, . . . , vl} ⊂ H ∪ B be the smallest set such
that all the elements in H ∪ B is in span(V). Then, the
sufficient condition for the nonlinear system (11) to be
exactly bilinearizable is provided as follows.

Theorem 4: Consider the control-affine nonlinear system
as in (11). If V is finite-dimensional of dimension l + 1,
then there exists an embedding Φ : Rn → Rl such that
z(t)

.
= Φ(x(t)) is governed by a bilinear system on Rl,

given by,

ż = Az +

m∑
i=1

ui(t)Ci +

m∑
i=1

ui(t)Biz,

for some l ≥ n, where A, Bi ∈ Rl×l and Ci ∈ Rl for all
i = 1, . . . ,m.

Proof: The proof is constructive. First, by the definition
of the set V in the theorem, each vj ∈ V is either in H or
B. Also note that x1, . . . , xn are always in span(V), thus we
let vj = xj for 1 ≤ j ≤ n. Moreover, every element in H ∪
B can be represented as a linear combination of v1, . . . , vl.
Therefore, we construct new states z = (z⊺1 , z

⊺
2 , . . . , z

⊺
l )

⊺

such that zj = vj for 1 ≤ j ≤ l, then

żj = g0j(x) +

m∑
i=1

ui(t)gij(x),

for 1 ≤ j ≤ n and

żj = Lg0Lgj0 . . .Lgjrh(x)+
m∑
i=1

ui(t)LgiLgj0 . . .Lgjrh(x),

for n+1 ≤ j ≤ l where all the terms are in B and therefore
are in span(V). That is,

żj = A0jz +

m∑
i=1

ui(t)Cij +

m∑
i=1

ui(t)Bijz,

where A0j , Bij ∈ R1×l and Cij ∈ R for all i = 1, . . . ,m.

Theorem 4 provides a transformation to convert a nonlin-
ear dynamic into an exact bilinear form under given sufficient
conditions. Furthermore, this exact bilinearization is also
suitable when applied to nonlinear ensemble systems. To
illustrate the bilinearization within the context of ensemble
systems, we take the following two nonlinear ensembles as
examples.

Example 3 (Example of exact bilinearization): Consider
a nonlinear ensemble system in R2 described by

d

dt
x(t, β) = β

(
x1

x2 − x21

)
+

(
u1
u2

)
, (12)

with β ∈ [−1, 1]. The vector fields of this system
is given as g0 = (x1, x2 − x21)

⊺, g1 = (1, 0)⊺ and
g2 = (0, 1)⊺. Therefore, we have H = {h : h(x) =
{x1, x2, x1, x2 − x21, 1, 0, 0, 1}} and B = {η : η(x) =
{x1, x2 − x21, x2 − 3x21, . . .}} with all the other terms in
B are in span({1, x1, x2, x21}). Clearly, there is no other
set with smaller dimension that span H ∪ B, thus we let
V = {1, x1, x2, x21} and define the transformation as z(t) =
Φ(x(t)) = (x1, x2, x

2
1)

⊺ with the corresponding dynamic for
the new state z given as

d

dt
z(t, β) = βAz + C1u1 + C2u2 + u1B1z (13)

where A =

1 0 0
0 1 −1
0 0 2

, C1 =

1
0
0

, C2 =

0
1
0

,

B1 =

0 0 0
0 0 0
2 0 0

. The result showcases that after the

transformation Φ, the original ensemble system is embedded
to a higher dimensional bilinear ensemble as desired. Since
the dynamic of the new ensemble state z is bilinear, the
moment dynamic under normalized Legendre basis is derived
by following the previous discussion in example 2, given as

ṁ(t) = Âm+ Ĉ1u1 + Ĉ2u2 + u1B̂1m (14)

where Â =


b0 a0
c1 b1 a1

c2 b2
. . .

. . . . . .

 ⊗ A, Ĉi =

⟨ψ0, g⟩
⟨ψ1, g⟩

...

