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Abstract—In this paper, a novel controller design is pro-
posed to stabilize the Heisenberg system (also known as the
Nonholonomic Integrator or Brockett’s Integrator) in a finite
time. Although the controller design is based on the unit vector
control for the Sliding–Mode Control theory, no sliding mani-
fold design is required. Instead, some inherent properties of the
Heisenberg system, e.g., the skew symmetric/diagonal structure,
are exploited to obtain a simple to tune and bounded controller
that ensures the finite–time stabilization of the origin for any
arbitrary initial condition outside the origin. Additionally, the
resulting controller is globally bounded and, contrasting with
other similar approaches for the Heisenberg system, this design
allows the estimation of the settling–time function.

Index Terms—Heisenberg System, Nonholonomic Integrator,
Nonlinear Control.

I. INTRODUCTION

NONHOLONOMIC systems have been studied exten-
sively in the last decades, primarily due to the de-

velopment of new applications involving mobile robots [1],
current–fed induction motors [2], surface vessels [3], and
other unconventional vehicles and robots (see [4] and [5]).
Secondly, this class of systems does not fulfill the well–
known Brockett’s necessary condition for smooth state feed-
back stabilization [6]. So, the design of non–smooth and
time–varying feedback controllers is not only interesting
from the theoretical point of view but a requirement for the
regulation of this class of systems.

The Heisenberg system (so–called because its vector fields
generate the Heisenberg algebra, see [7] and [8]), also
known as the nonholonomic integrator, is a nonlinear system
diffeomorphic to many of physical models (some examples
can be found in [9] and [10]). For this reason, the Heisenberg
system and the canonical chained form [11] have been
frequently used as a benchmark for controller design and
stability analysis of nonholonomic systems (see, e.g., [12],
[13] and [14]).

Thus, the development of controllers that ensure the con-
vergence of the tracking error to the origin in finite–time
(FT) has been crucial as well (see, for instance, [15], [16]
and [17]).
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One remarkable approach that has been widely used to
develop FT controllers for nonholonomic systems is the
sliding–mode control (SMC) approach, mainly because ad-
ditionally to its non–smooth nature, it has the possibility
of granting FT convergence and robustness of the closed–
loop system. Therefore, it has been applied to solve the
stabilization and the tracking problem for this class of
systems (see, e.g., [18], [19] and [20]).

More recent results that consider SMC approaches to solve
the trajectory tracking problem include the use of integral
SMC design (see [21] and [9]), the super–twisting algorithm
[22], and the modified super–twisting algorithm [23].

Contrasting with the SMC approach, the proposed con-
troller does not require the selection of a sliding manifold,
but instead exploits the structure of the Heisenberg systems
and how the interaction between its subsystems produces the
movement in R3. The design, as it is shown later on, is
intuitive and easy to tune. Some other main highlights of
this approach can be summarized as follows:

• The obtained controller ensures FT convergence of the
states of the Heisenberg system to the origin.

• The resulting control function is globally bounded.
• The simplicity of the controller structure facilitates its

implementability, including the parameter selection and
tuning, since it only requires the choice of two scalar
parameters.

• The control scheme can be applied to many physical
systems with minor adjustments.

The structure of the rest of this paper is the following.
Some relevant definitions and important theoretical notions
are included in Section III. The problem statement can be
found in Section II. In Section IV, the proposed control
design is presented. In Section V, a simulation to illustrate
a possible implementation of the proposed control scheme is
given. Finally, in Section VI, some concluding remarks and
some comments on the potential extension of the main result
can be found.

Notation. Denote R+ = {x ∈ R : x > 0}, R− = {x ∈
R : x < 0} and R≥0 = {x ∈ R : x ≥ 0}, where R is the
set of all real numbers; || · || denotes the Euclidean norm on
Rn. Define the function dacγ = |a|γsign(a), for any γ ∈
R≥0 and any a ∈ R. The term S1 is the 1−sphere. SO(2)
represents the special orthogonal group in R2, any element
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SO(2) represents a standard rotation in R2, defined for θ ∈
S1, by the matrix

R(θ) :=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

II. PROBLEM STATEMENT

The Heisenberg system dynamics is given by

ż(t) = Y >(t)JX(t), (1)

Ẋ(t) = Y (t), (2)

with the vector state X =
[
z, X>

]> ∈ R3, such that z ∈
R, X ∈ R2, and the initial conditions X0 =

[
z0, X

>
0

]>
.

