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An Efficient Two-Step Approach to Fair and Sparse Transactions Allocation
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Abstract— This study considers a practically important
financial transactions allocation problem originated from
interbank market. To achieve fairness and sparsity at the
same time, we formulate the problem as a non-linear sparse
optimization problem. A novel two-step algorithm that (1)
finds the most sparse but not necessarily fair solution, (2) then
utilizes iterative local adjustments to cope with non-linear
fairness constraint is proposed. An adaptive parameter selec-
tion method to improve efficiency, avoiding time-consuming
parameter search is devised. We provide theoretical guar-
antees that the two-step algorithm along with the adaptive
parameter selection can always find a feasible solution with
as much sparsity as possible. The effectiveness and efficiency
of the algorithm is demonstrated by conducting empirical
analysis on a real dataset from financial industry.

Index Terms— Interbank lending, nonlinear optimization,
regularization algorithm, sparse identification, transactions

allocation

I. Introduction

Interbank lending market facilitates short-term bor-
rowing and lending transactions among financial institu-
tions, which contributes to the stability of the financial
system [1] [2]. Typically, asset management companies
conduct such transactions by allocating a portion of
the capital from various portfolios which lend money,
hereafter referred to as lenders. Each lender has differ-
ent lending amounts [3]. And different borrowers have
different demands, vary in amount and the interest rate
[4]. It is challenging for traders to align the lenders with
the borrowers manually, which leads to the transaction
allocation problem.

Manual transaction allocation faces operational risks
[5]. As the number of lenders and borrowers [6] increases,
manual allocation can be time-consuming, and prone
to errors. Furthermore, it may be subject to individual
biases and lack of fairness [7]. It is necessary to develop a
transactions allocation algorithm, which addresses three
main concerns: fairness, sparsity and efficiency.

The work is supported by National Natural Science Foundation
of China under Grants 62025306. (Corresponding author: Yanlong
Zhao.)

Yinjie He, Jian Guo, and Yanlong Zhao are with the Key
Laboratory of Systems and Control, Academy of Mathematics and
Systems Science, Chinese Academy of Sciences, and School of Math-
ematical Sciences, University of Chinese Academy of Sciences, Bei-
jing, P. R. China. Emails: heyinjieQamss.ac.cn, j.guo@amss.ac.cn,
ylzhao@amss.ac.cn

R.S. Shi is with the Postdoctoral Research Workstation of
Industrial and Commercial Bank of China, 100032 China, on
leave from of Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, 100140 China (e-mail: shiru-
oshil8@amss.ac.cn).

979-8-3503-1632-2/24/$31.00 ©2024 IEEE

Fairness. We utilize the difference between the highest
and lowest values of the rates obtained by lenders as
a metric of fairness. In practice, trading department
usually demands that the difference should be less than
a given threshold.

Sparsity. Driven by regulatory compliance and transac-
tion costs [8], trading departments also demand that each
borrower’s transactions should ideally not be excessively
fragmented, which imposes sparsity requirements.

Efficiency. Efficiency is dictated by the immediacy of
the financial problems. The trading department cannot
afford excessively lengthy solving time.

There are two main challenges. The first is that trans-
action allocation which requires fairness and sparsity
is rarely seen in academic field. The other challenge is
that the algorithm is required to adapt to problems of
different scales , i.e., different number of lenders and
borrowers or different amounts of trading volume.

In this study, we seek to formulate the transactions
allocation problem as a sparse nonlinear optimization
problem. A novel two-step algorithm with adaptive
parameters search are proposed, with a theoretical guar-
antee of convergence to a sparse feasible solution that
meets fairness requirements even in high-dimensional
situations. The main contributions are as follows:

1) We present a novel two-step algorithm, which (1)
finds the most sparse but not necessarily fair
solution, (2) and iteratively adjusts the allocation
locally until the fairness constraint is satisfied,
circumventing the challenges of global adjustment,
to solve the transactions allocation problem.

2) We devise adaptive parameter selection for the
locally adjusting step of the algorithm, which
improves the efficiency of the algorithm. We pro-
vide theoretical justifications that the two-step
algorithm along with adaptive parameter selection
can be guaranteed to find a sparse solution that
satisfies the fairness constraints.