 ⊗

Ci for i = 1, 2, and B̂1 = I ⊗ B1 with ak−1 = ck =
k/

√
4k2 − 1, bk = 0, k ∈ Z+, and I denotes the infinite

dimension identity operator.
We would like to emphasize that although we provide a

sufficient condition for the exact bilinearization of a nonlin-
ear ensemble system, the bilinearization is not unique. We
present the following real-world nonlinear unicycle ensem-
bles [5] for illustration.

Example 4 (Unicycle ensembles): Consider a collection
of unicycles described by

d

dt
x(t, β) = β

u
cosx3
sinx3
0

+ v

0
0
1

 , (15)

where x(t, β) ∈ R3 and model perturbations β ∈ [1 −
δ, 1 + δ] for 0 ≤ δ < 1. Following the analogous con-
struction as in previous example, we have H = {h :
h(x) = {x1, x2, x3, cosx3, sinx3, 0, 1}} and B = {η :
η(x) = {cosx3, sinx3,− sinx3,− cosx3}}. Thus, V =
{1, x1, x2, x3, cosx3, sinx3} is the set with the smallest
dimension that span H ∪ B. Defining the transformation
as z(t) = Φ(x(t)) = (x1, x2, x3, cosx3, sinx3)

⊺, then the
corresponding dynamic for z ∈ R5 is given as

d

dt
z(t, β) = β (uB1z + vB2z) + βCv (16)
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where Bi = [bjk]i is given by [b14]1 = [b25]1 = 1 for B1

and [b45]2 = −1, [b54]2 = 1 for B2 and all other elements
are 0 and C =

(
0 0 1 0 0

)⊺
.

Observe that x3 is determined by cosx3 and sinx3,
hence z3 in the new state is redundant to the constructed
system. Therefore, we redefine the transformation as x̃ =
(x1, x2, cos(x3), sin(x3))

⊺ such that the resulting dynamics
for x̃ is bilinear

d

dt
x̃(t, β) = β (uB1x̃+ vB2x̃) (17)

where B1 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

, B2 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

.

Consequently, we obtain a bilinear moment dynamics as in
(10) where B̂1, B̂2 are bounded linear operators with banded
structure, given by

B̂1 =


B̃10

B̃10 B̃11

B̃11
. . .

. . .

⊗ I2, B̃1k =

(
0 ck
0 0

)
,

B̂2 =


B̃20

B̃20 B̃21

B̃21
. . .

. . .

⊗A, B̃2k =

(
0 0
0 ck

)
,

and A =

(
0 −1
1 0

)
, I2 =

(
1 0
0 1

)
and ck = k/

√
4k2 − 1.

These two examples demonstrate that under the sufficient
condition provided in theorem 4, a nonlinear ensemble
dynamical system can be converted into a bilinear form and
therefore the associated moment system also adopts a bilinear
structure. Moreover, under piece-wise constant controls, the
obtained bilinear moment dynamic behaves similarly as its
linear counterparts. This enables us to extend the idea of
constructing feasible controls based on truncated moment
dynamics to the bilinear moment dynamics.

IV. ENSEMBLE CONTROL DESIGN VIA TRUNCATED
MOMENT SYSTEM

Thanks to the orthogonal basis used for defining moment
terms, we have a dual relation between the ensemble system
and its associated moment system manifested by the isome-
try,

∥x(t, ·)− xf (·)∥L2 = ∥m(t)−mf∥ℓ2 . (18)

However, one obstacle for designing controls directly for the
moment dynamical system (10) is its dimension. Since ℓ2

is an infinite dimensional space, a direct method for obtain-
ing the control renders intractable in most cases. Instead,
we utilize the banded structure in the moment dynamics
representation and devise an approach via the truncated
moment system for ensemble control design. Consequently,

we formulate an optimal control problem from the truncated
moment dynamics of a specific truncation order N in the
form,

min
u,v

∥m̄(T )− m̄f∥2 (19)

s.t. ˙̄m(t) = ÂNm̄(t) + B̂N0u(t) +
∑
i

vi(t)B̂Nim̄(t)

m̄(0) = m̄0,

where u(t), v(t) are the controls. To illustrate the process,
we exhibit two simulation results for nonlinear ensembles.