The control input is Y ∈ R2 and J ∈ R2×2 is the skew–
symmetric matrix

J =

[
0 −1
1 0

]
.

It is important to recall that in order to stabilize the origin
of system (1) – (2), it is necessary to provide a control input
Y (t) that avoids stabilizing the origin of the subsystem (2)
before stabilizing the origin of (1). Otherwise, if X(T ) = 0,
and z(T ) = c 6= 0, at any given time instant T ≥ 0, then
z(t) = c, for all t > T such that X(t) = 0.

Considering this well–known constraint of the Heisenberg
system, the aim of this paper is to design a bounded control
input Y (t) that stabilizes the origin of system (1)–(2) in a
finite time providing a settling–time estimation.

III. PRELIMINARIES

Consider the system

ẋ = f(t, x), t ∈ R≥0, x(0) = x0, (3)

where x ∈ Rn is the state vector. The function f : R≥0 ×
Rn → Rn is assumed to be locally bounded uniformly in
t. For f locally measurable but discontinuous with respect
to x, the solutions are understood in the sense of Filippov
[24]. That is, x(t, x0) is a solution to (3) if it is absolutely
continuous, and if it satisfies the differential inclusion

ẋ ∈ K[f ](t, x) = co
⋂
ε>0

⋂
µN=0

f(t, B(x, ε)\N),

where co(M) represents the convex closure of the set M ,
B(x, ε) represents the ball centred at x with radius ε, µ is
the Lebesgue measure. Note that the intersections are taken
over all the sets N of measure zero, over all ε > 0. Let Ω
be open neighborhood of the origin in Rn, 0 ∈ Ω.

Definition 1. [25, 26]. At the steady state x = 0, the system
(3) is said to be:
a) Uniformly Stable (US) if for any ε > 0 there is δ(ε)

such that for any x0 ∈ Ω, if ||x0|| ≤ δ(ε) then ||x(t, x0)|| ≤ ε
for all t ≥ t0, for any t0 ∈ R;

b) Uniformly Finite–Time Stable (UFTS) if it is US and
finite–time converging from Ω, i.e. for any x0 ∈ Ω there
exists 0 ≤ Tx0 < +∞ such that x(t, t0, x0) = 0 for all t ≥
t0 + Tx0

, for any t0 ∈ R. The function T0(x0) = inf{Tx0
≥

0 : x(t, x0) = 0 ∀t ≥ t0 + Tx0
} is called the settling–time

of the system (3).
If Ω = Rn, then x = 0 is said to be globally US (GUS), or
globally UFTS (GUFTS), respectively

IV. CONTROLLER DESIGN

A. Mathematical Structure

In order to stabilize the system (1)–(2), the following
control input is proposed

Y (t) = −γR (ω(X ))
X(t)

‖X(t)‖
, (4)

with the functions

ω(X ) = atan (Φ(X )) ,

Φ(X ) =
2β dzc

1
2

‖X‖
,

some constants parameters γ, β ∈ R≥0, and the matrix R ∈
SO(2). Notice that it is possible to write (4) as

Y (t) = −γ cos(ω(X ))
X(t)

‖X(t)‖
− γ sin(ω(X ))J

X(t)

‖X(t)‖
.

By substituting (4) in (1)–(2), and noticing that

‖JX‖ = ‖X‖,

the corresponding closed–loop system dynamics are obtained
as

ż(t) =− γ sin(ω)‖X(t)‖, (5)

Ẋ(t) =− γR(ω)
X(t)

‖X(t)‖
. (6)

Then, the following facts can be verified directly from the
definitions of ω and Φ, for all X ∈ R3,

cos(ω) =
1√

1 + Φ2
> 0, (7)

sign(sin(ω)) = sign(Φ) = sign(z), (8)

Φ cos(ω) =
Φ√

1 + Φ2
= sin(ω). (9)

Let Mx =
{
X ∈ R3 : ‖X‖ = 0

}
; and, for some constant

β > 0, define the set

Dβ =
{
X ∈ R3\Mx : |Φ(X )| < β

}
,

and the constants ωβ = atan(β) and Cβ = cos(ωβ). The
main result of this paper is given in the following Theorem.

Theorem 1. The origin of system (1)–(2), applying the
control input (4), with β > |z0|

1
2 /‖X0‖ and γ > 0, is UFTS

1650



3

on Ωβ = Dβ ∪ {0}, for β = 2β. Moreover, the settling–time
TX (X0), is upper–bounded as

TX (X0) ≤ ‖X0‖
γCβ

.