3) We demonstrate our two-step approach by exper-
iments based on a real world dataset. The experi-
mental results show that the algorithm meets the
theoretical expectations and surpasses traditional
methods in terms of sparsity and solution time.

The remainder of the paper is organized as follows.
Section II formulates the problem. Section III reviews
the literature pertinent to solving the above problem.
Section IV presents the algorithm and provides theoreti-
cal guarantees. Section V demonstrates the effectiveness
of the two-step approach.
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II. Problem Formulation

Notation: Without loss of generality, we consider m
lenders and n borrowers. Let 1 = (I3,la,...,1,)T with
l; > 0 for i = 1,...,m denote the available lending
amount of each lender and let b = (b1, b, .. .,b,)T with
bj > 0 for j = 1,...,n denote the borrowing amount
of each borrower. Denote r = (r1,79,...,7,)7 as the
interest rates offered by each borrower. We can always
assume that »>3;", l; = 377, by, which means that total
borrowing amount equals total lending amount as it
corresponds to real-world scenarios. Let the matrix

H = (hij) 0
denote the allocation. In the allocation matrix H, the
element h;; denotes the transaction volume between the
itp, lender and the jy, borrower. For a column vector
x = (x1,T2,...,2,)7, let max(x) denote the maximum
element of x and min(x) denote the minimum element.
We then introduce the definition of the weighted interest
rate i of lenders under H,i=Hr 0 L.

Remark 1. In the above equation, @ signifies element-
wise division. And i = (i1,42,...,9,)7 is an m-
dimensional column vector, where each element repre-
sents the weighted interest rate of the lender.

Modelling. To ensure fairness, the difference between
the highest and lowest values of i should be less than a
given fair threshold e, i.e., max(i) — min(i) < e, where
i = Hr © 1. Note that trade volume should be non-
negative, so for allocation matrix H, each element h;;
should be non-negative, i.e., hj; > 0fori=1,...,m,j =
1,...,n. In addition, we should ensure that the total
trading volume of a lender equals its lending amount,
and that the total trading volume of a borrower equals
its borrowing amount. Let 1,, = (1,1,...,1)T, then we
have H1,, =1, 1ZH =bT.

Furthermore, as discussed before, we should not overly
fragment the transactions with a single borrower. This
means that we need to minimize ||H||p, where |H]||o refers
to the Ly norm of H. Formally, the sparse transaction
allocation problem can be described as

i H 1
min - [[H]o 1)
s.t.  max(i) — min(i) <e, (2)

H1l, -1=0, (3)
1”H-b" =0, (4)

Goal. Our goal is to make the allocation matrix H as
sparse as possible while ensuring fairness and satisfying
other constraints.

III. Related Work

This section presents some related work(1). Firstly, the
Ly norm, or alternatively, the Lg-penalty actually yields

the most sparse solutions. However, minimizing Lg-
penalty involves addressing an NP hard optimization [9],
rendering it infeasible for situations requiring efficiency.
Consequently, we employ regularization methods as the
approach for solving transaction allocation. Generally,
we replace ||H|lp with some certain sparse penalty
function P(H),

min  P(H), (6)

where we omit the constraints for simplicity.

Regarding sparse penalty functions, a common alter-
native to the Lg-penalty is the Li-penalty [10]. But we
cannot apply Li-penalty here because each element in
H is non-negative and the sum of each row and column
is controlled by the constraints, which means that ||H||;
always equals to a certain constant. Fan and Li [11]
proposed Smoothly Clipped Absolute Deviation (SCAD)
penalty function which reduces penalty on significant
elements. But we have to set 2 parameters for SCAD
carefully to effectively utilize it. Chartrand [12] proposed
that Li-penalty can be replaced by L,-penalty with
0 < p < 1. More specifically, Xu [13] pointed out that
by setting p to 1/2, a balance between efficiency and
sparsity can be achieved. The choice of sparse penalty
functions will be detailed later.

In general, assume that we have already picked a
penalty function, we should consider how to solve the
constrained problem. It is relatively easy to handle the
linear constraints (3)-(5). On satisfying the highly non-
linear fairness constraint (2), relaxation methods are
usually implemented. A common approach is compli-
cated linear programming relaxation. But it has very
high computation complexity in large-scale problem [14].
Another alternative is also to relax the fairness constraint
but to minimize the variance of the weighted interest
rate of lenders. Minimizing the variance might lead to a
serious violation of fairness constraint because it cannot
ensure that the difference between the highest and lowest
values of weighted interest rate of lenders will satisfy the
constraint even when the minimum is achieved.