A. Steering a nonlinear ensemble system

Consider the nonlinear ensemble systems in (12) with
β ∈ [−1, 1]. The objective is to design a control that
steers the entire ensemble system from the initial profiles
x(0, β) = (0, 0)⊺ to the final states xf (β) = (1, 1)⊺ at a
given final time T . The obtained state trajectories and the
designed controls are shown in figure 1. For this simulation,
we set the final time T = 1 and design control through
truncated moment system (14) with truncation order N = 4.
To solve the optimal control problem described in (19),
we use fmincon solver in Matlab to find the control with
the default optimization algorithm interior-point. The error
tolerance (function tolerance) and the step tolerance are
both selected as the default values of 10−6 and 10−10,
respectively. In particular, we embed the original system
x ∈ R2 to a higher dimensional system z ∈ R3 and derive
the moment dynamic corresponding to the new state z. When
designing the control, since state z3 is related to z1, we let
the desired final state zf (β) = (1, 1, ∗)⊺ instead of (1, 1, 1)⊺

where ∗ indicates that the final state z3(t, β) is free.

Fig. 1: Simulation result for nonlinear ensembles described
in example 3 for 500 systems with the system parameter β
uniformly spaced within [−1, 1]. Controls are designed with
the moment truncation order N = 4 and the state trajectories
for all ensembles are shown in gradient light blue.

B. Steering an ensemble of unicycle systems

For the ensemble system in (15) where we set δ = 0.2,
i.e. model perturbations β ∈ [0.8, 1.2], the control task aims
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at navigating the ensembles from the initial position to a
predefined final position at a given time [5]. For instance,
we set x(0, β) = (0, 0, 0)⊺ and xf (β) = (3, 2, ∗)⊺ for
simulations with ∗ indicates that the angle variable x3(t, β)
is free. The result is shown in figure 2, with the truncation
order N = 4 and simulation final time T = 2. In comparison
with the method proposed in [5], our ensemble control
framework allows more flexibility in the obtained controls
since the constraints imposed on the system controls can
be conveniently incorporated in the optimization problem
(19). Additionally, our formulation possesses the ability to
introduce penalty terms into the objective function. This
facilitates relaxing or constraining the solution as needed.
For instance, a control energy term ∥u⊺u∥2 is added in the
objective function in this example to avoid controls of large
values, and the corresponding controls are solved by utilizing
the aforementioned optimization solver.

Fig. 2: Simulation result for ensemble of unicycles described
in example 4 for 500 systems with the model perturbation
β ∈ [0.8, 1.2]. Controls are designed with the moment
truncation order N = 4 and the state trajectories for all
ensembles are shown in gradient light blue.

V. CONCLUSION

In this paper, we present a generalized moment-based
method which facilitates systems-theoretic analysis and con-
trol design for dynamic ensemble systems. The main con-
tributions of this work include the development of (i) a
systematic approach to constructing ensemble-moments with
respect to an orthogonal basis, which leads to moment
systems equipped with banded structures; and (ii) an exact
bilinearization technique for nonlinear ensemble systems
based on constructing a higher-dimensional embedding using
Lie algebra, which leads to bilinearized moment systems.
The introduced generalized moment method provides a uni-
fied framework for exploiting intricate ensemble systems,
facilitating control design through the use of their associated
moment systems.

APPENDIX

A. Gram-Schmidt procedure for constructing an OPS

Lemma 5: The sequence of polynomials {ψk}∞k=0 defined
in the following way is an OPS with respect to Ψw

ψ0 = 1, ψ1 = η − d1

ψk = (η − dk)ψk−1 − lkψk−2, k ≥ 2, (20)

where dk and lk are constant coefficients defined as

dk =
Ψw[ηψ2

k−1]

Ψw[ψ2
k−1]

, lk = Ψw[ηψk−1ψk−2]
Ψw[ψ2

k−2]

Proof: The proof follows from Favard’s theorem which
states that a sequence defined by the recursive relation above
is an OPS [11] (pp. 21-22).
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