The proof is omitted due to space limitations.
Remark 1. The control input generated by (4) is bounded,
i.e.,

‖Y (t)‖2 = γ2
X>(t)

‖X(t)‖
R2(ω)

X(t)

‖X(t)‖
≤ γ2, ∀t ≥ 0.

This facilitates its implementabilty and increases the num-
ber of applications that could potentially benefit from this
design.
Remark 2. Although according to Theorem 1, the resulting
closed–loop system (5)–(6) is only UFTS on Dβ; for any
X0 ∈ R3, there always exists β > |z0|

1
2 ‖X0‖−1. Then,

for any X0 /∈ Mx, the origin of the closed–loop system is
always stabilizable in a finite time. Also notice that the bound
of ‖Y (t)‖ does not depend on β. Therefore, large initial
conditions do not pose a potential implementation issue.
Remark 3. The control input (4) is simple to tune. The
implementation of the proposed controller (4) only requires
the choice of two parameters. The parameter β is directly
fixed by the initial conditions, while γ can be selected
accordingly to the application requirements and constraints,
i.e., available input amplitude and desired convergence time.

It is also noteworthy that even though the controller
structure is somewhat reminiscent of the unit vector control
approach for SMC on multiple input systems, the manifold
Mx is not a sliding manifold. In fact, Mx should not be
reached before the origin of (1) is reached, because any point
on Mx is an equilibrium, and renders the subsystem (1)
uncontrollable. This is totally contrasting with the sliding
manifold selection for the unit vector control approach.

B. On the Physical Meaning of the Controller
The design of the controller is based intutively on how the

Heisenberg algebra produces the movement in R3. A tangent
velocity to the manifold ‖X‖ = r, produces a movement in z
proportional to r and the magnitude of the velocity. A radial
velocity (i.e., the rate of change of the state respect to the
origin) modifies ‖X‖, but leaves z unaffected. Then, one can
roughly picture the movement described by the Heisenberg
system first as a screw, i.e., in order to ascend or descend at
any given point a rotation around a circle of radius r has to
be performed; and then, as a change in the radius r.

This is what essentially the proposed controller (4) does.
For ω = π

2 , ‖X‖ remains constant, but z decreases/increases.
For ω = 0, ‖X‖ decreases/increases, but z remains constant.
For any ω ∈ (0, π/2) the change of z and X can be
decomposed in these two cases. The quantity |z0|

1
2 ‖X0‖−1

could be interpreted as a proportion of the numbers of
“turns”, around the circle of radius ‖X0‖, required to descend
or ascend from z0 to 0.
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Figure 1. Control Input Y

C. Implementation Aspects

The control input (4) becomes discontinuous once the
manifoldMx is reached. This could pose an implementation
issue for certain applicatons. However, because the origin
of (1)–(2) is an invariant set for Y = 0, it is possible to
switch–off the controller input as soon as the manifold Mx

is reached, to maintain the control input continuous; i.e.,

Y (t) =

{
−γR (ω(X )) X(t)

‖X(t)‖ if X 6= 0,

0 if X = 0.
(10)

V. SIMULATIONS

The simulations have been carried out in Matlab using
the Euler discretization method with the integration step of
0.0001[s]. The control input is designed as proposed in Theo-
rem (1), considering the following parameters γ = 10, z0 =
40, X0 = [3/

√
2,−3/

√
2]> and β = 2.5 > |z0|

1
2 /‖X0‖ =

2.1082. This gives the settling–time estimation TX ≤ 3.7620.
The control signal Y (t), as proposed in (10), is shown

in Figure 1. The trajectories of |z| 12 and ‖X‖ are depicted
in Figure 2. Finally, the system trajectories vs Time are
presented in Figure 3, while Figure 4 presents the state
trajectories in R3. The simulation results effectively illustrate
the FT convergence to the origin of the proposed controller.

VI. CONCLUSIONS

In this paper, a novel globally bounded FT controller
design for the Heisenberg system is presented. The resulting
controller is straightforward to tune, and implement, while
stabilizing the system origin for any initial condition in a
finite time. Moreover, its structure is intuitive and easy to
grasp, from both the mechanical and control theory points
of view. A simulation is included to illustrate the results and
complement the main ideas.
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Figure 2. Trajectories of |z|
1
2 and ‖X‖
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Figure 3. X and z vs Time

Figure 4. System trajectories
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