Given this non-linear sparse optimization problem,
straightforwardly implementing relaxations and seeking
an optimal solution requires excessive computational
resources or may even fail in limited time. In the
next section, we will propose a provably good two-step
approach to efficiently solve the problem.

IV. Two-Step Approach

In this section, we present a novel provably good two-
step algorithm to address this problem. Intuitively, in the
first step, we ignore the fairness constraint and relax the
problem to a sparse optimization problem(6) only with
the linear constraints (3)-(5), which is relatively easy
to solve. In the second step, to ensure that the solution
obtained in the first step satisfies the fairness constraint,
we iteratively select two lenders with the highest and
lowest weighted interest rates, making slight adjustments
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Fig. 1. This figure is a demonstration of the refining step on the
allocation matrix. Each horizontal line represents a lender, with red
indicating that the lender’s weighted interest rate is higher than
the fair value, and blue indicating the opposite. The deeper the
color, the greater the extent. Iterative local adjustments between
the highest rate lender and the lowest value lender ensure fairness.

to narrow the gap between their rates and maintain the
sparsity as much as possible.
A. The most sparse solution under relaxation of fairness

Given the amounts 1 and b, and the interest rates
offered by borrowers r, we formulate the problem:

min P(H)
s.t.  max(i) — min(i) <e,

H1, —1=0,

17H - b’ =0,

hi; > 0,¥4,j. (7)

Here we do not specify the choice of a specific penalty
function to maintain the generality of the algorithm.

As discussed before, we first circumvent the nonlinear
fairness constraints and focus on the remaining linear
constraints,

min P(H),
H
st. H1, -1=0,
1’H-b" =0,

We can directly solve this simplified problem using a
nonlinear optimization solver and let Hg denote the
solution obtained in this step. In the first step, we relax
the fairness constraint to search for the optimal sparse
solution Hy within a broader scope. In fact, there is a
chance that Hg luckily falls into the smaller area that
satisfies the fairness constraint. In that case, Hy would
also be the optimal solution to the original problem.
Otherwise, if Hy violates the fairness constraint, we have
to make additional adjustments to ensure fairness. The
methods will be detailed below.

B. Refining fairness within constraints

If fairness constraint is not satisfied, we will adjust the
allocation to ensure the fairness. To maintain efficiency,
we prefer not to implement global changes on the allo-
cation matrix. Alternatively, we employ iterative local
adjustments to gradually meet the fairness constraint.

More specifically, at each iteration, we isolate the
two lenders with the highest and lowest rates. After
some proper adjustments, we re-evaluate the rates of all

the lenders. If fairness is obtained, the loop concludes.
Otherwise, we proceed to the next iteration.

First layer iteration. Suppose we get the result Hy,
k > 0 for the kg, iteration, Hy refers to the allocation
obtained in the first step. At this layer we solve a
subproblem to make the two lenders mentioned be-
fore satisfy fairness without changing other constraints.
Assume that the ay, lender has the highest rate and
the by, lender has the lowest rate. Correspondingly,
the allocation of the a;;, lender for the ki, iteration
is (h59 k9 .., h9)T and the allocation of the other

a,1’"'%a,2s
one is (h’;’f, h’;’g, cey h’;’g)T. Now we sum these two
vectors and formulate the subproblem to complete the
adjustment. In this subproblem, we only have two lenders
who have lending amount [, and [;, and n borrowers as
before but with the borrowing amount summed by Bf =
(h];:[f—l-h’;,’?, hﬁ:g—i-hlg_’g, e h’;:g—&-h};’g)T. The interest rate
commited by each borrower is still Tj, = (r1,72, 00y rn) .
Note that in this subproblem, we can relax the fairness
constraint into a quadratic function with sparse penalty.

11 k,0 7 k,0 k,0
Let ﬁO _ hk,O _ ha,l’ ha,2’ o "ha,n R2xn
S = 2 pEO kD B0 €
k,0 b1 1p 25 s My

denote the initial allocation matrix with two lenders and
n borrowers. Next, given the penalty parameter pg at the
first iteration in the first layer, we solve the following
subproblem to make these two lenders a and b satisfy
the fairness requirement:

(fa — ib)Q + POP(I:I)7

~ min
H=(h;,;)€R2Xx"

s.t. Hl, — (ll“) =0,
b

17H-b] =0,
hij > 0,¥i, 7,

(;) _firo (éb) . 9)

The solution of the above subproblem is written as
I:I,lC We should determine pgy carefully because it will
influence both sparsity and fairness. For this pg, we check
whether the solution to the subproblem satisfies the
fairness constraint (2) after the first iteration. If under
the penalty coefficient pg, the minimum point I:I}f of
subproblem (9) fails to ensure the fairness, we can update
the penalty coefficient py by using a decay function d(x)
to update pp as p1 = d(pg). We then continue with the
first layer of iterations, solving the subproblem (9) and
checking fairness under the new penalty coefficient p;.
After p iterations, we get a solution that satisfies fairness
(2), denoted as

I:Ip _ {lit,p e R2%n
kE— 2 :
hk’p

Second layer iteration. In this layer, we first replace
the as, and by, rows of the original Hy, with the two rows
of (10) in the first layer to get the new matrix denoted

(10)
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as Hy1. We then use the resulting Hy 1 to continue. A
demonstration of the two-layer iteration can be seen in
Figure 1. Continuing this two-layer iteration until there
exists K such that the complete matrix Hy satisfies the
fairness condition, we end the iteration and output the
final solution as Hy. The specific algorithmic flow is
described in Algorithm 1.

It can be theoretically guaranteed that if we choose
pp in the manner described above, we can obtain a
solution H = (h”)QXn to the subproblem (9) that
satisfies both fairness constraints and linear constraints
while maintaining sparsity at each iteration. Let I:IQ
denote the minimum value of the subproblem (9) under
pep, first layer iteration and ky, second layer iteration
determined by the penalty coefficient p, = dP(po). Here,
dP(-) denotes a p;;, composite of the function d(-).

Prop 1. Given the fairness constraint max(i) — min(i) <
e. If d satisfies dP(z) — 0 as p — oo for any « > 0, then
there exists a positive integer ¢ such that |i, — iy < e,

ia\ _ g lo
(%) =H;ro (lb
Proof. If p — oo, the sparse penalty coefficient p, =
dP(po) — 0. It is obvious that there exists an optimal
solution to (9) with pg = 0. We denote Hj as it. And we

where

let J,(H) = (Za—lb) +pp P(H), where p, = d?(po). Note
that (za —ip)? is actually a quadratic function of H, we
let Q(H) = (i, —ip)%(H). Without loss of generality, we

assume that the penalty function P(I:I) is always non-
negtive and bounded since the elements of H should
be bounded in feasible region according to the linear
constraints. Therefore, all we have to prove is that there
exists a positive integer ¢, such that Q(Hq) = (iq —

ip)?(HY) < €®. Note that J,(H?) < J,(H}), so we have

P(H}) + QH}) < p, P(H}) + Q(HR).  (11)
On the other hand, since P(I:Ii) is non-negative, we have
P(H) + Q(HY) > Q(H}) > Q(Hy).  (12)
Combining (11) and (12), we can deduce that
QH}) < p, P(HY) + Q(HY) < p, P(H}) + Q(H}).

Note that P(H;) is a constant when p changes and
Q(H}) =0, so if we let p — oo, we obtain

0 < limy— 0o Q(HE) < 0. (13)

(13) implies the result. O

Another issue worth mentioning is that all the con-
straints included in (9), i.e., (3)-(5), will not be violated
by Hy41 after kyy, second iteration. This means that the
refining step will not compromise the constraints. The
result is given in the following proposition.

Prop 2. After k;, second layer iteration, the allocation
matrix Hyy1 incorporated by the solution to the sub-
problem (9) will satisfy the linear constraints (3)-(5).

Algorithm 1: Two Step Transactions Allocation
Algorithm

Data: Lenders 1, borrowers b, weighted interest
rate r, and threshold value e
Input: Initial penalty coefficient pg, penalty
function P(-), and decay function d(-). Set
k=0and p=0.
Output: Final allocation matrix Hg
1 . Step 1. Seek the most sparse solution under
relaxation of fairness. Solve the following
relaxation problem:

min  P(H),
H
st. H1,—-1=0,
1’H-b" =0
hij > 0,Vi, j.

Then, get the initial estimate Hj and calculate
ir=H,rol
2 while max(ix) — min(ix) > e do Corresponding to
the second layer iteration, the two rows with the
largest interest rate difference are adjusted to
satisfy the fairness condition.
3 Step 2. Refine the fairness within constraints.
For Hy, find the two rows with the largest
difference in interest rates, noted as rows a
and b and calculate

BE’ (hkﬁﬂ +h§’1p7 hk,p +h’;;§77 B hkm +hkxp)

and define

. h} REP pRP L pkp

Hp: a,l’'%a,2 » Ya,n €R2><n.
k <h2 ) (h’lf’f, W B

while Hz does not satisfy the fairness
condition for e. do Corresponding to the first
layer iteration, the transaction allocation is
adjusted by solving a subproblem so that it
ultimately satisfies the fairness condition.
4 Solve the following sub-problem:

min

H=(h; )eR2xn (fa = ib)Q T ppP(I:I),

st. Hl, — (la> =0,
Iy

17H - bl =0,
hi; > 0,Vi, 7,

(- )

5 p=p+1L

6 pp = d(pp-1)-

7 end

8 Get the output ﬂ,f . Replace the two rows in
H, that have the largest difference in
interest rates with I:I,IfD .

9 k=k+1

10 end
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Allocation Matrix

Fig. 2. Allocation matrix given by our two-step algorithm, with
7 lenders and 23 borrowers.

Proof. We proceeed by induction. Note that Hg obtained
before satisfies all the linear constraints (3)-(5).

Now we assume that Hj, satisfies (3)-(5). Given that
our solution to (9) satisfies the local linear constraints
stated in (9), so putting it back into the global allocation
matrix will not violate the linear constraints (3)-(5). This
implies that Hy; satisfies (3)-(5). O

In summary, with the propositions above, we can reach
our main result.

Theorem 1. Our two-step algorithm can always obtain
an sparse solution while satisfying all the constraints
including the fairness constraint.

Proof. We only have to consider the situation that Hy
is not fair enough. In that case, we locally adjust the
allocation matrix as is discussed above. By prop 1 and
prop 2, we conclude the proof. O

Remark 2. In the theoretical justifications above, we
do not specify penalty functions, which means that the
effectiveness of the algorithm will not affected by the
selection of penalty functions. However, we recommend
using a penalty function with fewer parameters or even
without parameters to enhance robustness and improve
efficiency.

In the next section, we will conduct experiments based
on real world dataset to evaluate the performance of the
algorithm.

V. Empirical Analysis

In this section, we perform the allocation algorithm on
a real dataset from industry and compare it with some
baseline algorithms. We first introduce the data.

A. Dataset

Specifically, a company from industry provided a
transactions allocation dataset which are originated from
real data. Each problem contained in the dataset is
determined by three columns of data, which are lending
amounts, borrowing amounts, and corresponding interest
rates. Note that the numbers of lenders and borrowers
in each problem differ. The largest problem involves
7 lenders and 23 borrowers while the smallest problem
involves 2 lenders and 5 borrowers. We will present the

smallest data sample, where the units of amount are in
hundreds of millions of RMB.

lender amount = (6, 15)7,
borrower amount = (3.04,1.96,10,2.2, 3.8)7,
borrower rate = (1.9%, 1.91%, 1.91%, 1.94%, 1.94%)* .

Since transactions allocation is a deterministic optimiza-
tion problem, we do not necessarily need a huge amount
of data. The dataset contains eight samples. In fact, the
problems contained in the dataset cover typical scenarios
that a trader would encounter in real world.

B. Experiment Design

Baseline. We first introduce the benchmark algorithms
utilized in our experiment. Quadratic relaxation is used
to transform the original problem(7) into a quadratic
sparse optimization problem with linear constraints. We
can formulate it as

pP(H) +7 (ip —i)*,
P.q
st. H1,—-1=0,

17H-b" =0,
hij > 0,Vi, j.

min
H

(14)

where p is sparse penalty coefficient, i = Hr @ 1 ,and
s (i s ST
1= (’LlaZQ)"'?Zm) .

On the selection of sparse penalty function, we con-
sider Lj/p-penalty and SCAD penalty as alternatives
because the choice of parameters within them is rel-
atively robust. In fact, L;/y-penalty does not require

any parameters. Formally, if we apply L, /o-penalty, then
P(H) = Pr,,,(H) = ¥, (hi/*). And if we apply SCAD

penalty, then P(H) = Pscap(H) = Zi’j Py (h;j), where

A hijl if |hij| < A,
—h2,42aAhi;| -2,

Py(hij) = % if A < lhij| < aA,
% if |h,”| > a>\,

where A > 0 is the regularization parameter and a > 2
is a constant that controls the concavity. We always fix
a = 3.7 as recommended in [11].

Note that in both cases we have to select coefficients
p and v in (14) depending on the particular problems.
Besides, we also have to determine A in SCAD penalty.
Therefore, to maximize the likelihood of successfully find
a fair solution, we utilize grid search when solving (14).

Two-step Algorithm. In the experiment, we have to
specify some necessary details. We first explain the input
of our two-step algorithm. We set pg = 1, set decay
function d"(z) = s"z with s = 0.1. On the penalty
function, we utilize L, p-penalty as it does not require
additional parameters. As is widely adopted in the
industry, we should set the fairness threshold e = 0.02%.

General Setting. The non-linear optimization problems
are solved using the SciPy library within the Python 3.11
environment. The device utilized is an Apple MBP14
with the M1 Pro processor.
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C. Results

Fairness Range of Allocation at Each Step
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Fig. 3. The blue line displays the changing process of the difference
between the highest and lowest rate. X-axis refers to the number of
second layer iterations. The red dashed line represents the threshold
value e = 0.02%, which is widely adopted in financial industry.
Once we manage to find an allocation with a fairness range below
the threshold, we successfully find a solution.

The experiment results are shown in Table I. ’Fairness
Ratio’ refers to the proportion of successfully finding
a fair solution, which means that the fairness range
of the allocation generated by the algorithm is below
the threshold. ’Sparsity’ refers to the average proportion
of non-zero elements of the allocation matrix. ’Average
Time’ refers to the average processing time. We can
observe that the two-step algorithm always satisfies
fairness constraint with 100% success. In addition, the
proposed algorithm has the lowest average non-zero
ratio, which implies that it provides more sparse alloca-
tion on average than the baseline algorithms. Notably,
our two-step algorithm only takes 31.62s to provide a
satisfying allocation, much faster than the baseline. The
algorithm takes 11.8% of the time compared to Quad-
Ly/; and takes 6.7% of the time compared to Quad-
SCAD.

TABLE 1
This table displays the results.

Algorithm Fairness Ratio | Sparsity | Average Time

Two-Step 100% 46.87% 31.62s
Quad-SCAD 62.5% 50.15% 469.42s
Quad-Ly /o 62.5% 56.88% 267.69s

Figure 3 shows the influence of the iterative adjust-
ments on the interest rate range among the lenders.
We can observe that fairness is gradually obtained step
by step, as is expected theoretically. In addition, we
present a fair allocation scheme obtained in one problem
in Figure 2. It is quite straightforward to perceive the
sparsity of the solution given by the proposed algorithm.

VI. Conclusions

Motivated by the practically important interbank
lending transaction allocation problem, we consider a
non-linear sparse optimization problem with complicated
constraints. To ensure fairness, sparsity, and seek more
efficient solution, we develop a novel two-step algorithm
which can be implemented even in high-dimensional sit-
uations. It employs iterative local adjustments to ensure
compliance with highly non-linear fairness constraints.
We also devise an adaptive parameters selection method,
making the algorithm generalize across problems of
varying scales without changing the initial parameters. In
addition, we lay the theoretical foundation for our two-
step approach. We provide a proof that the two-step
algorithm along with the adaptive parameter selection
method always provide a sparse feasible solution. On the
other hand, we present empirical analysis on a real world
dataset in Python. The results across different scale
problems show that the two-step algorithm is capable
of ensuring fairness and sparsity, while significantly
improving speed.
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